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Realization of the importance of microbiome studies, coupled with the decreasing
sequencing cost, has led to the exponential growth of microbiome data. A number
of these microbiome studies have focused on understanding changes in the microbial
community over time. Such longitudinal microbiome studies have the potential to offer
unique insights pertaining to the microbial social networks as well as their responses
to perturbations. In this communication, we introduce a web based framework called
‘TIME” (Temporal Insights into Microbial Ecology’), developed specifically to obtain
meaningful insights from microbiome time series data. The TIME web-server is designed
to accept a wide range of popular formats as input with options to preprocess and filter
the data. Multiple samples, defined by a series of longitudinal time points along with their
metadata information, can be compared in order to interactively visualize the temporal
variations. In addition to standard microbiome data analytics, the web server implements
popular time series analysis methods like Dynamic time warping, Granger causality
and Dickey Fuller test to generate interactive layouts for facilitating easy biological
inferences. Apart from this, a new metric for comparing metagenomic time series data
has been introduced to effectively visualize the similarities/differences in the trends of the
resident microbial groups. Augmenting the visualizations with the stationarity information
pertaining to the microbial groups is utilized to predict the microbial competition as well
as community structure. Additionally, the ‘causality graph analysis’ module incorporated
in TIME allows predicting taxa that might have a higher influence on community
structure in different conditions. TIME also allows users to easily identify potential
taxonomic markers from a longitudinal microbiome analysis. We illustrate the utility of the
web-server features on a few published time series microbiome data and demonstrate
the ease with which it can be used to perform complex analysis.

Keywords: time series, microbiome, community state, visualization, clustering, Granger causality algorithm, web
server

INTRODUCTION

Recent advances in high throughput next generation sequencing technologies and emergence of
the field of metagenomics have helped in profiling not only the entire microbial groups in various
environment(s), but also enabled cross sectional view of the sample(s) in a longitudinal time scale.
While a cross sectional study design aims at comparisons of sample(s) at a single time point,
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longitudinal studies conduct several observations of the same
sample(s) over a regular/irregular time intervals. A cross sectional
study can provide insights regarding the differential abundances
of the resident microbes across various states which is likely to be
an indicator of potentially important biomarkers (Ghosh et al.,
2014; Cameron et al., 2017). However, in order to obtain deeper
understanding of the inter dependencies as well as periodic
patterns and temporal variations in the microbial community,
it is essential to perform a longitudinal study (Secrier and
Schneider, 2014).

Temporal variation in microbial abundances play a critical
role in influencing human health. For example, changes in
microbial diversity are known to be associated with flu, seasonal
allergies, as well as lifestyle disorders like diabetes and obesity
(Hartstra et al.,, 2015; Riiser, 2015). The decreasing cost per
mega-base of sequencing has enabled increased number of
such large scale longitudinal metagenomic projects from diverse
environments (Caporaso et al., 2011; Parsons et al., 2012; Kato
et al,, 2015). A number of studies have also concentrated in
analyzing the changes in normal human microbiota after a
perturbation event like administration of antibiotics (Dethlefsen
and Relman, 2011). Unlike the cross sectional studies, the
longitudinal microbiome studies have opened a new avenue for
understanding the importance of causality analysis and networks
based inferences on longitudinal time series microbiome data
(Faust et al, 2015). New insights have also been obtained
relating to differences in the stability of microbiomes across
various environments (Shade et al., 2012). Another study has also
elaborated the importance of stationarity analysis and its relation
to microbial competition (David et al., 2014).

With the increase in number of microbiome projects, various
tools and platforms have been developed for analysis of cross
sectional microbiome data (Caporaso et al.,, 2010; Arndt et al,,
2012; Kuntal et al., 2013; McMurdie and Holmes, 2013; Parks
et al.,, 2014; Dhariwal et al., 2017; Kuntal and Mande, 2017).
However, most of these tools cannot be utilized for understanding
the temporal dynamics of microbial communities obtained
from longitudinal studies. The available tools for time series
microbiome data analysis are focused for a particular purpose
or are implemented as library specific to a software platform
(Bucci et al., 2016) which is difficult for biologists inexperienced
in programming. While tools like Time-searcher (Hochheiser
and Shneiderman, 2004) have options for visualizing any time
series data, they have limited functionalities. STEM (Ernst and
Bar-Joseph, 2006), TimeClust (Magni et al., 2008) and GATE
(MacArthur et al.,, 2010), developed with a focus on microarray
time series data, also cannot be used for time series microbiome
data.

In order to obtain meaningful insights from microbiome
time series data, we have developed a user friendly GUI web
application, called ‘“TIME: (Temporal Insights into Microbial
Ecology’) publicly available at https://web.rniapps.net/time.
‘TIME’ allows users to upload data and perform analysis
by selecting any desired workflow(s). Each workflow is
carefully designed to address a biologically relevant question.
These analyses include clustering similar taxa based on
their temporal behavior, generating causality based inference

networks, identification of time point similarities, etc. A new
method for clustering time series data is also introduced and
implemented in the platform. ‘“TIME’ uses powerful visualization
techniques coupled with interactive ‘on the fly’ analyses to assist
obtaining meaningful inferences from microbiome time series
data. Visual data mining and analysis of large time series datasets
can be easily performed using this tool, thereby making it
convenient for biologists to focus more on the results rather
than implementation. “TIME’ intends to complement the existing
metagenomic analysis tools and incorporate a suite of techniques
that are suitable for microbiome time series analysis.

RESULTS
The ‘TIMFE’ Interface and the Workflows

A few time series microbiome studies have sampled data over
a reasonably sized longitudinal span from individual(s) or
environment(s) (Caporaso et al., 2011). Some of these time series
datasets may consist of several short sampling stretches spanning
over a long time period (Dethlefsen and Relman, 2011). The
‘TIME’ interface is designed to easily input user data in various
formats (described in the “Materials and Methods” section) for
visualization and analysis of time series microbiome data. Once
the data is uploaded, a summary plot of the richness and diversity
of microbial groups at each phylogenetic level is displayed.
Following this, a user may proceed analyzing the data step by step
selecting a workflow targeted for a specific time series analysis.
Various workflows along with their biological implications are
discussed below:

Workflow-1

Identify abundance based variations in taxonomic groups
over time

The first and foremost step in any time series analysis pertains
to visualization of temporal trends of the constituent entities
(for example taxonomic groups in a microbial ecosystem). This
workflow can be used to visualize and identify high, medium,
and low abundant taxa. In addition, it allows identification of
‘core, ‘persistent; and ‘transient’ microbial groups which serve as
important characteristic constituents of the ecosystem. The core
microbiome refers to those taxa which are present across all time-
points. On the other hand, the persistent microbiota refers to the
ones that are present across extended time points, but not in all.
In contrast, the transient group comprises of those sets of taxa
which show frequent trends of appearance and disappearance.
It should be noted that although the threshold parameters used
for defining the ‘core; ‘transient; and ‘persistent’ have been taken
from a previously reported study (Caporaso et al., 2011), they are
prone to biases due to sequencing depth.

Workflow-2

Compare temporal trends between selected taxa

Analysis of time series data often requires trend comparison of a
custom set of taxonomic groups. For example, the group may be
a set of taxa previously known to show a characteristic behavior.
The current workflow allows easy graphical comparison of two
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or more user selected taxa over the sampled timeline. TIME
also allows comparison of trends in microbial abundance using
a simple ‘select and plot’ operation, wherein users can choose
microbial taxa (at a specified taxonomic level) using a simple
auto-complete search or from a dropdown selection. One or more
taxa can then be appended to or removed from the existing
plot, thereby providing an easy way to study a selected set of
microbes. Most of the microbiome datasets consist of sets of
highly abundant as well as rare taxa. This poses a major problem
while plotting and visualizing multiple taxa together in a single
plot, with highly abundant taxa dominating the scale, thereby
making it difficult to decipher patterns for the rare groups. In case
the selected taxa have different abundance scales, users can utilize
the ‘log scaling’ option for comparing their trends. Particular time
stretches of interest can also be zoomed for in depth analysis.

Workflow-3

Identify temporally stable/unstable taxa

One of the important steps in time series analysis pertains to
identification of stationary entities corresponding to the ones
which have mean, standard deviation and variance constant over
time. In microbial time series studies, identification of stationary
taxa is especially crucial to detect inter microbial competition
(David et al., 2014). As demonstrated in an earlier study (David
etal., 2014), the presence of competition among the resident taxa
is expected to cause sustained growth of some of them leading to
their non-stationary behavior. Since in most cases the microbiota
are in stable state, only a few taxonomic groups are expected to be
non-stationary. A significant test of non-stationarity hence can
be considered as a hint for a restoring force governing bacterial
dynamics. However, fluctuations due to diet and environment
may also affect stationarity of taxa and hence a cautious
interpretation of results is required. Additionally, the similarities
in phylogeny of non-stationary taxa may also provide clues
pertaining to resource competition as genetically similar taxa are
more likely to exhibit resource competition.

Workflow-4

Identify variations in taxonomic groups between two time
ranges

Time series experiments involving perturbation events (like
administration of antibiotics) are likely to disrupt the microbial
community structure. In such analysis, it might be of interest
to identify and visualize the exact temporal effect of the
perturbation on the resident microbial groups. This workflow
allows identification of taxa which undergo noticeable changes
between two selected time ranges along with statistical inferences.
Taxonomic behaviors like gradual increase or decrease in
abundances can be easily inferred from the tabular summary
generated using this workflow.

Workflow-5a

Cluster groups of taxa having similar behavior over time

An important goal while analyzing microbial time series data
pertains to identification of groups of taxa which show similar
trends over a time stretch. Similar temporal behavior by
different bacterial taxa could arise due to reasons like symbiotic

relationship between two or more bacteria. On the other hand,
it is also important to know which bacterial taxa behave in
temporally opposite ways, since such behavior might be an
indicator of some underlying interaction or competition among
them. Taxonomic groups depicting similar behavior in a selected
timeframe are identified using Dynamic Time Warping (DTW)
algorithm (described under “Materials and Methods” section).
The output can be visually explored using interactive tree and
trend plots. Each branch of the tree corresponds to a set of
taxa having similar time series trends. Users can select a branch
(a group of taxa having similar temporal patterns) or an
individual terminal node (taxa) from the tree and visually explore
the time series trends using the assistive plot.

Workflow-5b

Explore pair-wise relationship among taxonomic groups
Visualization of correlation and other similarity indices between
the resident taxonomic groups often helps to gather meaningful
insights. This workflow allows users to select Pearson correlation
or modified DTW (referred to as TIME-DTW) index and use it
to generate heatmaps. Such heatmaps are useful for visual pattern
mining and the corresponding distance metric can be exported
for further advanced network analysis.

Workflow-6

Explore inter taxa interactions using causality network

The existence of a strong correlation in the abundance of two
or more taxonomic groups across a time scale may not always
be ascertained to causation. A recent study has utilized ‘module
networks’ to understand causality relationships among bacteria
(Lu et al., 2017). A causation event can be ascertained between
two taxonomic groups when the past values of one taxon are
observed to have some information about the future values of
the other. This analysis is performed in “TIME’ using a Granger
causality algorithm (described in details under “Materials and
Methods” section). The global community behavior over the
whole sampled timeline is captured using interactive causality
networks and trend plots. Each node in the network can be
queried for its causality using interactive operations. While right
clicking on a node (corresponding to a taxon) highlights the
nodes (or taxa) that are affected (‘Granger caused’) by it, left
clicking on the same highlights the nodes (or taxa) responsible
for affecting (‘Granger causing’) its temporal changes.

Workflow-7

Cluster time points based on similar community patterns
Many microbial time series datasets are often observed to
have a typical composition of constituent entities which gives
rise to seasonality or periodicity of microbial communities.
These similarities and differences in the proportion of the
constituent taxonomic groups give rise to ‘community states’ in
the microbiome. Such ‘community states’ could be useful for
obtaining insights into the microbial dynamics (Gajer et al,
2012). The interactive hybrid trend plot and heatmap generated
using this workflow is useful for visualizing the temporal changes
in the community structure.
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Case Studies on Publicly Available Time
Series Microbiome Data

We demonstrate the applicability and utility of each workflow
using three publicly available time series microbiome datasets.
‘Caporaso-Dataset’ corresponds to a longitudinal metagenomic
time series data of gut microbiome samples from an American
healthy male and female subject, collected at regular intervals
spanning a long time period (Caporaso et al., 2011). A second
time series metagenomic dataset (‘Dethlefsen-Dataset’)
corresponds to a study evaluating the effects two doses of
antibiotic treatments on the gut microbiome of three adult
American females (Dethlefsen and Relman, 2011). The third
dataset (‘Gajer-Dataset’) corresponds to a temporal sampling
of vaginal microbiome of 32 reproductive age women over a
period of 16-weeks (Gajer et al., 2012). All the above datasets are
pre-loaded into the “TIME’ application for users’ convenience.

Case Study 1: Analysis of Microbial Perturbation from
Microbiome Time Series Data

In order to demonstrate the applicability of “TIME’ in analysis
of perturbation, ‘Dethlefsen-Dataset’ (antibiotic treatment) was
selected and various relevant workflows were used for analysis.
The ‘Dethlefsen-Dataset’ had an associated metadata mapping for
the time points corresponding to the different states (for all three
individuals - D, E, and F), namely before antibiotic treatment
(‘PreCp’), during the two doses (‘FirstCp’ and ‘SecondCp’),
the week immediate post the two treatments (FirstWPC
and ‘SecondWPC’), gap between the doses (‘Interim’) and
the time points post treatment (‘PostCp’). A drastic drop in
diversity and richness specifically at the points of perturbation
(‘FirstWPC’ and ‘SecondWPC’), could be visually inferred
using the diversity plots generated using TIME (Figure 1A).
The Figure also shows the slow but incomplete recovery in
diversity post perturbation, which is in line with the reported
findings (Dethlefsen and Relman, 2011). The core taxa identified
using ‘Workflow-1" (at ‘genus’ level) also indicates an inter-
individual variation among the three subjects (Figure 1B),
with only four genera to be consistently common across all
(Bacteroides, Coprococcus, Roseburia, and Dorea). In order to
identify the taxa which are most affected by the antibiotic
treatment on ‘Sample E’ (as a representative example), the
Workflow-4 was employed after selecting two time stretches,
namely, ‘before Cpl’ (Period 1 ranging from time point 0-59)
and ‘after Cpl’ (Period 2 ranging from time point 65-124).
This analysis identified the affected genera sorted by the log
fold change in the mean abundances between period 1 and
period 2. Haemophilus, Butyrivibrio, Eubacterium, Turicibacter,
and Parabacteroides were identified to be the top five affected
genera upon antibiotic treatment based of log-fold abundance
(Figure 2) but none of them were found to be statistically
significant (when evaluated with Wilcoxon Rank-Sum Test
using P-values corrected for multiple testing). Subsequently,
to gather a deeper insight into the pattern of the affected
genera during perturbation or genera similarly affected during
perturbation, Workflow-5a was used (selecting sample ‘E; time
point as ‘FirstCp’ and a rare taxa cutoff of 0.5) to generate
the DTW tree (Figure 3A). Visual inference of the tree

revealed three clear clusters (Figure 3A), each of which were
used to generate their corresponding trend plots (Figure 3B).
While Cluster 2 seemed to contain genera whose abundance
is most strongly decreased by antibiotic treatment, Cluster 1
contained the moderately affected ones. On the other hand,
Cluster 3 consisted of genera which increased post perturbation,
possibly due to the reduced abundances of taxa belonging to
Clusters 1 and 2.

Case Study 2: Insights into Microbial
Inter-Dependencies Using Causality Networks

To analyze the effect of stationary genera and its relation to
causality, the female subject (at genus level) from ‘Caporaso-
Dataset’ (the 6 months spanning time series sampling) was used
to generate the causality network using Workflow-6 (keeping a
rare taxa cutoff of 0.5). The non-stationary genera information
was overlaid on the network using one of the features in TIME
which highlights the corresponding names (Figure 4). While a
majority of the genera were seen to be stationary, a few exhibited
non-stationary behaviors, an observation similar to an earlier
study on a different gut microbiome dataset (David et al., 2014).
Further, the majority of the non-stationary genera belonged to the
phylum Firmicutes, strengthening the hypothesis of phylum level
(genetically similar) resource competition (David et al., 2014).
However, owing to the complexity of the community interactions
in a gut microbiome, further experimental validations are
required to support this hypothesis. In order to infer the effect of
a non-stationary genus on others, we chose two non-stationary
genera nodes (Faecalibacterium and Clostridium) from the
causality network. While Faecalibacterium is a well documented
commensal gut bacterium, a number of species belonging to
Clostridium are known to have several pathogenic effects on
human. Right clicking on these nodes enables one to highlight the
edges connecting the genera affected (‘Granger caused’) by them
and correspondingly displays the trend plot of all the associated
taxonomic groups. A quick look into the edge connections
showed that most of the genera affected by Faecalibacterium are
non-stationary as compared to the ones affected by Clostridium.
This observation suggests a differential influence of one taxon
over others.

Case Study 3: Importance of Time Series Community
Analysis

Microbial communities in different body sites have been reported
to exhibit differences in their compositions. These compositions
are also known to change over time. For example, studies on
temporal variation of human gut microbiome have reported the
presence of periodic as well as non-periodic diversity patterns
(Caporaso et al,, 2011). Such similar temporal patterns arise
due to a comparable microbial community composition across
these time points. Workflow-7 of “TIME’ is dedicated to identify
such community clusters and visualize their variations across the
timeline. ‘Caporaso-Dataset’ and ‘Gajer-Dataset’ (corresponding
to gut and vaginal time series microbiome, respectively) were
used as a part of this analysis pipeline (results are summarized
in Figures 5, 6, respectively). In order to consider the effect of
only the ‘non-rare taxa’ (taxa which occur in at least 70% of
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PreCp | FirstCp

Diversity and Richness
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D (Female, 54 years)

Richness
xapu| Aussang

E (Female, 34 years)

Richness
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150

Timedelta

B

— Richness — Shannon

FIGURE 1 | (A) Changes in richness and diversity of the microbial genera across the three subjects (D, E, and F of ‘Dethlefsen-Dataset’ used in the case study)
especially at the time points pertaining to antibiotic treatment (‘FirstCp’ and ‘SecondCp’). (B) Trend plots of the core microbial genera in the three subjects show

individual specific variations.

samples), a rare taxa cutoff of 0.7 was selected and a bi-directional
clustering was done (for time points and taxa). Each of the two
‘time-point clusters’ (Figure 5) represent a group of time points
having similar microbial distributions, called ‘community states’
(see section “Materials and Methods” for details). A comparison
of the female and male gut microbiome time series (‘Caporaso-
Dataset’) using the above workflow revealed a clear bias of one
of the two ‘community states’ in the male (Figure 5B) while
almost an equal distribution of the two ‘community states’ was
found in the female (Figure 5A). In male, while the dominant
cluster had mainly the genera Bacteroides and Parabacteroides
as distinguishable marker, other genera namely Prevotella and
Campylobacter were observed to be the prominent contributors
of the less dominant cluster (Figure 5B). On the other hand, the
female microbiome had one cluster prominently dominated by
Akkermansia, with no single clearly dominant member in the
other (Figure 5A). To explore community states in a different
body site, vaginal microbiome from subject-1 of ‘Gajer-Dataset’
was considered and analyzed using Workflow-7. A clear periodic
pattern in the ‘community states’ was observed (Figure 6B),
probably due to the prominent changes in the menstrual cycle

and related hormonal changes in reproductive age females. While
one ‘community state€’ showed a dominance of Lactobacillus
iners, the other showed a dominance of Atopobium. The genera
Atopobium is known to be associated with bacterial vaginosis,
while lactic acid producing bacteria (like L. iners) are known to
prevent pathogen colonization by creating an acidic environment
(Gajer et al., 2012). The generated heatmap (Figure 6A) as well as
trend comparison plot using Workflow-2 (Figure 6C) indicate an
antagonistic behavior between the above two taxa.

DISCUSSION

The various workflows in “TIME’ allow visualizing time series
microbiome data as well as analyzing them to obtain meaningful
biological insights. It is to be noted that a few key points
need to be considered before interpreting the generated outputs
and building hypotheses based on such datasets (Weiss et al.,
2017). For instance, the microbial abundance files used as
input for analysis represent the count of clustered sequences
(OTUs) across several time points corresponding to one or more
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[Prevotella] 0.82 0.0 81.82 100.0 0.08 nan inf 0.49 1.0
Campylobacter 0.09 0.0 90.91 100.0 0.16 nan inf 0.73 1.0
cc_115 0.18 0.0 81.82 100.0 0.28 nan inf 0.49 1.0 LISt of taxa
Coprobacillus 0.18 0.0 81.82 100.0 0.25 nan inf 0.49 1.0

_ : completely
Granulicatella 0.09 0.0 90.91 100.0 0.0 nan inf 0.73 1.0 6-
Lactococcus 003 00 9091 100.0 -0.23 nan inf 073 1.0 eliminated
Microbacterium 0.09 0.0 90.91 100.0 -0.23 nan inf 0.73 1.0 in Period 2
Neisseria 0.09 0.0 90.91 100.0 0.23 nan inf 0.73 1.0
Pseudomonas 0.09 0.0 90.91 100.0 0.21 nan inf 0.73 1.0
Rhodoferax 0.18 0.0 90.91 100.0 -0.23 nan inf 0.73 1.0
Haemophilus 9.73 233 27.27 66.67 0.27 0.43 1.43 0.16 1.0
Butyrivibrio 291 0.89 18.18 55.56 -0.01 -0.02 1.19 0.05 0.7
[Eubacterium] 1.36 0.44 45.45 77.78 -0.19 0.62 1512 0.2 1.0 L|St of taxa
Turicibacter 1.0 0.33 72373 77.78 -0.43 0.37 1.1 0.79 1.0 .

, € affected in

Parabacteroides 16.18 6.0 0.0 22.22 0.26 0.64 0.99 0.01 0.57
Porphyromonas 027 011  81.82 88.89 0.77 0.28 0.9 0.76 1.0 Period 2
Sutterella 26.09 1478 27.27 22.22 -0.08 0.43 0.57 0.38 1.0

metadata.

FIGURE 2 | Demonstrating the utility of ‘Workflow-4" in identifying the taxonomic groups completely eliminated and the ones mostly affected by antibiotic treatment
during the first dosage period (‘FirstCp’ of ‘Dethlefsen-Dataset’ used in the case study). Two time periods (‘BeforeCp’ and ‘AfterCp’) were chosen based on the

sources (samples). Regardless of strict experimental designs,
not all sources as well as time points are sampled/sequenced
at similar depths due to sampling constraints as well as
sequencing limitations. Hence, samples sequenced at lower
depth may display biased diversity estimates and consequently
affect the downstream analyses. For example, workflow 4 in

TIME can predict differential abundant taxa between two time
stretches with increased confidence if the sequencing depths are
sufficiently high and even since samples with higher number of
sequence will have better estimates of abundances. Similarly, if
some time points are sampled deeper than the others, it makes
interpretation of transient and rare taxa difficult (workflows 1
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Trend plot background color legend (Sample metadata)

FIGURE 3 | Clustering of taxonomic groups based on their temporal trends during the antibiotic treatment (‘FirstCp’ of ‘Dethlefsen-Dataset’ used in the case study)
on Subject ‘E.” The (A) shows a tree (radial layout) with three clusters generated using DTW-distance metric in ‘Workflow-5a.” The (B) shows the corresponding
trend plots for the three clusters obtained by clicking on the root node of each cluster. The genera color labels (in the tree) correspond to their respective phyla as

shown in the legend while bold labels indicate non-stationary taxa.

and 3) without normalization. In addition, presence of sparse
OTUs represents uncertainty in counts owing to limitations
in the sequencing detection ability (since they are below the
detection threshold). A majority of microbiome studies consider
either a relative normalization route (OTU counts scaled to
proportions) or a rarefaction based normalization step (each
sample is sub-sampled to an even depth), both of which are
implemented in TIME for convenience. Use of rarefaction curves
can provide guidance on choosing a suitable rarefaction depth for
normalization and lower the false discovery rates (Weiss et al.,
2017). However, it should be kept in mind that rarefying a data
might impact a number of downstream analysis workflows due
to removal of a subset of the data. Moreover, time series data
involving perturbation events, if normalized using rarefaction,
might subdue the effect of the perturbation itself. Relative
normalization on the other hand, is also prone to create several
artifacts (Stammler et al., 2016). Both rarefied as well as relatively
normalized data are compositional, therefore, fluctuations in
abundance of one taxon might lead to spurious fluctuations in
abundance of other taxa resulting in false correlations (Weiss
et al,, 2017). A lack of knowledge of absolute abundance can

thus impact the interpretation of the results of the analyses.
For example in workflow 3, although a taxon might change in
abundance and appear to be non-stationary, it may actually be
not changing but taxa around it may be changing in relative
abundance. Moreover, relative abundance based approaches
ignore the possibility that the altered abundance itself could be
a key identifier of a disease state (Vandeputte et al.,, 2017). It
may also be noted that both relative and absolute abundances are
required for obtaining a comprehensive understanding of time
series microbiome data (Props et al., 2017). Additionally, data
obtained from appropriately designed experiments (e.g., using
replicates for each time point) will increase confidence on the
obtained results. Advanced experimental protocols have also
been reported (Stimmler et al., 2016) which helps in normalizing
the biases arising due to differential microbial loads across
samples.

The incorporated Granger causality based interaction
networks in “TIME’ provides a way to capture the overall global
microbial community behavior and is ideal for datasets having
evenly sampled time-points. Variations of Granger causality
have been applied earlier to decipher ecological relationships
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FIGURE 4 | (A,B) Represent two composite plots for Granger causality graphs (A1 and B1) and Trend plots (A2 and B2) corresponding to genera Faecalibacterium
and Clostridium respectively. Granger causality graph (A1 and B1) for the constituent taxa in the female subject of ‘Caporaso-Dataset’ used in the case study
generated using ‘Workflow-6." The trend plots (A2 and B2) for two genera namely Faecalibacterium and Clostridium along with the genera caused (or affected) by
them are displayed below the corresponding circular graphs. The arrows in the graph represent the causality relationships between the source and target nodes. The
genera color labels correspond to their respective phyla as shown in the legend while bold labels indicate non-stationary taxa.

(Detto et al., 2012) and in gene expression networks (Yang
et al., 2017) with reasonable success. However, not all Granger
causal interactions correctly predict biological causality and are
merely statistical predictions. It should also be noted that such
predictions do not provide explanations regarding the origin of
the interactions and could be due to an indirect influence. For
instance, one time series may be a strong predictor of another
time series because both are shaped together by a common
underlying cause. Hence, like any other statistical prediction, a
cautious interpretation of each predicted interaction is required
to be made before building any hypothesis. Incorporation of
functional data like metabolic co-dependencies (Levy et al., 2015)
might help to strengthen the basis of a predicted interaction.

CONCLUSION

The various workflows implemented in “TIME’ can help end
users not only to perform a number of analyses, but also gain
meaningful insights from the interactive visualizations. Analysis
on a few well known publicly available datasets illustrate the
utility of the options available in “TIME.” For example, apart from

obtaining information regarding the temporal effect of antibiotic
treatment on human gut microbiome, “TIME’ could identify
similarly perturbed groups of microbial genera. Additionally,
the inter-microbial competition among the pathogens and
commensals could also be inferred from the causality networks
and stationarity analysis. In another example, the periodic
changes in community structure of the vaginal microbiome
were illustrated using the ‘community state’ analysis workflow.
Although the scope of the case studies presented here is limited
in this communication, the workflows can be further utilized
to gain additional insights. We expect “TIME’ to be a valuable
contribution in the field of microbial time series data analysis and
visualization.

MATERIALS AND METHODS

‘TIME’ web application uses Python and JavaScript to execute
the backend algorithms and for browser based data processing,
respectively. We used the DyGraphs' (DyGraphs Java Script,

'http://dygraphs.com/
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FIGURE 5 | Demonstrating the utility of ‘Workflow-7" in gathering insights on community patterns in the female (A) and male (B) subject of ‘Caporaso-Dataset’ used
in the case study. The heatmaps are clustered vertically based on taxa abundance and horizontally arranged according to the two ‘community states’ (represented

as ‘Cluster 1’ and ‘Cluster 2’) identified by TIME.

2017) module for rendering time series line charts since it has the
ability to handle large datasets seamlessly. Other visualizations
are implemented using D3.js library (Bostock, 2017) with
extensive interactive operations.

Input Format

User data (consisting of the microbial abundance table) along
with the available metadata information can be incorporated
in ‘TIME’ using a simple form. The abundance table can
either be provided as a standard ‘QIIME’ output (Caporaso
et al., 2010) or as a tab delimited file. The metadata file
is required to have information related to the source of the
microbiome sample, sample names (identical to the ones in
the abundance file), time stamp information along with the
sample condition for each time point. A detailed description of
the input files is provided in the user manual (available in the
website).

Normalization, Visual Exploration and
Segregation of Microbiome Time Series
Data

The microbial abundances obtained for analysis represents the
count of clustered sequences belonging to the constituent taxa

as operational taxonomic units (OTUs). The abundances of each
OTU across different time points constitute the OTU abundance
matrix. Restraints in sampling at multiple time points as well as
sequencing errors result in unequal sequencing depths. “TIME’
provides methods to circumvent this limitation using either a
proportion based or rarefaction based normalization. Rarefaction
plots serve as one of the means to identify unequally sampled
data points and subsequently can be used to normalize the
OTU matrices such that all time points have similar counts.
Users can generate a rarefaction curve for each metagenomic
source by selecting either all the time points or a set of
equidistant 5 or 10 time points. The generated curve can be
used as a guide to select a suitable rarefaction normalization
depth. Alternatively, users may proceed with absolute count
data (without any normalization) or perform relative proportion
based normalization. It is advisable to choose appropriate
normalization method (refer to the “Discussion” section for more
details).

The visual examination of the temporal trends is an important
step in any time series analysis. In “TIME, all the taxa abundances
at any particular taxonomic level can be viewed together as
interactive line plots across the sampled timeline. An important
challenge for carrying out such comparative microbial data
analysis pertains to the problem of taxa abundances with
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time points. (C) Demonstrating the antagonistic behavior between the two genera Lactobacillus iners and Atopobium in the vaginal microbiome dataset used in the

different orders of magnitude (with some taxa having very high
abundances and some having extremely low counts). In other
words, it is difficult to visualize the trends of the lower abundant
taxa owing to the dominant influence of the very high abundant
ones on the plot. “TIME’ provides two ways to tackle this problem.
While one uses ‘quartile segregation, the other utilizes ‘log
scaling.” In quartile segregation, the different taxa are grouped
into four quartiles based on their abundance information which
can be viewed separately. The very high abundant and the
very low abundant taxonomic groups (or potential outliers)
tend to occupy the top and bottom quartiles, respectively. The
remaining quartile accommodates the taxonomic groups having
the intermediate abundances. This makes sure that during visual
exploration the temporal trends of the low abundance taxa do
not get compressed (or dominated) by the trends of the very
high abundant taxa. TIME also offers the option of log scaling
the abundance values so that the trends of low abundant and
that of high abundant taxa can be compared on the same plot.
Additionally, the tool provides an option to view the core,
persistent and the transient groups of bacteria which are reported
to have distinct roles in microbial ecosystems (Caporaso et al.,
2011). A taxon is considered to be persistent if it is observed
in more than 20% of the time points, with at least 90% of

these observations being consecutive. On the other hand, the
transient taxa are those which are observed in at least 60% of
the time points, with at most 75% of these observations being
consecutive. However, TIME provides an option to modify these
parameters (prevalence threshold and consecutive observations)
for definition of core, persistent and transient in ‘workflow 1’
to accommodate differences in wide number of datasets. In
addition to the above measures, the richness and diversity of
the studied microbial communities are also calculated using
well known indices. While richness of a microbiome denotes
the unique number of constituent taxa present in each sample
(at a time point), the diversity provides a measure of how evenly
the taxonomic entities are distributed. Although diversity of a
microbiome can be calculated using a number of ways, the widely
accepted Shannon index for diversity (Shannon, 1948) has been
implemented in “TIME.

R
Shannon Index = —Zpi In p;
i=1

Where, p; refers to the proportion of the abundance of the i
taxon in the population consisting of ‘R’ taxa.
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With implementation of each of the above methods and
their corresponding visualizations, an interactive operation for
selecting a ‘subplot window’ of the plotted timescale is presented.
This feature enables users to graphically choose the start and
end time points using simple mouse operations and visualize the
selected time range. The ‘subplot window’ can then be dragged
along the time-scale with a zoomed view. The moving average
of a time series can also be specified using a text box available
at the bottom corner of the plot window. This feature smoothes
the short term fluctuations in the time series data and shows the
overall trends (and cycles) across a longer timescale.

Identification of Stationary Taxonomic
Groups

Stationarity of taxa in microbial time series data is important
to understand inter-microbial competition (David et al., 2014).
A taxon is considered stationary if its mean, variance, covariance,
and autocorrelation are constant over time, due to the absence
of a unit root process. A unit root process is said to be present
in a time series if its autoregressive model has an estimated
coeflicient close to one. The presence of a unit root indicates
that a perturbation in the value of the entity in the time
series has a persistent impact on its future values and hence a
cause of non-stationarity. The most commonly used method for
calculating stationarity is the Augmented Dickey Fuller (ADF)
Test. While the null hypothesis of the ADF Test is that there
is a unit root process governing the dynamics of the entity
(taxon), the alternate hypothesis states that there is no unit root.
The ADF test statistic is a number, the more negative it is, the
stronger will be the confidence with which the null hypothesis
can be rejected. “TIME’ allows identification of microbial groups
detected to be stationary and non-stationary and lists the same
in a searchable table with options to export the results. The
stationarity information corresponding to each taxon is also used
to augment other plots in the tool along with the phylogeny
information.

Generation of Inter-Microbial Causality

Network

One of the important objectives in time series studies pertains to
identifying causal relationships among entities. Causality aims to
find the direct interactions between entities such that one entity
can trigger/suppress or be triggered/suppressed by the other. It
should be noted that causation should not be confused with
correlation. For example, two taxa (A’ and ‘B’) in a microbiome
time series dataset may be correlated, but may not have any causal
relationships. Granger Causality (Granger, 1969) is one of the
most well established statistical tests for checking causality among
two time series. The basic premise of this method is that, if one
variable causes another, the past values of the former must have
some information about the future values of the latter (which
is not available otherwise). For example in a microbiome time
series data, if taxon A affects taxon B, the future values of taxon
B can be better predicted using the past values of both taxa A and
B, rather than using the past values of taxon B alone. In order
to ascertain if taxon A influences taxon B, two regressions are

performed. In one, past values of taxa A and B are used to predict
the present values of taxon B. In the other, only the past values
of taxon B is used to predict the present values of taxon B. If a
significant increase of the goodness of fit of the former regression
over the latter is observed, then taxon A is said to ‘Granger cause’
taxon B.

Since a typical microbiome time series data has more than
two entities (taxa), ‘Granger Lasso Causality’ (Hlavackova-
Schindler and Pereverzyev, 2015) can be used to find causal
relationships among all taxa. Thus, apart from the “Pairwise
Granger causality’ (described above) for all possible taxa pairs,
‘Granger-Lasso’ method has also been implemented in ‘“TIME.
The LASSO (Least Absolute Shrinkage and selection operator)
is one of the most well known and widely used methods for
feature selection and regularization in machine learning. LASSO
works by adding a regularizing penalty to the sum of squared
errors. This objective function is minimized (by optimization)
for estimating the values of the coeflicients of regression
(thus reducing the weightage/coefficients of the unimportant
predictors), thereby finding the best set of predictors for every
variable. Granger-Lasso utilizes the LASSO methodology for
identifying causal relationships among all entities (taxa) in
multivariate microbiome time series dataset (Arnold et al., 2007).
Another option allowing selection of causality pairs predicted by
both ‘Pairwise Granger’ and ‘Granger-Lasso’ is implemented for
improved Granger Causality predictions. All these three methods
are available in “TIME’ which can be finally used to generate a
directed causality network.

Identifying Taxonomic Groups Having

Similar Temporal Patterns

In time series datasets, it is not only important to evaluate
temporal changes of different entities and the causal relationships
among them, but also to identify entities which exhibit similar
temporal patterns. The Euclidean distance based clustering of
entities is unsuitable for identifying similar temporal patterns
since this distance measure does not take into account the
distortion across time series (Keogh and Ratanamahatana, 2005).
In other words, the temporal behavior of two taxa which are
out of phase is assigned a high value by Euclidian measure.
On the other hand, Dynamic Time Warping (DTW) gives
due importance to the phase displacement and obtains the
optimal alignment between the two time series (Berndt and
Clifford, 1994). DTW uses a dynamic programming based
approach to align and score the similarity of the temporal
patterns corresponding to two entities (taxa in the case of
microbial time series). Since the DTW algorithm is relatively
slow with a worst case time complexity of O(n?), a modified
DTW algorithm (Sakoe and Chiba, 1990) is implemented in
‘TIME’. In this algorithm, a constraint is applied in such a way
that a limited number of cells are evaluated during computing
the cost matrix of the alignment, thereby making the overall
computation process much faster (Salvador and Chan, 2007).
‘TIME’ uses the calculated pair-wise DTW distances among
the different taxa for hierarchical clustering. The resulting
dendrograms can be viewed as trees in standard or radial layouts.
One of the limitations of the DTW distance pertains to the
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inability to interpret the distance score easily as it does not fall in
a definite range. Therefore, it is desirable to have a modified score
with a definitive range that can be universally interpreted. In
order to achieve this, we introduce a new method for calculating
the distance between two time series, called the ‘“TIME-DTW
Distance, In a microbial time series data, one taxon can have
a difference of several orders of magnitude with another, but
their time series may have similar overall shape. Thus, a standard
normalization step is first applied to minimize such differences.
Following this, the DTW distance is calculated and normalized
by the average ‘sum of the absolute difference’ (SAD) between
each time series and its ‘mirror image’ (Supplementary Material).
The resultant value (“TIME-DTW distance’) will hence always
fall between a range of zero and one. “TIME’ allows an easy and
interactive way to explore the results using a ‘clustered heat map.’
In addition to using the TIME DTW Distance as the measure
of similarity/dissimilarity, the pairwise similarity between taxa
can also be viewed using Pearson Correlation coefficient. The
resulting heatmaps are hierarchically clustered based on their
distances along the vertical axis, and taxonomic hierarchies along
the horizontal axis.

Understanding Community Structure

Based on Similarities across Time Points

Apart from understanding the temporal similarities among the
resident entities (taxa), clustering of time points having similar
entity distribution is expected to yield valuable insights regarding
the microbial community dynamics. The identified time
points having similar taxonomic distributions (i.e., phylotype
proportions) can be considered as a ‘community state’ (Gajer
et al,, 2012). Jenson Shannon divergence (JSD) metric has been
utilized earlier to identify such ‘community state’ in microbiome
time series data (Gajer et al, 2012). In ‘TIME,; a modification
of the method is implemented to make it applicable for any
microbiome time series. The taxa abundances are first normalized
to generate probability distributions, which are then used to
calculate the JSD among the different time points. Thus, a
pairwise JSD matrix is obtained for all time points. Since, the
K-medoids clustering algorithm (Jin and Han, 2011) is known
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