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Salt marshes provide many key ecosystem services that have tremendous ecological
and economic value. One critical service is the removal of fixed nitrogen from coastal
waters, which limits the negative effects of eutrophication resulting from increased
nutrient supply. Nutrient enrichment of salt marsh sediments results in higher rates of
nitrogen cycling and, commonly, a concurrent increase in the flux of nitrous oxide, an
important greenhouse gas. Little is known, however, regarding controls on the microbial
communities that contribute to nitrous oxide fluxes in marsh sediments. To address
this disconnect, we generated profiles of microbial communities and communities
of micro-organisms containing specific nitrogen cycling genes that encode several
enzymes (amoA, norB, nosZ) related to nitrous oxide flux from salt marsh sediments.
We hypothesized that communities of microbes responsible for nitrogen transformations
will be structured by nitrogen availability. Taxa that respond positively to high nitrogen
inputs may be responsible for the elevated rates of nitrogen cycling processes measured
in fertilized sediments. Our data show that, with the exception of ammonia-oxidizing
archaea, the community composition of organisms involved in the production and
consumption of nitrous oxide was altered under nutrient enrichment. These results
suggest that previously measured rates of nitrous oxide production and consumption
are likely the result of changes in community structure, not simply changes in microbial
activity.

Keywords: salt marsh, nitrous oxide, nutrient enrichment, denitrification, norB, nosZ

INTRODUCTION

Salt marshes provide numerous ecosystem services (Deegan, 1993; Chmura et al., 2003; Gedan
et al., 2011) including the removal of fixed nitrogen (N) from the environment (Valiela and Teal,
1979). This service acts to limit eutrophication (Valiela and Cole, 2002), which is crucial for
the maintenance of healthy coastal waters (Deegan et al., 2012), and will grow in importance as
nitrogen loading to the coast increases in the future (Galloway et al., 2004; Canfield et al., 2010).
The location of salt marshes at the interface of the land and sea allows them to intercept and filter
nutrient-laden water as it leaves terrestrial landscapes (Howes et al., 1996; Mitsch et al., 2005; Drake
et al., 2009; Brin et al., 2010). In marsh sediments, a portion of N is sequestered in organic rich
peat. The vast majority, however, is removed through microbial N-cycling processes, in particular
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denitrification (Anderson et al., 1997; Tobias et al., 2001;
Hamersley and Howes, 2005), which can account for up to 84% of
fixed nitrogen removal in marsh systems (Valiela and Teal, 1979).

Denitrification is the stepwise reduction of nitrate (NO3
−)

to a nitrogenous gas, either nitrous oxide (N2O) or dinitrogen
gas (N2), generally under anoxic conditions (Zumft, 1997). The
last two steps of complete denitrification are the reduction of
nitric oxide (NO) to N2O, followed by the reduction of N2O
to N2. These steps are mediated by the enzymes nitric oxide
reductase (NOR) and nitrous oxide reductase (N2OR), which are
frequently assessed in the environment by examination of the
norB and nosZ genes, respectively (Dalsgaard et al., 2014; Kearns
et al., 2015). Canonical denitrifiers contain the entire suite of
enzymes necessary for the complete reduction of NO3

− to N2.
However, the denitrification pathway also shows a remarkable
degree of modularity (Graf et al., 2014; Roco et al., 2017),
with many known organisms containing a subset, or even
just a single enzyme within the pathway. Modularity implies
that individual N transformations may be mediated by distinct
communities of microbes, which may respond to environmental
conditions differently. If changing environmental conditions
alter the production but not the consumption of N2O, the benefit
of N removal from the marsh might be offset by the production
of this important greenhouse gas.

In addition to denitrification, salt marsh sediments are
hotspots for other processes in the N cycle (Kaplan et al., 1979;
Valiela and Teal, 1979). Of particular importance is nitrification
(Dollhopf et al., 2005), the two-step aerobic oxidation of
ammonia (NH3) to NO3

−, through the intermediate nitrite
(NO2

−). Nitrification supplies the NO3
− that is needed for

denitrification, which is typically limiting in oxygen-depleted
sediments. This linkage, referred to as coupled nitrification–
denitrification, often represents the largest N-loss process from
salt marshes (Patrick and Reddy, 1976; White and Howes, 1994).
The first step of nitrification (NH4

+ oxidation to NO2
−) is

catalyzed by the enzyme ammonia monooxygenase, which is
encoded by the amo gene. This gene is present in bacteria
and archaea (Kowalchuk and Stephen, 2001; Leininger et al.,
2006). Additionally, some nitrifying bacteria contain nor and
can denitrify (reducing NO2

− to N2O) in a process called
nitrifier-denitrification (Wrage et al., 2001; Kool et al., 2010).
Nitrifer-denitrifier nor, though similar in function, is genetically
distinct from canonical denitrifier nor and can be differentiated
in molecular analyses (Casciotti and Ward, 2005).

Nitrous oxide, a product of N-cycling processes, is a potent
greenhouse gas with approximately 300 times the warming
potential of carbon dioxide [Environmental Protection Agency
(EPA), 2013], thereby having a significant effect on global
warming (Joos and Spahni, 2008). Additionally, N2O is predicted
to become the dominant ozone-depleting substance this century
(Ravishankara et al., 2009). During the oxidation of ammonia,
N2O can be produced as a by-product from hydroxylamine
decomposition in ammonia-oxidizing bacteria (Poth and Focht,
1985), and via a nitric oxide intermediate in ammonia-oxidizing
archaea, as well as via abiotic processes (Kozlowski et al., 2016).
In denitrification, N2O is an integral intermediate in the stepwise
process. However, some portion of the denitrified N “leaks”

out as N2O, as described in the hole-in-the-pipe hypothesis
(Firestone and Davidson, 1989). Some of this leaked N2O may
be the result of denitrifiers that lack the nosZ gene and whose
denitrification pathway terminates at N2O production (Philippot
et al., 2011). Conversely, two clades of bacteria contain nosZ genes
that are phylogenetically distinct from the canonical denitrifier
nosZ, termed atypical nosZ. These organisms can scavenge free
N2O from the environment, possibly making them important
N2O sinks in salt marsh sediments (Sanford et al., 2012; Jones
et al., 2013). While nitrification and denitrification represent
important sources and sinks for N2O, other processes, including
dissimilatory nitrate reduction to ammonium (DNRA) also likely
produce N2O (Sun et al., 2016), though their contribution to
overall N2O production is poorly characterized.

Geochemical studies have shown that the magnitude of
N2O fluxes, and the relative contribution of denitrification and
nitrification to that flux, are controlled by a combination of
oxygen availability (Anderson et al., 1993; Khalil et al., 2004), soil
moisture content (Klemedtsson et al., 1988; Bateman and Baggs,
2005), nitrogen load (Smith et al., 1998; Davidson et al., 2000),
and carbon content (Swerts et al., 1996). Prior work suggests
that nitrification dominates N2O production in areas with low
soil moisture and high oxygen availability, while denitrification is
the main source of N2O in wet, anoxic conditions, with nitrogen
content controlling the magnitude of the flux (Moseman-
Valtierra et al., 2011, 2015).

The experimental fertilization plots established in the Great
Sippewissett Salt Marsh (Valiela et al., 1973) on Cape Cod, MA,
United States provide an ideal site to identify how microbes
in general, and specifically microbes involved in N2O fluxes,
respond to changes in environmental conditions. Salt marsh
ecosystems have several habitats that provide natural gradients in
elevation, degree of saturation of the soils (Bertness and Ellison,
1987; Pennings et al., 2005), and oxygen (Teal and Kanwisher,
1961; Maricle and Lee, 2002). The experimental plots have
also received nitrogen additions since the early 1970s (Valiela
et al., 1973; Kaplan et al., 1979; Hamersley and Howes, 2005;
Ji et al., 2015; Peng et al., 2016) thereby allowing us to assess
the effects of nutrient supply on genes involved in the nitrogen
cycle. Understanding the environmental controls on N2O
fluxes depends on identifying the microbes that are ultimately
responsible for the production and consumption of N2O in salt
marsh sediments. How the microbial communities that mediate
these processes respond to changes in environmental conditions,
however, is largely unknown.

We used high-throughput sequencing and a functional
gene microarray analysis to examine changes in the microbial
community and specific N cycle genes in the Great Sippewissett
Marsh plots. We hypothesized that the community composition
of nitrogen cycling genes involved in N2O production and
consumption (amoA, norB, and nosZ) would vary as a function of
fertilization, habitat, and depth. Further, we hypothesized that the
patterns of variation in these genes, when compared to previously
published fluxes of N2O from the marsh surface, would allow
us to infer which groups of microbes (nitrifiers, denitrifiers, or
nitrifier-denitrifiers) were likely responsible for the N2O flux.
We predicted that populations of ammonia oxidizers would vary

Frontiers in Microbiology | www.frontiersin.org 2 February 2018 | Volume 9 | Article 170

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-00170 February 9, 2018 Time: 16:21 # 3

Angell et al. N2O-Producing Genes in Marsh Sediments

as a function of NH4
+ concentration and O2 availability and

that denitrifiers would vary as a function of NO3
− concentration

and O2 availability. Finally, as has been seen in this and other
marsh fertilization experiments (Bowen et al., 2011; Kearns et al.,
2016), we hypothesized that the overall microbial community,
which includes both active and dormant microbes, would not
vary as a function of fertilization, but the potentially active
community would show a shift in community structure as
nutrient enrichment increases.

MATERIALS AND METHODS

Field Sampling
We collected samples in August 2012 from the experimental
long-term fertilization plots at Great Sippewissett Salt Marsh,
Falmouth, MA, United States [41◦ 35′ 3.1′′ N, 70◦ 38′ 17.0′′ W]
(Valiela et al., 1973). During low tide, we took sediment cores
using sterile 30 ml cut-off syringes from two control plots (C)
which do not receive fertilization, two highly fertilized (HF,
2.52 g N m−2 week−1) plots, and two extra highly fertilized
(XF, 7.56 g N m−2 week−1) plots. In each of the duplicated
plots, we took duplicate cores in low marsh and high marsh
habitats, for a total of four cores per plot (n = 6 plots). From
each core we took sediment samples from the surface and depth
for nucleic acid extraction and analysis, resulting in eight total
samples per plot (2 depths × 2 habitats × 2 duplicates). In all
plots sampled, the low marsh habitat consisted of monocultures
of the tall ecotype of Spartina alterniflora. High marsh habitats
in C and HF plots consisted of monocultures of the short
ecotype of Spartina alterniflora, but in the XF plots, high marsh
habitats were dominated by Distichlis spicata. Sediment cores
were immediately frozen in liquid nitrogen, stored on dry ice
for transport back to the lab, and kept frozen at −80◦C until
processed.

Oxygen (O2) measurements were made in the field using
a Clark-type microelectrode (OX-500, UnisenseTM, Aarhus,
Denmark) coupled with a UnisenseTM micrometer and
micromanipulator. The probe was two-point calibrated in the
field following manufacturer’s instructions. Sediment O2 profiles
were generated by taking measurements at 500 µm increments
to a depth of 3 cm. In each experimental plot, we took one
profile in the low marsh habitat and a second profile in the high
marsh habitat. We removed any measurements taken above the
sediment surface from the dataset, which was then normalized
by setting the lowest reproducible value as 0% oxygen and setting
any remaining negative values to a value of zero.

Geochemical Analysis
Nutrient concentrations, sediment properties, and geochemical
rates were measured from sediment cores taken directly
adjacent to cores used for molecular analysis. Sediment
moisture content was measured gravimetrically by comparing
weights of sediment before and after drying to a constant
weight at 65◦C. As described in detail in Peng et al.
(2016), nutrients (NO3

−, NH4
+) in pore water were extracted

by potassium chloride; NO3
− concentrations were measured

chemiluminescently using a NO/NOx Analyzer (Model 200E,
TeledyneTM, Thousand Oaks, CA, United States) with a hot
(90◦C) acidified vanadium (III) reduction column (Garside, 1982;
Braman and Hendrix, 1989), and NH4

+ concentrations were
measured colorometrically (Strickland and Parsons, 1968) on a
UV-Visible Spectrophotometer (UV-1800, ShimadzuTM, Kyoto,
Japan). The limit of detection for both analyses was 0.5 µM.
Statistical differences among treatments were assessed using
analysis of variance (ANOVA) followed by Tukey post hoc tests to
test specific comparisons. t-Tests were used to test for differences
in pairwise comparisons between high and low marsh samples
and between shallow and deep samples.

Nucleic Acid Extraction
Sediment cores were sectioned, while frozen at −20◦C, using
a microtome at 1 mm increments to a depth of 3 cm.
During the sectioning process, sediment slices were collected
on paraffin wax film (Parafilm M, Bemis, Oshkosh, WI,
United States) before being transferred to sterile microcentrifuge
tubes. Between each section, the paraffin film was changed
and the microtome blade and spatulas used for transferring
the sediment to the tubes were cleaned with 70% ethanol to
minimize contamination among samples. DNA and RNA were
co-extracted from the topmost section (0–1 mm; “shallow”)
and the bottommost section (29–30 mm; “deep”) of each core
(n = 48) for comparison between the redox extremes found in
the top 3 cm of marsh sediment. Nucleic acids were co-extracted
using a MoBioTM PowerSoil R© RNA Isolation Kit (MoBioTM,
Carlsbad, CA, United States) with a DNA Isolation Accessory
Kit according to the manufacturer’s instructions. RNA extracts
were checked for DNA contamination via polymerase chain
reaction (PCR) using universal 16S rRNA gene primers 515F and
806R (Bates et al., 2011; Caporaso et al., 2011). Samples with
DNA contamination were treated with DNase I (New England
BiolabsTM, Ipswich, MA, United States). Complementary DNA
(cDNA) synthesis was performed using InvitrogenTM Superscript
III R© First-Strand Synthesis System for RT-PCR (Thermo Fisher
ScientificTM, Cambridge, MA, United States) with random
hexamers according to the manufacturer’s instructions. Nucleic
acid concentrations from each sample were measured on a
Qubit R© 2.0 fluorometer (Thermo Fisher ScientificTM, Cambridge,
MA, United States).

Microarray Analysis
We used glass microarray slides (DeRisi et al., 1997) containing
probes for several key nitrogen-cycling genes including norB,
nosZ, and archaeal, but not bacterial, amoA (array name BC016).
Probe sets were designed using previously described algorithms
(Ward et al., 2007; Bulow et al., 2008). Ninety-nine amoA probes
were identified from published sequences (Biller et al., 2012).
Forty-three norB and 71 nosZ probes were also identified using
published sequences in addition to sequences obtained from
clone libraries made using DNA extracted from our sampling
locations in the Sippewissett plots (Kearns et al., 2015). Forty-
three additional nosZ probes, labeled as “WNZ” or “WnosZ2”
were included to capture both clades of atypical nosZ sequences,
atypical nosZ1 and atypical nosZ2, respectively. Each probe is
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designed to hybridize to all sequences within 87 ± 3% identity
of the 70-mer probe sequence. We refer to the sequences that
hybridize to a particular probe as an archetype; representing
a group of related sequences (Taroncher-Oldenburg et al.,
2003).

Two fertilization levels were used for microarray analysis.
DNA samples from shallow and deep sediments from high and
low marsh habitats in C and XF plots were used for microarray
analysis as previously described (Ward and Bouskill, 2011).
Briefly, 50 ng of DNA from each sample was digested with Hinf1
for 2 h followed by ethanol precipitation. Digested DNA was used
for labeling with a BioPrime R© kit (Thermo Fisher ScientificTM,
Cambridge, MA, United States) using random primers and a
custom 1.2 nM dNTP mix with dUaa, followed by ethanol
precipitation. The precipitated DNA was dissolved in 4.5 µl of
100 nM NaCO3 (pH 9) before the addition of 4.5 µl of Cy3
dye and left to incubate overnight. Samples were then purified
using a QIAquick R© PCR cleanup kit (QiagenTM, Valencia, CA,
United States) as previously described (Ward and Bouskill, 2011).
DNA concentration of the targets was measured on a Qubit R©

fluorometer and the volume required for 1000 ng of DNA was
aliquoted into two separate tubes per sample, dried down in a
speedvac, and stored frozen until processed.

Microarrays were hybridized overnight in an ozone-free room
and washed three times (Ward and Bouskill, 2011) before
scanning on an AgilentTM laser scanner 4300 (AgilentTM, Palo
Alto, CA, United States). Microarray images were analyzed using
GenePix R© 6.0 software. Relative fluorescence ratio (RFR), the
percent that each probe contributes to the total fluorescence
of the probe group, was used for statistical analysis. Replicate
microarrays were hybridized and replicate features on the same
array were averaged to calculate the RFR for each probe.
Statistical analysis of microarray data was done in R (R
Development Core Team, 2008), including generation of non-
metric multidimensional scaling (NMDS) plots for each probe
group calculated using Bray–Curtis similarities in the vegan
package (Oksanen et al., 2015). Also in vegan, we used adonis
(Anderson, 2001), a method that uses distance matrices of Bray–
Curtis similarity values for permutational multivariate analyses
of variance (PERMANOVA), to test for significant differences
in gene composition that resulted from fertilization. Probes
that differed significantly among treatment, habitat, or depth
were determined via Kruskal–Wallis test in R. Significance was
assessed at an alpha of 0.05. The microarray data from BC016
are available via the Gene Expression Omnibus under GEO
Accession GSE108888.

Sequencing
Samples from one plot at each level of treatment (C, HF, XF) were
used for sequencing the 16S rRNA gene and its gene product,
16S rRNA, to determine the community composition of the
total and the potentially active microbial taxa, respectively. While
there are limitations to using 16S rRNA as a proxy for microbial
growth (Blazewicz et al., 2013), 16S rRNA provides a snapshot of
which taxa may potentially be active in the microbial community.
Samples (n = 48) included 16S rRNA and the 16S rRNA gene
from two depths and two habitats from each of the three plots.

The V4 region of 16S rRNA and the 16S rRNA gene were
amplified via PCR using barcoded primers 515F and 806R with
IlluminaTM adaptors (Caporaso et al., 2011, 2012). Amplicons
were generated in triplicate reactions, pooled, and gel-purified
using a QiagenTM QIAquick R© Gel Extraction Kit (QiagenTM,
Valencia, CA, United States) according to the manufacturer’s
instructions. The concentration of purified amplicons was
measured on a Qubit R© fluorometer and samples were pooled in
equal concentrations and sequenced on an IlluminaTM MiSeq R©

(IlluminaTM, San Diego, CA, United States) using paired-end V2
300 cycle chemistry.

Sequences were quality filtered and analyzed in QIIME
(Caporaso et al., 2010) and R (R Development Core Team, 2008).
All quality-filtered sequences are available in the Sequence Read
Archive (Accession No.: PRJNA423244). Paired-end reads were
joined with fastq-join (Aronesty, 2013) and quality filtered in
QIIME following the protocols of Bokulich et al. (2013). Sequence
data were checked for chimeras using UCHIME (Edgar et al.,
2011) in de novo mode. Swarm (Mahé et al., 2014) was used to
pick operational taxonomic units (OTUs) using 97% sequence
identity, with taxonomy assigned using UCLUST (Edgar, 2010)
and Greengenes (version 13.5) as a reference database. Sequence
data were further quality filtered to exclude OTUs that were
only present once in the dataset or that could not be assigned
taxonomy within the Bacterial Kingdom. Chimeras and those
sequences that could not be assigned taxonomy represented less
than 3% of the dataset. We rarefied sequence data in QIIME
to a depth of 9500 sequences per sample for 16S rRNA genes
and to a depth of 7000 sequences per sample for 16S rRNA.
Taxonomy tables were generated in QIIME and exported to R
(R Development Core Team, 2008) for analysis. R was used to
generate NMDS plots of Bray–Curtis similarities using the vegan
package. Statistical differences in community composition were
calculated in R using adonis on Bray–Curtis similarity values.

RESULTS

Environmental Conditions
In the Sippewissett Marsh plots, pore water concentrations of
NH4

+ were variable and averaged between 137 and 467 µM
(Figure 1A). While NH4

+ concentrations varied considerably
among samples, they did not systematically differ as a function of
habitat or treatment (ANOVA, F = 1.179, p = 0.321). In contrast,
pore water NO3

− concentrations (up to 80 µM) did vary as
a function of treatment (ANOVA, F = 7.609, p = 0.002), with
XF plots containing significantly more NO3

− than HF (Tukey
HSD, p = 0.007) and C (p = 0.005) plots (Figure 1B). There
was no significant difference between C and HF pore water
NO3

− concentrations (p = 0.966). Moisture content also varied
as a function of treatment (ANOVA, F = 39.57, p < 0.001;
Figure 1C) as XF plots were significantly drier than HF (Tukey
HSD, p < 0.001) and C (p < 0.001) plots. HF plots had the wettest
sediments and contained significantly more water than C plots
(p = 0.011), driven primarily by the higher water content of the
low marsh in HF plots compared to C plots. Habitat type also
affected moisture content. Low marsh habitats had significantly
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FIGURE 1 | Environmental data from sediments collected from the high and
low marsh habitats of two replicate control (C), highly fertilized (HF) and extra
highly fertilized (XF) salt marsh plots. Data include (A) pore-water ammonium
(NH4

+) concentrations (µM), (B) pore-water nitrate (NO3
−) concentrations

(µM), and (C) sediment moisture content (%). Each bar represents the
average (and range) of values from two replicate cores.

drier sediments than high marsh habitats in C plots (t-test,
t = 5.40, p < 0.001), but significantly wetter sediments in HF
plots (t-test, t =−2.78, p = 0.010) and XF plots (t-test, t =−4.53,
p < 0.001).

Oxygen content in shallow and deep samples was calculated
by averaging the O2 values for the top millimeter (shallow)
and bottom millimeter (deep) of the oxygen profile (Figure 2).
Oxygen availability varied with depth, as surface sediments
contained significantly more oxygen than deep sediments (t-test,
t = 11.27, p < 0.001). Only a single XF plot had detectable
amounts of oxygen at depth. Oxygen values differed among
samples, but there was no overall effect of treatment or habitat
on oxygen availability. Peng et al. (2016) published more detailed
oxygen profiles from this system.

Functional Gene Analysis
Non-metric multidimensional scaling plots of Bray–Curtis
similarity for each probe group on the microarray indicated that
the community structure of most genes responsible for N2O
production and consumption were significantly different between
fertilized and unfertilized plots (Figure 3). The only gene that
did not differ by fertilization treatment was the amoA gene
from ammonia-oxidizing archaea. Nitrogen cycling genes that
varied significantly by fertilization level include norB (adonis,
F = 4.59, p = 0.001, R2 = 0.13), nosZ (F = 3.52, p = 0.009,
R2 = 0.11), atypical nosZ 1 (F = 3.89, p = 0.012, R2 = 0.11),
and atypical nosZ 2 (F = 3.74, p = 0.030, R2 = 0.11). While
these differences in community structure were significant, the
amount of variation explained by nutrient enrichment was fairly
low, with no R2 value greater than 0.15. Community structure
of nitrogen-cycling genes did not vary significantly by depth or
habitat.

To identify which archetypes, related sequences that hybridize
to a particular probe, were important in explaining differences
in community structure of key N-cycle genes, we identified
archetypes that accounted for greater than 1% of the total
fluorescence for their probe set (RFR > 0.01) and that were
significantly different as a result of fertilization and/or habitat
using a Kruskal–Wallis test (Table 1). Of the archetypes
that differed significantly, nearly all varied as a function of
fertilization or a combination of fertilization and habitat.
Only one archetype, nosZ23, a low-signal probe that was
derived from salt marsh clone libraries (Kearns et al., 2015),
differed solely as a function of habitat. Additionally, the norB,
nosZ, and atypical nosZ1 archetypes with the highest RFR
for the gene, indicating the highest relative abundance in
their community, all varied by treatment. Surprisingly, three
archetypes, norB39, nosZ64, and WnosZ16, had a significantly
higher relative hybridization in unfertilized sediments. The
majority of the remaining archetypes that varied significantly
as a function of fertilization, especially for nosZ, were relatively
more abundant in fertilized sediments (Table 1). Archetypes
that varied significantly by fertilization accounted for only
8.1% of the amoA community, but accounted for 41.1% for
norB, 25.9% for nosZ, 43.7% for atypical nosZ 1, and 22.5%
for atypical nosZ 2 communities (Table 1). Many of these
archetypes are only distantly related to cultured microbes and
were originally derived from sequences identified in Sippewissett
Marsh samples.

Surprisingly, depth and the redox conditions associated
with depth, were not important in structuring nitrogen-cycling
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FIGURE 2 | Average oxygen content (% saturation) of measurements taken within the top millimeter of surface sediment (shallow) and sediment collected from 29 to
30 mm depth (deep) for each experimental core.

FIGURE 3 | Non-metric multidimensional scaling (NMDS) plots of RFR microarray data for AOA amoA (A), norB (B), nosZ (C), atypical nosZ 1 (D), and atypical
nosZ 2 (E). All but AOA amoA differ significantly by treatment using adonis. None differ significantly by habitat or depth. Each figure includes eight samples (2
depths × 2 habitats × 2 duplicate cores) per plot and there were four plots (two control and two XF-fertilized plots).

communities, when examined via pairwise comparison of surface
to deep samples. Of the archetypes that accounted for greater
than 1% of fluorescence in their respective probe sets, only
four differed significantly between surface and deep samples,
including three amoA archetypes; AOA22 (Kruskal–Wallis test,

H = 3.99, p = 0.046), AOA20 (H = 7.16, p = 0.007), and AOA47
(H = 8.64, p = 0.003), which most closely resemble Candidatus
Nitrosotenuis sp., Nitrososphaera viennensis, and Nitrosopumilus
maritimus, respectively, and a single norB archetype, NorB6
(H = 4.14, p = 0.042), which was derived from the norB sequence
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TABLE 1 | Closest cultured BLAST match, percent identity, and the average relative fluorescence ratio (RFR) per habitat for each archetype that accounted for greater
than 1% of the total fluorescence and was significantly different among treatments by Kruskal–Wallis H-test and a significance threshold of p < 0.05.

Probe Closest cultured BLAST
match

% Identity RFR in C plots RFR in XF plots

AOA26 Candidatus Nitrososphaera
evergladensis

87 0.029 (0.009) 0.025 (0.013)

AOA22 Candidatus Nitrosotenuis
sp.

89 0.014 (0.006) 0.022 (0.012)

AOA50 Candidatus Nitrosopumilus
sp.

81 0.012 (0.004) 0.017 (0.006)

AOA4 Enterobius vermicularis 94 0.009 (0.004) 0.015 (0.008)

AOA70 Nitrosopumilus maritimus 84 0.009 (0.004) 0.014 (0.004)

NorB39 Thioalkalivibrio paradoxus 100 0.184 (0.038) 0.136 (0.04)

NorB34 Hahella chejuensis 100 0.063 (0.017) 0.055 (0.038)

NorB2 Azoarcus sp. 100 0.029 (0.008) 0.049 (0.008)

NorB11 Magnetospirillum
gryphiswaldense∗

84 0.031 (0.008) 0.029 (0.007)

NorB14 Nitrosococcus oceani 100 0.023 (0.009) 0.031 (0.014)

NorB8 Alkalilimnicola ehrlichii∗ 89 0.02 (0.005) 0.025 (0.007)

NorB15 Nitrosospira briensis 100 0.021 (0.005) 0.015 (0.005)

NorB41 Ruegeria mobilis 88 0.016 (0.01) 0.014 (0.005)

NorB29 Magnetospirillum
gryphiswaldense

85 0.012 (0.006) 0.018 (0.008)

NorB27 Nitrosospira sp. 100 0.013 (0.004) 0.016 (0.007)

NorB5 Dinoroseobacter shibae∗ 90 0.015 (0.005) 0.014 (0.008)

NosZ64 Rhodanobacter
denitrificans

100 0.109 (0.022) 0.089 (0.043)

NosZ61 Rhodospirillum centenum 100 0.023 (0.003) 0.028 (0.005)

NosZ48 Paracoccus sp.∗ 83 0.02 (0.005) 0.024 (0.004)

NosZ30 Paracoccus sp.∗ 88 0.019 (0.004) 0.022 (0.004)

NosZ35 Achromobacter
cycloclastes

100 0.024 (0.007) 0.016 (0.006)

NosZ32 Thalassospira xiamenensis∗ 81 0.015 (0.005) 0.023 (0.01)

NosZ29 Ruegeria pomeroyi∗ 86 0.022 (0.008) 0.015 (0.006)

NosZ1 Mesorhizobium sp.∗ 77 0.016 (0.003) 0.02 (0.003)

NosZ2 Hoeflea sp.∗ 89 0.02 (0.005) 0.015 (0.005)

WNZ16 Anaeromyxobacter
dehalogenans

83 0.182 (0.054) 0.144 (0.081)

WNZ1 Roseateles depolymerans 72 0.061 (0.016) 0.083 (0.022)

WNZ13 Streptomyces
raramycinicus

88 0.055 (0.011) 0.064 (0.009)

WNZ20 Anaeromyxobacter sp. 81 0.035 (0.007) 0.048 (0.007)

WNZ19 Burkholderia sp. 83 0.033 (0.006) 0.048 (0.006)

WNZ25 Burkholderia ambifaria 96 0.025 (0.006) 0.032 (0.005)

WnosZ2_1 Anaeromyxobacter
dehalogenans

100 0.11 (0.026) 0.077 (0.024)

WnosZ2_15 Rhodothermus marinus 84 0.045 (0.012) 0.064 (0.011)

WnosZ2_11 Salinibacter ruber 100 0.019 (0.005) 0.024 (0.005)

WnosZ2_8 Rubrivivax gelatino 100 0.022 (0.008) 0.019 (0.004)

WnosZ2_4 Desulfomonile tiedjei 100 0.018 (0.004) 0.023 (0.004)

WnosZ2_13 Gemmatimonas aurantiaca 84 0.013 (0.003) 0.016 (0.004)

Bold text indicates the treatment with the highest mean ( ± SD) fluorescence (n = 8). ∗Archetypes derived from marsh sequences (Kearns et al., 2015) that have
only distant relationships to known taxa. Note that only ammonia-oxidizing archaea were present on the microarray, not ammonia oxidizing bacteria. We assessed the
importance of ammonia-oxidizing bacteria via analysis of the 16S rRNA gene.

from Paracoccus. These archetypes accounted for only 5% of the
hybridization signal of both the amoA and norB community. No
nosZ archetypes varied as a function of depth.

Microbial Community Composition
The structure of the entire microbial community, based on
sequence analysis of the 16S rRNA gene, varied as a function of
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FIGURE 4 | Non-metric multidimensional scaling plots of (A) total microbial communities as assessed from sequences of the 16S rRNA gene and (B) potentially
active communities, as assessed with 16S rRNA, using Bray–Curtis similarities. Total microbial communities varied as a function of treatment and depth and
potentially active communities varied solely as a function of treatment.

both fertilization (Figure 4A; adonis, F = 1.63, p = 0.005) and
depth (adonis, F = 1.83, p = 0.021). Analysis of 16S rRNA, which,
with caveats (Blazewicz et al., 2013), can be used as an indicator of
taxa that are potentially active, indicated that fertilization was also
important in structuring the active microbial taxa (Figure 4B;
adonis, F = 3.29 p = 0.001). Neither habitat nor depth were
significant factors in structuring potentially active communities.
In the potentially active community, there were 12 bacterial
classes that each accounted for greater than 1% of the dataset
(Figure 5). These dominant classes accounted for approximately
75% of the C, 85% of the HF, and 86% of the XF active microbial
communities (Table 2).

Ammonia-oxidizing archaea were represented on the
microarray, but ammonia-oxidizing bacteria (AOB) were not.
We can, however, assess the relative abundance of AOB via
the sequence data because they form a largely monophyletic
clade that can be identified via 16S rRNA gene analysis.
Three genera of ammonia-oxidizing bacteria were present in
either the total microbial community or the potentially active
community (Table 3). Of these genera, only Nitrosomonas
differed significantly by treatment in the potentially active
community (Kruskal–Wallis test, H = 7.36, p = 0.025), where it
was more abundant in C samples compared to XF.

DISCUSSION

Long-term fertilization has reshaped the ecology of the salt marsh
plots at Great Sippewissett Marsh (Valiela, 2015 and references
therein), but this has primarily been assessed at macro-ecological
scales. Increased rates of nitrogen cycling processes in response
to nutrient enrichment are commonly observed in both soils
and aquatic sediments (Luo et al., 1999; Enwall et al., 2005;
Chen et al., 2012; Fierer et al., 2012; McCrackin and Elser, 2012),
including in salt marshes (Hamersley and Howes, 2005). Rates
of denitrification (Hamersley and Howes, 2005; Peng et al.,
2016), N2O production (Moseman-Valtierra et al., 2011), and
N2O consumption (Ji et al., 2015) all increased significantly

FIGURE 5 | Stacked bar plot of potentially active microbial classes in control
(C), highly fertilized (HF), and extra highly fertilized (XF) setiments. Classes
identified accounted for at least 1% of the 16S rRNA sequence dataset.
Microbial classes that individually accounted for less than 1% of the dataset
are combined into the “Other” category.

as a result of nutrient enrichment in Sippewissett Salt
Marsh sediments. The Sippewissett Marsh plots have also
contributed to our understanding of how increasing N alters
denitrification (Valiela and Teal, 1979), coupled nitrification–
denitrification (Hamersley and Howes, 2005), and nitrogen
retention (Brin et al., 2010). What has received less attention,
however, is the effect of prolonged nitrogen enrichment on
the structure of the microbial communities that mediate
important geochemical transformations. In this study, we use
functional gene microarrays and high throughput sequencing
to demonstrate that microbial communities mediating N2O
production and consumption respond to environmental
conditions and thus are likely to influence N2O flux.
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TABLE 2 | Bacterial classes that each accounted for >1% of the potentially active
community (based on 16S rRNA), the percentage of the community they
represent in fertilized (XF and HF) and control communities, and their sum counts
in the rarified dataset.

Bacterial class Fertilized % (SD) Control % (SD) Count

Deltaproteobacteria 27.71 (6.4) 17.02 (3.5) 34745

Gammaproteobacteria 21.84 (9.0) 20.24 (3.3) 31208

Alphaproteobacteria 9.37 (2.2) 15.56 (2.3) 17235

Anaerolineae 4.32 (1.4) 5.32 (1.2) 6909

Bacteroidia 6.10 (1.7) 1.25 (0.8) 6253

Acidimicrobia 1.10 (0.8) 4.38 (3.7) 3454

Caldithrixae 2.19 (1.2) 1.49 (1.1) 2830

Ignavibacteria 2.14 (1.3) 1.19 (0.7) 2608

Planctomycetia 1.17 (0.6) 2.56 (0.9) 2500

Epsilonproteobacteria 2.35 (2.1) 0.10 (0.2) 2196

Spirochaetes 1.67 (0.7) 0.36 (0.2) 1721

Cytophagia 0.52 (0.3) 1.18 (0.7) 1480

Habitat appears to have little effect on sediment N, water, or
oxygen content. N load, however, significantly affects NO3

− and
water content within the sediment, while depth affects oxygen
supply. Compared to C and HF plots, XF plots have significantly
higher pore water NO3

− concentrations and lower soil moisture
content (Figure 1). The relatively low soil moisture in the XF
plots is likely due to the increased elevation in the XF relative to
C and HF plots (Fox et al., 2012), which results in less frequent
flooding and more efficient drainage. The effect of this difference
in soil moisture confounds our ability to determine whether the
effects on microbial community structure that we observe are a
direct effect of the nutrient enrichment or an indirect effect of
the nutrient enrichment on other aspects of the geochemistry
of the system, such as moisture content. These changes in the
physiochemical conditions associated with nutrient enrichment
also coincide with increased rates of denitrification previously
measured (Valiela and Teal, 1979; Hamersley and Howes, 2005;
Peng et al., 2016). These increased rates of nitrogen-cycling
processes can arise from a change in the activity of members
in a microbial community, while the community composition
remains largely unchanged, or as a result of a change in the
community composition of the microbes responsible for nitrogen
transformations.

Cores taken alongside those analyzed in this study were
used to determine N-cycling rates in the sediment (Ji et al.,
2015; Peng et al., 2016). These studies showed that long-term
fertilization affected both the size and source of the N2O flux, as
additional N inputs increased the production and consumption
rates for N2O and shifted the dominant source of N2O from
ammonia oxidation to denitrification (Ji et al., 2015). While
nutrient enrichment did not significantly alter the community
composition of ammonia-oxidizing archaea, as evidenced by
these microarray results, ammonia-oxidizing bacteria detected
in the 16S rRNA in this study were more prevalent in the
potentially active community of the control plots, suggesting a
role for AOB as an N2O source in sites that do not receive N
additions. Although ammonia-oxidizing archaea can be more
abundant in salt marsh sediments (Moin et al., 2009; Peng et al.,
2013), community fingerprinting showed that AOB communities
can differ as a result of nutrient enrichment (Peng et al., 2013).
Additionally, we observed an increase in the relative abundance
of 19 bacterial taxa containing norB or nosZ genes in response to
fertilization (Table 1). Taken together, these results suggest that
the increased rates of nitrogen-cycling processes result at least
partly from a change in the community composition of nitrogen-
cycling microbes, as opposed to simply a change in the activity of
a static community.

The taxa associated with the 19 archetypes enriched in the
fertilized plots likely represent microbes at least partly responsible
for the increased rates of N2O production and consumption that
resulted from fertilization (Ji et al., 2015). These taxa highlight
the modularity of denitrification within marsh sediments (Jones
et al., 2008; Philippot et al., 2011; Graf et al., 2014; Graves
et al., 2016; Roco et al., 2017). In the absence of modularity,
abundant norB and abundant canonical nosZ should derive from
the same organism, indicating a complete pathway. In these
sediments, the abundant norB and nosZ probes show no overlap
of taxa (Table 1). This suggests that major microbial players
producing N2O are an entirely different suite of organisms than
those that consume N2O, and thus imply a decoupling between
N2O production and consumption in salt marsh sediments.
This disconnect exists in both C and XF plots, which indicates
that the modularity of denitrification in salt marsh sediments
exists regardless of N load. When considered with the increased
nitrogen cycling rates measured in the Sippewissett plots (Ji et al.,

TABLE 3 | Average counts of three genera of AOB present in the 16S rRNA gene and 16S rRNA sequencing from each habitat.

C Low C High HF Low HF High XF Low XF High

16S rRNA gene

Nitrosococcus 0 0 0 0 0 0

Nitrosomonas 7.0 (9.9) 46 (53.8) 7.5 (13) 3.5 (3.2) 3.5 (1.8) 4.3 (3.1)

Nitrosospira 0 0.3 (0.4) 0.3 (0.4) 0.3 (0.4) 0 0

16 rRNA

Nitrosococcus 0 0.3 (0.4) 0 0 0 0

Nitrosomonas 28 (34.4) 80.7 (112.2) 2.2 (2.3) 5.3 (9.1) 0 2 (1.6)

Nitrosospira 0.5 (0.9) 1.3 (1.6) 0 0.3 (0.4) 0 0

Standard deviations are in parentheses (n = 4). Note different rarefaction depths for DNA (9500 sequences per sample) and RNA (7000 sequences per sample).
Numbers < 1 indicate that the taxon was found only in a subset of the replicates.
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2015; Peng et al., 2016), the modularity we observed may play a
key role in determining the magnitude and source of N2O fluxes
from marsh sediments.

For three of the genes we examined, norB, nosZ, and atypical
nosZ1, the archetype with the largest relative abundance was
inhibited by fertilization (Table 2). However, many relatively less-
abundant archetypes were enhanced by fertilization, suggesting
that denitrifiers adapted to lower nutrient environments
may be outcompeted by taxa that respond positively to
nutrient enrichment. Much like macro-organisms, competition
is common among micro-organisms (Ghoul and Mitri, 2016
and references therein). Competition for resources can lead
to dramatic shifts in community structure. Competition for
NH4

+, for example, leads to shifts in abundances of AOA and
AOB, in soils, sediments, and the open ocean (Santoro et al., 2010;
Beman, 2014; Ouyang et al., 2016). Ecological theory predicts that
when nutrients are limiting, the best competitor dominates the
community, while in instances where nutrients are not limiting,
more taxa are able to succeed (Tilman, 1982), a pattern we
observe here within the N-cycling microbial community.

Under control conditions, predictions regarding key
producers of N2O made by the microarrays were supported by
the 16S rRNA data. The archetype for the most dominant
member of the norB containing taxa corresponds to
Thioalkalivibrio, which had significantly higher RFR in C
plots. Thioalkalivibrio was also one of the most abundant taxa in
the potentially active community, where it was more abundant
in the control than fertilized plots. These data suggest that
Thioalkalivibrio, along with other AOB identified via 16S rRNA
sequencing may be possible sources of N2O in control sediments.

In sediments receiving N additions, three of the norB
archetypes that were enhanced belonged to nitrifying bacteria
(norB14, norB15, and norB27) from the genera Nitrosococcus and
Nitrosospira. Of these three, norB14 and norB27 had significantly
higher RFR in XF plots, which suggests that some of the increased
N2O production observed in fertilized sediments may be due
to increases in nitrifier-denitrification. Nitrifier-denitrification
has been extensively studied within the context of microbial
bioreactors for waste remediation and nutrient removal (Turk
and Mavinic, 1986; Abeling and Seyfried, 1992; Wunderlin et al.,
2012). In these systems, nitrifier-denitrification is stimulated by
high-N and fluctuating oxygen conditions (Yoo et al., 1999),
which are similar to those found in the marsh sediments.
Additionally, Zhu et al. (2013) found that nitrifier-denitrification
supplied a large portion of the N2O flux from soils under
low oxygen/high moisture conditions. Nitrifiers identified in the
potentially active community were more abundant in wetter C
sediments, consistent with the findings from Zhu et al. (2013).
Nitrosococcus and Nitrosospira, however, were rarely observed
in 16S rRNA data and did not vary as a result of nutrient
enrichment.

Multiple archetypes associated with the atypical nosZ
sequences also increased significantly as a function of
fertilization, indicating that fertilization leads to distinct
communities of nitrous oxide scavengers. In fact, 10 atypical
nosZ archetypes were significantly more abundant in fertilized
plots compared to only three archetypes that were more abundant

in control sediments. These results provide a potential genetic
explanation for increased N2O consumption measured in the
extra highly fertilized plots (Ji et al., 2015), and they highlight the
importance of N2O scavengers that act to decrease the elevated
N2O fluxes associated with high N loads. Atypical nosZ have
previously been shown to represent a potentially large sink for
N2O (Jones et al., 2013) and in salt marshes can account for the
majority of nosZ sequences isolated from sediments (Graves
et al., 2016).

Our results highlight the important role nutrient enrichment
plays in the structure and functioning of salt marsh ecosystems.
These data suggest that of the factors that are believed to control
N2O flux, in salt marsh sediments, nitrogen supply is the most
critical. Nutrient enrichment alters the chemical conditions in
the sediment, which in turn alters the community composition
of many genes involved in the N cycle, with the exception
of archaeal amoA. Fertilization also affects the active portion
of the microbial community, which is ultimately responsible
for the production and consumption of N2O, and for all
the ecosystem services provided by the marsh. Understanding
controls on the balance between production and consumption
of N2O is critical to determine whether marshes will become
a net source of N2O under nutrient enrichment. Our results
allowed us to identify specific taxa responsible for elevated
nitrogen-cycling rates associated with increased N load, thereby
identifying which organisms to target for better understanding
N2O flux. Finally, these data show that in spite of evidence
that overall microbial communities in marshes are resistant to
change in response to long-term nutrient enrichment (Bowen
et al., 2011), the functional capacity of these systems is sensitive
to increasing nitrogen supply. In the Great Sippewissett Salt
Marsh plots, long-term nutrient enrichment has significantly
altered the nitrogen-cycling community within the sediment,
with downstream changes in ecosystem function.
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