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Streptococcus (S.) suis is a frequent early colonizer of the upper respiratory tract of
pigs. In fact, it is difficult to find S. suis-free animals under natural conditions, showing
the successful adaptation of this pathogen to its porcine reservoir host. On the other
hand, S. suis can cause life-threatening diseases and represents the most important
bacterial cause of meningitis in pigs worldwide. Notably, S. suis can also cause zoonotic
infections, such as meningitis, septicemia, endocarditis, and other diseases in humans.
In Asia, it is classified as an emerging zoonotic pathogen and currently considered as
one of the most important causes of bacterial meningitis in adults. The “two faces”
of S. suis, one of a colonizing microbe and the other of a highly invasive pathogen,
have raised many questions concerning the interpretation of diagnostic detection and
the definition of virulence. Thus, one major research challenge is the identification of
virulence-markers which allow differentiation of commensal and virulent strains. This is
complicated by the high phenotypic and genotypic diversity of S. suis, as reflected by
the occurrence of (at least) 33 capsular serotypes. In this review, we present current
knowledge in the context of S. suis as a highly diverse pathobiont in the porcine
respiratory tract that can exploit disrupted host homeostasis to flourish and promote
inflammatory processes and invasive diseases in pigs and humans.
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INTRODUCTION

Streptococcus (S.) suis is a commensal part of the respiratory microbiota of pigs, in particular of
the tonsils and nasal cavities, but it can also cause highly invasive infections, such as meningitis,
arthritis, endocarditis, bronchopneumonia, as well as septicemia and sudden death (Arends et al.,
1984; Feng et al., 2014; Segura et al., 2016). Notably, though the colonization rate is up to 100%,
clinical cases of S. suis infections, associated with meningitis, septicemia, or pneumonia, are
by far less frequently reported (Goyette-Desjardins et al., 2014). S. suis is also considered an
emerging zoonotic agent which can cause meningitis and sepsis in humans (Gottschalk et al.,
2010). In contrast to swine, humans seem to be rarely colonized by S. suis. However, this remains
to be studied in more detail and, therefore, human carrier rates (reported to be approximately
5% on average worldwide with respect to people in contact with pigs or pig products) may be
underestimated (Strangmann et al., 2002; Goyette-Desjardins et al., 2014).
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Streptococcus suis infections are known to be multi-factorial,
unfavorable environmental conditions facilitate the development
of disease. The nasopharynx is a reservoir niche for S. suis
and various other (potentially) pathogenic microorganisms
and commensals (Opriessnig et al., 2011). In this niche
commensals can act as innocent bystander microbes, which
inherently colonize the respiratory mucosa and can support
other facultative pathogens to induce clinical disease. Those
facultative pathogenic organisms are known as pathobionts.
If pathogens play a dominant role in population changes
of the microbiota and additionally manipulate the host
response they are so-called keystone pathogens which can
enhance the virulence of pathobionts leading to dysbiosis
and inflammatory disease (Hajishengallis and Lamont, 2016).
For S. suis, synergistic activities with other bacterial agents,
such as Pasteurella multocida or Mycoplasma hyopneumoniae,
as well as respiratory viruses like porcine reproductive and
respiratory syndrome virus (PRRSV), porcine circovirus type
2, and swine influenza virus (SIV) (Fablet et al., 2011,
2012) may increase the risk of invasive infections (Meng
et al., 2015). SIV and PRRVS are well-known keystone
pathogens, since they pave the way for S. suis infections
leading to severe respiratory symptoms and serious pneumonia
(Thanawongnuwech et al., 2000; Lin et al., 2015; Meng et al.,
2015).

Nevertheless, interactions of S. suis with the mucosal
immune system and evasion of innate immune defense
mechanisms are crucial for induction of disease. S. suis has
several immune evasion strategies, for example, expression of
polysaccharide capsule (CPS) to prevent phagocytosis-dependent
killing mechanisms (Segura et al., 2004; Chabot-Roy et al.,
2006), or biofilm formation which may protect S. suis from
antimicrobials (Grenier et al., 2009; Bojarska et al., 2016). Such
features seem to play a role in virulence but may also be important
for survival as a pathobiont. In this review, we focus on the role
of S. suis as a typical respiratory pathobiont in swine, which
possesses a highly invasive potential and causes severe infectious
diseases in pigs and humans. In particular, we address the
epidemiology of S. suis in pigs and humans, its diversity, and its
two “faces” as a commensal and invasive pathogen (illustrated in
Figure 1). Finally, we also include possible models to study host–
pathobiont interactions in the respiratory tract. Since a number
of excellent reviews on virulence mechanisms and virulence-
associated factors have been published in recent years, we will
include such mechanisms and factors only with respect to their
potential role for the lifestyle of S. suis as a pathobiont.

EPIDEMIOLOGY OF S. suis IN PIGS AND
HUMANS

Streptococcus suis is a widely distributed pathobiont and an
emerging zoonotic pathogen. Its natural reservoir hosts are pigs
(Lowe et al., 2011) and wild boars (Baums et al., 2007; Sanchez
del Rey et al., 2014). Subclinical infected pigs play an important
role in the epidemiology of S. suis as the main source of infection
for other pigs and humans (Clifton-Hadley and Alexander, 1980).

FIGURE 1 | Illustration of the two phases (“faces”) of S. suis as a pathobiont
in the respiratory tract. These are, firstly, as a colonization commensal
bacterium and, secondly, as an invasive pathogen breaching different defense
barriers. Some bacterial, host, and environmental factors, which contribute to
the switch between both phases are depicted.

Susceptible pigs (especially weaning piglets) can suffer from
meningitis, septicemia, pneumonia, endocarditis, or polyarthritis
(Sanford and Tilker, 1982). Horizontal transmission via the
respiratory tract due to nose-to-nose contact is the predominant
route (Dekker et al., 2013), but vertical transmission from an
infected sow to piglets via the genital tract during farrowing can
also occur (Amass et al., 1997).

Humans can get infected with S. suis by eating raw or
undercooked pork products (Fongcom et al., 2001; Gottschalk
et al., 2010; Huong et al., 2014) or via cutaneous lesions when they
get in contact with infected pigs or contaminated pork products
(Wertheim et al., 2009). People in Asia are particularly affected
because high-risk dishes, e.g., raw blood pudding, “tiet canh”
(Huong et al., 2014), are common and the pig industry is more
and more increasing while people are not aware of the risks
of infection (Fulde and Valentin-Weigand, 2013). In Western
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countries only sporadic cases of human infections occur due to
contact to infected pigs or raw pork meat (Goyette-Desjardins
et al., 2014). In humans, S. suis causes mainly meningitis (Arends
and Zanen, 1988) and septicemia [including streptococcal toxic
shock-like syndrome/STSLS (Tang et al., 2006)], but cases of
pneumonia, endocarditis, or peritonitis have also been reported
(Huang et al., 2005). Some studies suggest that humans can
also be healthy carriers of S. suis (Robertson and Blackmore,
1989; Elbers et al., 1999; Smith et al., 2008). Until end of
December 2013 a total of 1642 human cases have been reported
worldwide (Goyette-Desjardins et al., 2014), but this number
has increased since then due to a high number of recent case
reports and the high likelihood of misdiagnosis. Most of the
human cases occurred in Asia (>90%), especially in Vietnam,
Thailand, and China (Goyette-Desjardins et al., 2014). During the
two outbreaks in China in 1998 and 2005, a total of 240 human
cases were described (Tang et al., 2006; Yu et al., 2006).

Furthermore, S. suis can be found in the environment of
slaughterhouses and wet markets (Ip et al., 2007; Ma et al.,
2008; Nghia et al., 2011), particularly in Southeast Asia, which
constitutes another source of infection for humans. In addition,
S. suis was isolated from other animal species, such as rabbits,
lambs, and dogs (Muckle et al., 2010; Sanchez del Rey et al., 2013;
Muckle et al., 2014), though some of those had no close contact
to pigs. These sources of infection should also be considered as
a potential risk, especially since a few cases of human infections
have been reported without any prior contact to pigs or pork
products (Kerdsin et al., 2016).

DIVERSITY OF S. suis

Streptococcus suis is, genetically and phenotypically, a
heterogeneous bacterial species. Strains belonging to different
capsular serotypes or even to the same serotype differ from each
other genetically (Blume et al., 2009; Gottschalk et al., 2013). For
a comprehensive recent overview on the distribution of S. suis
serotypes and genotypes, the reader is referred to a recent review
by Goyette-Desjardins et al. (2014).

Multilocus sequence typing (MLST) is a method for genetic
characterization, which allows to evaluate the epidemiology,
the relation between different strains and virulent properties
in more detail (Urwin and Maiden, 2003). King et al. (2002)
have established a model of MLST for S. suis using seven
different house-keeping genes (cpn60, dpr, recA, aroA, thrA, gki,
and mutS). The nucleotide sequences of several alleles can be
associated with each gene and the combination of those alleles
of each isolate defines the sequence type (ST). Isolates with the
same ST belong to the same clone. Occasionally, the same ST
can comprise isolates with different serotypes and isolates with
the same serotype could belong to different ST (King et al.,
2002). In general, ST1 is mostly associated with clinical cases in
both, pigs and humans, in Europe (Schultsz et al., 2012), Asia
(King et al., 2002; Mai et al., 2008; Takamatsu et al., 2009), and
Argentina (Callejo et al., 2016). ST7, which is responsible for
the two large outbreaks in China in 1998 and 2005, seems to
be endemic in China and Hong Kong (Ye et al., 2006; Li et al.,

2010; Zhu et al., 2013). In North America, most of the isolated
and analyzed serotype 2 strains from pigs and humans belong
to ST25 and ST28 (Fittipaldi et al., 2011), the latter one has
also been reported in Japan (Chang et al., 2006; Onishi et al.,
2012) and other countries (Segura et al., 2017). ST101 to 104 is
endemic in Thailand (Takamatsu et al., 2008, 2009; Kerdsin et al.,
2011a), whereas ST20 was found only in humans in Europe [The
Netherlands and France (Schultsz et al., 2012)].

So far, 35 serotypes based on the antigenicity of the capsular
polysaccharides are known, but some of them have been
suggested to belong to different bacterial species (Okura et al.,
2016). Okura et al. (2013) developed a PCR which is able to
detect all 35 serotypes but cannot distinguish serotypes 2 and 14
from serotypes 1/2 and 1, respectively. Especially these serotypes
are commonly isolated from pigs (Wertheim et al., 2009).
Additionally, there are many nontypable isolates, which do not
agglutinate with any of the typing antisera (Messier et al., 2008)
and which either belong to unknown encapsulated serotypes
or non-encapsulated strains (Goyette-Desjardins et al., 2014).
As reviewed recently by Goyette-Desjardins et al. (2014) the
worldwide predominant serotype from diseased pigs is serotype
2 (27.9%), followed by serotypes 9 (19.4%) and 3 (15.9%).
A total of 15.5% of the isolates were nontypable by serotyping
(Goyette-Desjardins et al., 2014). The serotype distribution is
different in healthy pigs, from which serotype 2 is less frequently
isolated (Wisselink et al., 2000; Marois et al., 2007; Luque
et al., 2010; Wang et al., 2013a). Unfortunately, there exist
only few epidemiological data on S. suis in diseased pigs from
those countries where most human cases are reported (Goyette-
Desjardins et al., 2014). In some European countries, serotype
9 was more frequently found in diseased pigs and wild boars
than serotype 2 (Vela et al., 2003; Tarradas et al., 2004; Luque
et al., 2010; Schultsz et al., 2012; Sanchez del Rey et al., 2014),
but until now no human serotype 9 cases have been reported.
A recent study from Thailand revealed serotype 23 being the
most prevalent in healthy pigs in Phayao Province, followed
by serotypes 9, 7, and 2. Thirty-seven percent of the isolates
was nontypable by multiplex PCR (Thongkamkoon et al., 2017).
Another study from Northern Thailand (Chiang Mai Province)
found mostly serotype 3 isolates in submaxillary glands of pig
carcasses sold in wet markets (Wongsawan et al., 2015). A further
study investigated samples from asymptomatic pigs from central
Thailand and found mainly serotype 16 strains (Meekhanon
et al., 2017). Taken together, S. suis serotype distribution differs
worldwide, within a country, and even within the same region.
Moreover, it was shown that pigs can be colonized by different
serotypes at the same time (Flores et al., 1993). This raises the
question whether the disease of a given animal is caused by a
strain of a certain serotype or by interactions of several strains
of different serotypes. Furthermore, it is unclear why some pigs
in a herd get infected by a certain serotype while others do not
(Higgins et al., 1990).

Worldwide, human cases are reported to be mainly due to
serotype 2 (74.7%) and 14 (2.0%), both serotypes are equally
involved in cases of meningitis (50–70%) and septicemia (20–
25%) (Goyette-Desjardins et al., 2014). Only occasional cases
were reported to be caused by serotypes 4, 5, 16, 21, 24, and
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31 (Arends and Zanen, 1988; Nghia et al., 2008; Kerdsin et al.,
2011b, 2016; Callejo et al., 2014; Gustavsson and Rasmussen,
2014; Hatrongjit et al., 2015; Taniyama et al., 2016). Most of the
persons, who were infected by serotypes other than serotype 2,
were suffering from a pre-existing liver cirrhosis (Kerdsin et al.,
2011b; Taniyama et al., 2016) or other immunocompromising
illnesses (Callejo et al., 2014). This suggests that those serotypes
may be less virulent than serotype 2 strains. Callejo et al. (2016)
reported that S. suis isolated from human cases in Argentina
between 1995 and 2016 from cases of meningitis were caused
by serotype 2 strains, except for one case caused by a serotype
5 isolate (Callejo et al., 2016). This is interesting because only
few human cases have been reported from South America so far.
One case of meningitis due to S. suis serotype 2 from Togo was
reported in 2016 (Prince-David et al., 2016), which illustrates the
emergence of this pathogen in a country, where it was previously
unrecognized.

Although human cases occur only sporadically in Europe,
the reported cases count for 8.5% of all human cases worldwide
(Goyette-Desjardins et al., 2014). This may be explained by
the fact that most of the European countries have a highly
developed pig industry and the virulent serotype 2 can be
found frequently in diseased pigs (Wisselink et al., 2000). In
North America, only a few cases of human infections have
been reported, although this country has the highest number of
reports from diseased pigs (Goyette-Desjardins et al., 2014). One
possible explanation may be that serotype 2 strains from North
America are less virulent than Eurasian strains (Lachance et al.,
2013).

THE COMMENSAL “FACE” OF S. suis

Although the survival mechanism of S. suis as a pathobiont
remains to be elucidated, it seems clear that the S. suis genome of
approximately 2 Mbp encodes for a variety of enzymes, putative
adhesins, and other factors, which enable it to colonize the
host with other commensals (and pathogens). Here, we focus
on bacterial factors and mechanisms, which most likely are
important for the commensal life of S. suis in the respiratory tract,
though these factors may also contribute to virulence (Figure 1,
upper part).

The innate and adaptive immune mechanisms in the
respiratory tract play a major role in pathogen recognition,
processing, and elimination thereby maintaining tissue
homeostasis (Whitsett and Alenghat, 2015). Mucociliary activity
of ciliated epithelial cells is a major defense barrier encountered
by microbes entering the host via the respiratory tract. However,
some pathogens, including S. suis, have adapted to colonize the
respiratory cilia. Thus, the initial step in colonization, bacterial
adherence, is crucial for development of a carrier state (Brassard
et al., 2004). First studies on adhesins of S. suis were published
in the early 1990s (Haataja et al., 1993, 1994, 1996; Tikkanen
et al., 1995, 1996). In recent years, we learnt much more about
mechanisms of adherence and tissue tropisms of S. suis, though
we still do not know precisely what adhesins are essential for
infection.

Salivary glycoproteins in humans have terminal sialic acids,
which are reported to serve as glycan receptor motifs. These
motifs are commonly recognized by commensal streptococcal
bacteria such as, e.g., Streptococcus gordonii (Takahashi et al.,
1997; Takahashi et al., 2002; Loimaranta et al., 2005; Deng
et al., 2014). A recent study by Chuzeville et al. (2017) revealed
that S. suis serotype 2 and 9 strains express genes coding for
multimodal adhesion proteins known as antigen I/II (AgI/II).
In the presence of salivary glycoproteins, AgI/II leads to the
aggregation of S. suis, adherence, and colonization of the upper
respiratory tract of pigs. Especially in serotype 9, the AgI/II is
reported to facilitate aggregation and biofilm formation, and
these aggregated bacteria could be swallowed, but are protected
from the low pH in the stomach, which may enhance colonization
of the intestine (Chuzeville et al., 2017). S. suis also has an
adhesin known as factor H-binding protein, Fhb (Pian et al.,
2012; Roy et al., 2016; Zhang et al., 2016). Factor H is an
abundant host protein in the plasma, which is responsible
in protecting the host from excessive complement effects and
maintains complement homeostasis [reviewed in de Cordoba
and de Jorge (2008)]. Binding of S. suis to factor H by Fhb
results in enhanced adherence of the bacteria to epithelial and
endothelial cells. Fhb also protects S. suis from phagocytosis and
complement mediated killing (Pian et al., 2012; Roy et al., 2016).
Zhang et al. (2016) reported the structural domains involved in
binding of Fhb to the host cell receptor glycolipid GbO3, which
is abundantly expressed on endothelial cells and certain epithelial
cells. For further details on S. suis adhesins involved in adhesion
to epithelial cells, the reader is referred to a recent comprehensive
review on initial steps of S. suis pathogenesis (Segura et al.,
2016).

The most prominent structure of S. suis is the polysaccharide
capsule, of which several different antigen types exist, as described
above. Most likely, the capsule covers adherence-mediating
surface components, but it does not completely inhibit adherence
to host cells. Accordingly, some studies showed that the absence
(or downregulation) of the capsule increases the exposure of
adhesins and subsequent bacterial adherence (Salasia et al.,
1995; Lalonde et al., 2000; Benga et al., 2004; Esgleas et al.,
2005). The thickness of the capsule depends on the bacterial
environment in its host niche. It has been reported that the
capsule is thinner during colonization and invasion of the
respiratory epithelium, possibly to expose adhesins for better
attachment to the epithelial cells (Gottschalk and Segura, 2000).
Tanabe et al. (2010) also reported that the capsule hinders
adhesins and hydrophobic components of S. suis, which are
responsible for biofilm formation. However, in the bloodstream,
the thickness of the capsule is higher and this enables S. suis
to escape phagocytosis (Smith et al., 1999a,b; Gottschalk and
Segura, 2000; Segura et al., 2004; Roy et al., 2016). This underlines
that the expression of the capsule needs to be controlled during
colonization (and subsequent infection).

The expression of genes responsible for S. suis capsule
synthesis is regulated by transcriptional regulators such as
catabolite control protein A (CcpA) (Willenborg et al., 2011)
and small RNAs (sRNAs) like sRNA rss04. According to
Willenborg et al. (2011) depletion of ccpA gene in S. suis
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resulted in a phenotype similar to a non-encapsulated strain,
whereas the ccpA mutant showed reduced capsule thickness
and higher susceptibility to phagocytosis compared to the wild-
type (WT) parental strain (Willenborg et al., 2011). In contrast,
the sRNA rss04 has an opposite effect. Transmission electron
microscopic analysis revealed that S. suis 1rss04 had a thicker
capsule compared to the WT and complemented strains and,
therefore, its presence appears to repress CPS production by
downregulating the expression of ccpA (Xiao et al., 2017). Thus,
most likely capsule synthesis and its coordinated regulation are
very important for the colonization and survival of S. suis as a
pathobiont.

Some microorganisms escape hostile environments by
aggregation in the form of biofilms that enable them to
persist and colonize tissues, resist clearance from host defense
mechanisms and antimicrobials, and facilitate exchange of
genetic information (Donlan and Costerton, 2002). S. suis is
able to form biofilms which is controlled by quorum sensing.
This is a signaling network regulated by luxS gene (coding for
the enzyme S-ribosylhomocysteinase, LuxS), which has been
found in virulent S. suis serotype 2 strains. It has been reported
that LuxS plays an important role by its ability to enhance
the biosynthesis of auto-inducer 2 (AI-2), adherence, biofilm
formation, cell metabolism, and resistance to host immune
responses and antimicrobial therapy (Zhu et al., 2002; Vendeville
et al., 2005; Han and Lu, 2009; Wang et al., 2011b, 2013c, 2015).
Biofilm production by S. suis is induced via the activity of
fibrinogen-mediated cross bridging of S. suis. The presence of
fibrinogen could stimulate the expression of adhesins thereby
facilitating adherence of the bacteria to each other (Bonifait et al.,
2008). Moreover, mucin, produced by goblet cells, may enhance
biofilm formation and promote survival in nutrient-limited
condition as reported for Streptococcus mutans (Mothey et al.,
2014). Bacteria forming biofilms resist antimicrobials better than
planktonic cells (Olson et al., 2002; Grenier et al., 2009). It has
been reported that virulent strains of S. suis have a higher ability
to produce biofilms than avirulent strains (Wang et al., 2011a).
The same authors reported that the adherence of S. suis forming
a biofilm to human pharyngeal epithelial (HEp-2) cells was lower
than that of planktonic cells suggesting a reduced virulence of
S. suis in the former stage. On the one hand, in biofilms bacterial
metabolism and expression of virulence-associated genes is
reduced; on the other hand, secreted toxins may be trapped in
the polysaccharide matrix resulting in less tissue damage to the
host (Wang et al., 2011a). This may explain why virulent strains
of S. suis can also be harmless components of the respiratory
microbiome.

THE PATHOGENIC “FACE” OF S. suis

As a facultative pathogenic bacterium, S. suis causes infectious
diseases that are considered to be multifactorial, i.e., whether
an initial infection remains subclinical or leads to clinical
infection depends on several factors. It is long known that
unfavorable environmental conditions such as overcrowding,
poor ventilation and climatic conditions, poor hygiene status,

high air pollution load, and other stressors correlate with an
increasing clinical disease rate in pigs (Power, 1978; Sanford and
Tilker, 1982; Chanter et al., 1993; Staats et al., 1997). Furthermore,
host-specific factors, such as age, genetic background, and
immunosuppression, influence disease development. Weaning
piglets are most susceptible since protective maternal antibodies
decline (Cloutier et al., 2003). Besides, pigs suffering from other
bacterial and/or viral infections of the upper respiratory tract
are more susceptible. In humans, especially advanced age and
presence of pre-existing medical conditions that suppress the
immune system are common predisposing factors for clinical
S. suis infections (Arends and Zanen, 1988; Ma et al., 2008).

When (colonizing) S. suis encounters conditions that favor
its replication, invasion, and evasion of immune control
mechanisms, the opportunistic pathogen becomes pathogenic.
This transition seems to depend on the individual strain
and its equipment with virulence-(associated) factors, since
only certain strains, geno-, and serotypes are isolated from
diseased animals. In addition to the presence of virulence-related
genes, their coordinated expression during infection is crucial
for pathogenicity. Thus, host-, environment-, and pathogen-
dependent factors are drivers of pathogenicity (Figure 1).

The respiratory tract can easily be colonized by environmental
microorganisms which get access via direct contact or by aerosols.
Thus, the upper airway tract harbors a complex and dynamic
population of bacterial species including, e.g., Haemophilus
parasuis, M. hyopneumoniae, Actinobacillus pleuropneumoniae,
Actinobacillus suis, P. multocida, Bordetella bronchiseptica, and
S. suis, as well as viruses like PRRSV, porcine circovirus type
2, and SIV (MacInnes et al., 2008; Opriessnig et al., 2011).
Accordingly, porcine respiratory disease is often referred to as
porcine respiratory disease complex due to its polymicrobial
nature (Opriessnig et al., 2011).

The members of the respiratory microbiota differ in their
intrinsic pathogenic potential and their role in shaping the
population structure thereby building a mixture of non-
pathogenic (accessory) commensal bacteria, which act as
innocent bystander microbes or support pathogenic bacteria,
and facultative pathogens known as pathobionts, such as S. suis.
Moreover, keystone pathogens, sometimes also named master
manipulators, play a dominant role in population changes,
which may lead to subversion of the host immune system.
This can affect the composition of the microbiota resulting in
dysbiosis and increase of virulence of pathobionts, which then
exploit the disrupted homeostasis for their invasion into deeper
tissues (Hajishengallis and Lamont, 2016). For S. suis, PRRSV is
considered to act as a keystone pathogen since PRRSV and S. suis
coinfections in pig herds are frequently found (Schmitt et al.,
2001) and co-infection of S. suis with PRRSV have been reported
to enhance morbidity of S. suis infections (Thanawongnuwech
et al., 2000; Feng et al., 2001; Auray et al., 2016). Although the
precise mechanism by which PRRSV predisposes pigs to S. suis
infection is unknown, recent studies showed that an altered
innate immune system and exacerbating inflammatory responses
are responsible for increasing the risk of S. suis infection in
PRRSV-co-infected pigs. In vitro studies support the assumption
that a decreased phagocytic activity by PRRSV-infected dendritic
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cells and porcine pulmonary macrophages may lead to a higher
susceptibility to a subsequent S. suis infection (Auray et al., 2016).
Furthermore, an epidemiological association between PRRSV in
pigs and S. suis infections in pigs and humans was described (Hoa
et al., 2013; Huong et al., 2016). To the best of our knowledge,
there are no reports on associations of human viral respiratory
infections with human S. suis infections.

Likewise, S. suis seems to be a pathobiont for infection by SIV.
Experimental co-infections of pigs with SIV-S. suis revealed more
severe clinical symptoms as well as more serious pathological
changes and apoptosis of lungs compared to pigs mono-infected
with either S. suis or SIV (Lin et al., 2015). Although very little is
known about interactions between viral and bacterial pathogens
and their role in the co-pathogenesis of respective diseases, in
general virus-induced damage of the mucociliary barrier and
a decreased immune response are considered to predispose
pigs to secondary infections and pneumonia by opportunistic
bacterial pathobionts (Fablet et al., 2011). Meng et al. (2015)
found that SIV-facilitated adherence, colonization, and invasion
of S. suis in a porcine precision-cut lung slices (PCLS) co-
infection model was mediated by virus-induced impairment
of the ciliary activity (Meng et al., 2015). Similarly, enhanced
adherence of S. suis and direct binding in a capsule-dependent
manner of S. suis to SIV- or SIV-infected cells were also found
in co-infected newborn pig tracheal cells (Wang et al., 2013b;
Wu et al., 2015). Thus, binding of S. suis to SIV-pre-infected
cells appears to enable the bacterium to switch to an invasive
pathogen. A further feature of SIV-S. suis co-infections seems
to be an increased inflammatory response due to upregulation
of inflammatory mediators like chemokines, interleukins, cell
adhesion molecules, and eicosanoids, as it has been found in
in vitro and in vivo experiments (Wang et al., 2013b; Dang
et al., 2014; Lin et al., 2015). On the other hand, S. suis can also
affect SIV infection. Lin et al. (2015) found increased viral loads
in nasal swabs and lungs in co-infected pigs (Lin et al., 2015).
Likewise, infection ability of SIV was enhanced after treatment
with S. suis culture supernatants in vitro, most likely due to the
proteolytic activity of a S. suis protease (Wang and Lu, 2008).
In contrast, Wu et al. (2015) observed a negative effect on the
growth capacity of SIV in S. suis co-infected cells (Wu et al.,
2015).

Nevertheless, interactions of different microorganisms in
the respiratory tract and their contribution to co-pathogenesis
remain unclear. As suggested by Siqueira et al. (2017) the modes
of actions of pathogens could be either additive or synergistic.
Metatranscriptomic and metabolomic studies and appropriate
infection models will surely help for better understanding of
bacterial interactions and their roles in causing diseases or carrier
states (Siqueira et al., 2017).

IN VITRO MODELS TO STUDY
HOST–PATHOBIONT INTERACTIONS IN
THE RESPIRATORY TRACT

As outlined above, we are just beginning to understand the
interplay of commensals, pathobionts, and keystone pathogens

in the respiratory tract. Studies to dissect these complex processes
should be carried out in respective animal models, e.g., in pigs, or
under conditions which most closely mimic in vivo conditions.
Since animal experiments have limitations for several reasons,
ex vivo/in vitro tissue cell culture models receive more and
more attention. Two of such models based on primary porcine
respiratory epithelial cells are air–liquid-interface (ALI) cultures
and PCLS. Both have been shown to be suitable to study host–
pathobiont interactions of S. suis in the porcine respiratory tract
(Meng et al., 2015, 2016).

For ALI cultures, primary porcine tracheal and bronchial
epithelial cells (PTEC and PBEC) are isolated from swine lungs
and cultured in a transwell system at ALI conditions for 4–
5 weeks until the cells are well differentiated. Those well-
differentiated respiratory epithelial cells build a pseudostratified
epithelium, containing ciliated and mucin-producing cells
(Figure 2A), and, therefore, represent the in vivo situation in
the porcine respiratory tract. The expression of tight junction
proteins and the development of a high trans-epithelial resistance
indicate an epithelial barrier function (Prytherch et al., 2011).
Human ALI culture systems have been proved suitable for
modeling the respiratory tract by transcriptome analyses (Dvorak
et al., 2011) and showing physiological responses to different
pathogens (Krunkosky et al., 2007; Palermo et al., 2009). This
cell culture model is particularly suitable to study the adherence
and invasion of bacteria such as S. suis to well-differentiated
respiratory epithelial cells and its effect on the epithelial barrier
in vitro (Meng et al., 2016).

The advantage of the ex vivo PCLS model is that it preserves
the structural and functional integrity of the lung, including
the ciliary activity at the bronchiolar surface (Figure 2B),
since those slices are pieces of lung tissue which can be kept
in cell culture medium for several days. PCLS have been
proved to be convincing alternatives to in vivo experiments for
physiological, pharmacological, and toxicological investigations
(Morin et al., 2013). This method allows to investigate the
adherence, colonization, and invasion of bacteria like S. suis
and to study microbial effects on bronchial epithelial cells, e.g.,

FIGURE 2 | Primary porcine respiratory epithelial cell models to study
host–pathobiont interactions in the respiratory tract. Immunofluorescence
microscopy analysis of (A) primary porcine bronchial epithelial cells under
air–liquid-interface (ALI) conditions after 3 weeks of differentiation and (B) a
precision-cut lung slice (PCLS). Ciliated cells were stained by β-tubulin
antibody (shown in red, A + B), mucin-producing cells were visualized by
mucin 5-AC antibody (shown in green, A), and nuclei were stained by DAPI
(shown in blue, B). Bars represent 50 µm.
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the ciliary motility and bronchus-constriction, by light
microscopy. A limitation of PCLS is the restricted time of viability
of the cells, making it less suitable for studying long-term effects.

Air–liquid-interface cultures and PCLS as well as further
models, such as organoids from the respiratory tract, will have
to be further improved, e.g., by including immune cells. Such
models and respective imaging techniques will enable researchers
in the future to dissect the complex interactions of microbes
on mucosal surfaces with each other and the host, which will
contribute to a better understanding of the role that pathobionts
play in infection processes in the airway system.
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