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Characterizing the transmitted/founder (T/F) viruses of multi-variant SIV infection may

shed new light on the understanding of mucosal transmission. We intrarectally inoculated

six Chinese rhesus macaques with a single high dose of SIVmac251 (3.1 × 104 TCID50)

and obtained 985 full-length env sequences from multiple tissues at 6 and 10 days

post-infection by single genome amplification (SGA). All 6 monkeys were infected with

a range of 2 to 8 T/F viruses and the dominant variants from the inoculum were still

dominant in different tissues from each monkey. Interestingly, our data showed that a

cluster of rare T/F viruses was unequally represented in different tissues. This cluster of

rare T/F viruses phylogenetically related to the non-dominant SIV variants in the inoculum

and was not detected in any rectum tissues, but could be identified in the descending

colon, jejunum, spleen, or plasma. In 2 out of 6 macaques, identical SIVmac251 variants

belonging to this cluster were detected simultaneously in descending colon/jejunum and

the inoculum.We also demonstrated that the average CG dinucleotide frequency of these

rare T/F viruses found in tissues, as well as non-dominant variants in the inoculum, was

significantly higher than the dominant T/F viruses in tissues and the inoculum. Collectively,

these findings suggest that descending colon/jejunum might be more susceptible than

rectum to SIV in the very early phase of infection. And host CG suppression, which was

previously shown to inhibit HIV replication in vitro, may also contribute to the bottleneck

selection during in vivo transmission.

Keywords: Chinese rhesus macaque, rectal transmission, SIV, transmitted/founder virus, very early virological

events, CG dinucleotide, zinc finger antiviral protein
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INTRODUCTION

Characterizing the T/F viruses during mucosal infection is
important for HIV-1 vaccine and transmission studies (Shaw
and Hunter, 2012). By investigating quasispecies complexity in
HIV-1 infected individuals, early studies have suggested that
genetically diverse viral quasispecies in chronic infections were
presumably resulting from one or few closely related T/F viruses
(Wolfs et al., 1992; Wolinsky et al., 1992; Zhang et al., 1993;
Zhu et al., 1993, 1996; Poss et al., 1995; Long et al., 2000;
Learn et al., 2002; Derdeyn et al., 2004; Grobler et al., 2004;
Ritola et al., 2004; Sagar et al., 2004, 2009). Based on these
observations, Keele and colleagues characterized T/F viruses
more precisely using single-genome amplification (SGA) and
showed that only a limited number of virus variants are
transmitted through mucosal transmission in both human and
non-human primate (Keele et al., 2008, 2009) which is widely
believed to be the consequence of “transmission bottleneck”
selection (Kariuki et al., 2017). Although similar percentages
of heterosexual and MSM transmissions can be traced back
to a single founder virus (Keele et al., 2009), several lines of
evidences have suggested that the risk of rectal transmission
is relatively higher (Lane et al., 2006; Kalichman et al., 2009;
Veldhuijzen et al., 2011) and the multiplicity of rectal HIV-
1 infection was also greater than genital tract transmission
(Li et al., 2010). These differences suggest that it could be
more difficult to prevent rectal HIV transmission than to
prevent vaginal transmission. More evidence has been provided
in non-human primate studies on topically applied ARVs
that showed better protection against vaginal transmission
(Parikh et al., 2009) than rectal transmission (Cranage et al.,
2008).

The less stringent bottleneck of rectal transmission may be
attributed to anatomical and histological differences between the
genitourinary tracts and the lower intestine (Li et al., 2010).
However, the exact mechanisms are still elusive. An intriguing
study done in rhesus macaques intrarectally infected with a
single high dose of SIVmac251 showed a higher number of
transmitted virus variants as a result of increased inoculum
dosage (Liu et al., 2010), further indicating that the rectal
mucosa may be more vulnerable to HIV infection than
previously thought (Keele et al., 2009). To understand the nature
of the “transmission bottleneck,” intensive efforts have been
put into identifying common features of HIV-1 T/F viruses
(Joseph et al., 2015), however, no consistent signature has
been found in human studies except that most T/F viruses
use the CCR5 co-receptor (Keele et al., 2008; Ping et al.,
2013).

A major advantage of using the SIV infected rhesus
macaque model to investigate T/F viruses is that the exact
genome sequences of inoculating viruses can be obtained,
which makes comparisons between the transmitted and non-
transmitted variants possible. Previously, most non-human
primate transmission studies have focused only on comparing
inoculum viruses with viruses isolated from plasma (Keele et al.,
2009; Liu et al., 2010), leaving T/F virus variants within the
intestinal mucosa largely unknown. Recently the T/F virus

distribution across anal-rectum, peripheral blood, and distant
lymph nodes at the very early phase of SIVmac251 rectal
transmission in Indian rhesus macaques was characterized
(Yuan et al., 2017). However, this study did not investigate the
transmitted viruses in other parts of intestinal mucosa, e.g., the
descending colon, which could also be potential portals of entry
(Smedley et al., 2014). Considering the dramatic anatomical
and immunohistological variation across different parts of the
intestinal mucosa, we speculated that characterizing T/F viruses
across multiple sites is of high importance for understanding the
HIV rectal transmission bottleneck.

MATERIALS AND METHODS

Ethics Statement
This study was approved by the Institutional Animal Care
and Use Committee (IACUC) at the Institute of Laboratory
Animal Science, Chinese Academy of Medical Sciences (ILAS,
CAMS). All animal experimental procedures were performed in
an Animal Bio-Safety Level 3 (ABSL-3) laboratory, which is fully
accredited by the Association for Assessment and Accreditation
of Laboratory Animal Care (AAALAC), International. This study
was carried out in strict compliance with the “Guide for the Care
and Use of Laboratory Animals of the Institute of Laboratory
Animal Science (est. 2006)” and “The use of non-human primates
in research of the Institute of Laboratory Animal Science (est.
2006)” to ensure personnel safety and animal welfare. All the
Chinese rhesus macaques enrolled this study were negative for
HIV-2, SIV, type-D retrovirus, and simian T cell lymphotropic
virus-1 when the study was initiated.

Experimental Design and Tissue Collection
Nine male adult rhesus macaques (Macaca mulatta) of Chinese
origin were randomly divided into 3 equal groups and housed at
the institute of laboratory animal science, Chinese Academy of
Medical Sciences (ILAS, CAMS). Six animals were intrarectally
inoculated with 1ml (3.1 × 104 TCID50) cell-free SIVmac251
and euthanized at 6 dpi (n= 3, Rh061127, Rh070327, Rh070419)
or 10 dpi (n = 3, Rh060027, Rh060319, Rh050429). The
SIVmac251 virus stock, kindly provided by Dr. Qiang Wei
(ILAS, CAMS), is CCR5-tropic and was expanded in rhesus
macaque peripheral blood mononuclear cells (PBMCs) (Cong
et al., 2015) and titrated using a rhesus macaque PBMC based
assay (Marthas et al., 2001). Another three monkeys were used
as non-infected controls and sacrificed on day 0 (Figure 1A).
After euthanasia, plasma, spleen, anal rectum, descending
colon, and jejunum were collected and frozen at −80◦C until
use.

Viral RNA Extraction and cDNA Synthesis
Plasma and virus stock were thawed on ice and viral RNA
was isolated using the QIAamp viral RNA mini kit (# 52904,
Qiagen, Valencia, CA, USA) according to the manufacturer’s
protocol. Total RNA was extracted from homogenized
tissues using RNAzol (# 190, MRC, Cincinnati, OH, USA)
and purified using RNeasy Mini Kit (# 74106, Qiagen).
RNA quantity and quality was measured by Nanodrop
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FIGURE 1 | Experimental design and the genetic make-up of SIVmac251

inoculum. (A) Three groups of Chinese rhesus macaques (3 monkeys/group)

(Continued)

FIGURE 1 | were enrolled in this study. Two groups were intrarectally infected

with a single high dose of SIVmac251 (3.1 × 104 TCID50/monkey) and

euthanized at 6 or 10 dpi. (B,C) Tissue viral RNA loads were measured by

quantitative PCR (B) and virus replication in rectal mucosa was detected by in

situ hybridization (C). (D) The inoculum stocks of SIVmac251 were evaluated

for env diversity by NJ phylogeny and Highlighter plots. Reading frame intact

env sequences were shown in parallel in NJ phylogeny and Highlighter plots.

Nucleotide polymorphisms in the highlighter plot are indicated by a colored

mark. Thymine is represented in red, guanine in orange, adenine in green,

cytosine in blue, pink filled circles denote APOBEC signatures, open diamonds

represent G-to-A conversions, and gaps are shown in gray in the highlighter

plots. Bar length indicates 0.001 nucleotide substitutions per site. *P<0.05;

**P<0.01; ***P<0.001.

(Thermo Scientific, Waltham, MA USA). One microgram
of tissue or viral RNA was transcribed into cDNA by using
random primers and the Moloney murine leukemia virus
(M-MLV) reverse transcriptase (#M1302-40KU, Promega,
Charbonnieres, France). cDNA was stored at −20◦C until
use.

Viral Load Detection
Plasma and the tissue levels of SIV RNA were determined by
following previously published methods (Cline et al., 2005; Ren
et al., 2016). All samples were repeatedly quantified in two
independent experiments.

Single Genome Amplification and Sanger
Sequencing
Near full-length 2.3 kb SIVmac251 env was amplified using
nested PCR by following previously published protocols (Stone
et al., 2010). Briefly, cDNA was serially diluted to obtain
less than 30% positivity in the total PCR reactions. At this
dilution, most positive wells contain amplicons derived from
a single cDNA molecule. This was confirmed in every positive
reaction by inspection of the sequence for double peaks after
sanger sequencing. Any sequence with evidence of mixed bases
was excluded from further analysis. PCR amplification was
performed in a 20 µl reaction. The first-round of PCR was
performed with forward primer 10µM 251envF1 (5′-CAG TCT
TTTATGGTGTACCAGCTTGGAGGAATG-3′), and reverse
primer 10µM 251envR1 (5′-GAG GAT CCA TCT TCC ACC
TCTCCTAAGAGTC-3′), which generated an∼2.5 kb product.
PCR was performed in 96-well PCR plates under the following
parameters: 94◦C for 2min, 35 cycles of 94◦C for 20 s, 56◦C
for 30 s, and 72◦C for 2.5min, and an extension step of 72◦C
for 10min. The second-round PCR was conducted using the
same condition as the first-round PCR except using 2 µl of the
first round PCR products as template and running 40 cycles
with forward primer 10µM 251envF2 (5′-GGA ACA ACT CAG
TGC CTA CCA GAT AAT GGT G-3′), and reverse primer
10µM 251envR2 (5′-GTA GGT CAG TTC AGT CCT GAG
GAC TTC TCG-3′). PCR products were separated by 1% agarose
gel electrophoresis and the positive bands were excised from
the gels and purified using the QIAquick Gel Extraction Kit
(#28706, Qiagen, Valencia, CA, USA). Purified PCR products
were sequenced with six overlapping primers using Sanger
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FIGURE 2 | Divergence and diversity analyses of transmitted/founder viruses

isolated from different tissue compartments (A). The numbers of base

(Continued)

FIGURE 2 | substitutions per site from averaged over all sequence pairs

between the inoculum and each tissue compartment (divergence from

inoculum, calculated using MEGA7). The number of transmitted variants varied

among different tissue compartments at both 6 dpi (B) and 10 dpi (C).

Although no significant difference was observed, the number of T/F lineages in

rectum tended to be lower than other tissue compartments. Moreover, the

numbers of virus lineages in tissues were all less than the inoculum, which

contained at least 17 lineages.

method at Biosune Biotechnology (Shanghai, China). Sequencing
primers are listed as following.

C41950 primer F: 5′-GGAACAACTCAGTGCCTACCAGAT
AAT-3′,

C41951primer R: 5′-GTAG GTCAGTTCAGTCCTGAGGAC
TTC-3′,

C42016 1F.W1F: 5′-TGCACAAGGATGATGG AGAC-3′,
C42018 1R.W1F: 5′-GTACTTCTCGATGGCAGTGA-3′,
C42053 1F.W1Cnew: 5′-CT CTTGTTCCAAGCCTGTGC-3′,
C42054 1R.W1Cnew: 5′-GGTATAGGCCAGTGTTCTCT-3′.

SIVmac251 Viral RNA Detection in Tissues
Using ISH
In situ hybridization (ISH) was conducted according to
previously published methods (Li et al., 2005; Destache
et al., 2016). Briefly, animal intestinal tissues were collected
after euthanasia and were fixed in 4% paraformaldehyde.
Approximately 6µm tissue sections were cut and adhered
to a SuperFrost plus slide, fixed, and air dried. The sections
were then rehydrated, permeabilized, and acetylated prior
to hybridization to 35S-labeled SIV riboprobes. After
washing and digestion with RNase, sections were coated
with nuclear track emulsion, exposed for 7 days, developed,
and counterstained with hematoxylin and eosin (H&E)
stain.

Sequence Analysis
To ensure that the env sequence was derived from a
single genome, chromatograms of sanger sequencing were
first manually examined for overlaid multiple peaks, which
indicated the presence of PCR generated recombination
events, Taq polymerase errors, or multiple variant templates.
Sequences with overlaid multiple peaks were excluded from
further analysis. Next, the sequences were aligned by using
ClustalW and only the open reading frame(ORF) intact
sequences were selected for downstream phylogenetic analysis.
Neighbor-joining phylogenetic trees were constructed using
MEGA7 and highlighter diagrams were generated by the
online highlighter tool (www.hiv.lanl.gov). The number of T/F
lineages was counted by inspecting neighbor-joining phylogenies
and the Highlighter plots as being described in previous
studies (Keele et al., 2008, 2009; Stone et al., 2010). While
identifying a T/F variant lineage, the following criteria were
applied: First, branches containing two or more identical
sequences; Second, sequences that closely clustered on the
same branch; third, individual sequences showing recombination
signature were excluded from counting. Sequence divergence was
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TABLE 1 | Number of full length SIVmac251 env sequences obtained from

different tissue compartments.

Group Macaque

code

Tissue Number of

total

sequences

Number of reading

frame intact

sequences

6 dpi 070419 Rectum 32 29

group Plasma 43 42

Spleen 15 15

Jejunum 36 33

Descending colon 28 25

070327 Rectum 61 44

Plasma 33 30

Spleen 24 22

Jejunum 43 37

Descending colon 34 32

061127 Rectum 30 24

Plasma 30 27

Spleen 40 30

Jejunum 38 34

Descending colon 50 44

10 dpi 050429 Rectum 25 23

group Plasma 28 25

Spleen 24 23

Jejunum 54 46

Descending colon 43 42

060319 Rectum 44 43

Plasma 18 18

Spleen 40 37

Jejunum 47 46

Descending colon 39 35

060027 Rectum 33 28

Plasma 44 42

Spleen 48 46

Jejunum 36 36

Descending colon 35 27

Totally 1,095 sequences were obtained by SGA, but only the reading-frame intact

sequences (985) were used for downstream analysis. Only 7 out of 110 defective variants

were found to be potentially caused by APOBEC-associated G-to-A hypermutation.

analyzed using MEGA7. To analyze CG dinucleotide frequency,
sequence files in fasta format were read by a perl script in
order to count single nucleotide and dinucleotide frequencies
within the sequence. The perl script was adapted from the
Biostars bioinformatics forum user biolab. Sequences analyzed
in this study were uploaded to Genbank (SRA accession:
SRP133347).

Statistical Analysis
Data are presented as mean ± SD in Figures 1B, 2, 5B.
Comparisons among multiple groups were conducted by the
method of ordinary one-way ANOVA and each group was
compared to all other groups by Tukey`s multiple comparisons
(GraphPad Software, Inc., San Diego, California, USA).

RESULTS

The SIVmac251 Inoculum Contained Diverse
Variants and All Monkeys Were
Successfully Infected After a Single
Anorectal Exposure
In total, nine Chinese rhesus macaques were enrolled in this
study. Six were intrarectally inoculated with 3.1 × 104 TCID50

cell-free SIVmac251 and were euthanized at either 6 or 10 days
post-infection (dpi) (Figure 1A). To characterize the diversity of
virus in the inoculum, a total of 98 ORF intact env sequences
were generated by SGA and sanger sequencing. We found
that the inoculum contained at least 17 different lineages and
the dominant one comprised 47 nearly identical sequences
(Figure 1D). The dominant lineage percentage in the inoculum
was 48%, which was comparable to a recent report (44%) (Yuan
et al., 2017). The overall nucleotide diversity among this virus
stock was 0.005 base substitution per site, which was slightly
lower than previously published data (0.008 base substitution
per site) (Keele et al., 2009). To confirm the establishment
of infection, viral RNA in intestinal tissues was detected by
qPCR (Figure 1B) and in situ hybridization (Figure 1C and
Figure S9). Both assays confirmed that all monkeys in the 6
and 10 dpi groups were successfully infected. Viral loads in
jejunum and descending colon significantly increased from 6
to 10 dpi, while viral loads remained stable in rectum tissues
(Figure 1B). Additionally, at 10 dpi the average viral load in the
descending colon was significantly higher than that in the rectum
(Figure 1B).

Rectum Was Not the Anatomical Site That
Contained the Most Diverse T/F Viruses at
Both 6 and 10 dpi
To delineate the anatomical distribution of the T/F viruses,
a total of 985 ORF intact env sequences were generated
from rectum, descending colon, jejunum, peripheral blood,
and spleen of each monkey (Table 1). Interestingly, despite
being the site of inoculation, our data showed that rectum did
not contain the most diverse transmitted viruses. The average
divergence (compared to the inoculum) tended to be higher in
the descending colon, compared to other tissue compartments
(Figure 2A), although statistical significance was not reached.
We further enumerated the number of T/F viruses in the different
tissue compartments of each monkey (Figures S1–S6) and found
that the number of T/F viruses tended to be lower in rectum at
both 6 and 10 dpi (Figures 2B,C). For each tissue compartment,
the number of T/F viruses remained relatively stable between 6
and 10 dpi with a range of 2 to 8 (Figures 2B,C). The divergence
of T/F variants (compared to the inoculum) increased from 6
to 10 dpi (Figure 2A) due to in vivo virus replication. However,
the composition of T/F virus lineages was not significantly
changed (Figures 3, 4 and Figures S7, S8), which is consistent
with previous report showing that the frequencies of major and
minor T/F lineages remained relatively stable within 10 dpi
(Kijak et al., 2017). In addition to the ORF intact sequences,
110 ORF defective sequences were observed in this study. We
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Jejunum

Inoculum

Descending Colon

Spleen

Rectum

Plasma

(28 sequences)

(19 sequences)

(9 sequences)

(19 sequences)

(17 sequences)

(5 sequences)

0.001

Dominant

FIGURE 3 | N-J tree and Highlighter plots of SGA-derived env nucleotide sequences from 6 dpi macaque Rh070419. Sequences derived from different tissue

compartments are shown in N-J phylogeny and Highlighter plots. In the phylogeny plot, the inoculum viruses are depicted in closed gray circles, rectum viruses in

closed yellow circles, jejunum viruses in green circles, descending colon viruses in blue squares, spleen viruses in purple downward triangles, and peripheral blood

viruses in red upward triangles. The red branches highlight a cluster of variants that was absent from rectum. The right bracket indicates the dominant variants.

Identical sequences in the dominant cluster are represented by only one sequence for each tissue compartment. Actual number of sequences is shown in the bracket

following the seq ID. Bar length represents 0.001 nucleotide substitutions per site.
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0.001

Jejunum

Inoculum
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Spleen

Rectum

Plasma

(28 sequences)

(13 sequences)

(10 sequences)

(18 sequences)

(7 sequences)

(11 sequences)
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FIGURE 4 | N-J tree and Highlighter plots of SGA-derived env nucleotide

sequences from 10 dpi macaque Rh060319. Sequences derived from

(Continued)

FIGURE 4 | different tissue compartments are shown in N-J phylogeny and

Highlighter plots. In the phylogeny plot, the inoculum viruses are depicted in

closed gray circles, rectum viruses in closed yellow circles, jejunum viruses in

green circles, descending colon viruses in blue squares, spleen viruses in

purple downward triangles, and peripheral blood viruses in red upward

triangles. The red branches highlight a cluster of variants that was absent from

rectum. The right bracket indicates the dominant variants. Identical sequences

in the dominant cluster are represented by only one sequence for each tissue

compartment. Actual number of sequences is shown in the bracket following

the seq ID. Bar length represents 0.001 nucleotide substitutions per site.

found that these defective sequences were phylogenetically co-
localized with the functional variant in the inoculum (Data not
shown), which is consistent with the previous finding (Yuan et al.,
2017).

A Cluster of Rare T/F Viruses Was
Unequally Represented in Different Tissue
Compartments
To further characterize the distribution of T/F viruses, we
deconvoluted the phylogenetic relationships of T/F viruses
derived from the different tissue compartments for each infected
monkey. The analyses for 6 dpi monkeys are shown in Figure 3

and Figure S7 and analyses for 10 dpi monkeys are shown
in Figure 4 and Figure S8. Overall, our data showed that in
all monkeys the dominant T/F viruses (highlighted by right
brackets) were consistently derived from the dominant variants
of the inoculum (Figures 3, 4 and Figures S7, S8). Unexpectedly,
we found that a cluster of rare T/F variants were transmitted
at a much lower efficiency in each macaque (highlighted with
red branches in Figures 3, 4 and Figures S7, S8). We found
that the rare T/F virus cluster was phylogenetically related to 48
virus variants from the inoculum. Of these 48 identified from
the inoculum, we were able to identify 44 of them shared by
more than 4 out of 6 infected monkeys (Table S1). Therefore,
we reasoned that this cluster of T/F viruses might derive from
the same group of viruses in the inoculum. Interestingly, our
data showed that this cluster of T/F viruses was unequally
represented in different tissue compartments. Specifically, no
viruses belonging to this cluster were identified in any infected
rectum tissue. This indicates that either this cluster of SIVmac251

variants was absent from rectum or the frequency in rectum was
much lower than in other tissue compartments.

The Unequally Distributed T/F Variants
Exhibited Animal-Specificity and High CG
Dinucleotide Frequency
To clarify whether the unequally represented T/F variants
(highlighted with red branches in Figures 3, 4 and Figures
S7, S8) were shared among infected macaques, we pooled
these env sequences together with inoculum virus sequences
and performed phylogenetic analysis. The results confirmed
that all T/F variants were phylogenetically related to the non-
dominant variants in inoculum. However, no shared variant
was found among different monkeys (Figure 5A), indicating
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FIGURE 5 | The unequally represented T/F variants were animal-specific and

their average CG dinucleotide frequency was high. (A) The unequally
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FIGURE 5 | represented T/F variants identified in Figures 3, 4, and Figures

S7, S8 were pooled together with inoculum virus sequences for N-J phylogeny

and Highlighter analyses. Identical variants identified at both the descending

colon/jejunum and the inoculum are highlighted with red branches. (B) Mean

CG dinucleotide frequencies of the T/F and inoculum viruses were also

calculated and compared. The data showed this cluster of unequally

represented T/F variants had significantly higher average CG frequency.

that the transmission of these variants might take place in a
stochastic way. Furthermore, the frequencies of these variants
were low in all monkeys. This implied that their replication
capacities might be lower than the dominant variants and
therefore their transmission efficiencies were restricted, especially
in rectum mucosa. To unveil the difference between the
dominant and unequally represented T/F variants, we performed
CG dinucleotide frequency analysis. Our data showed that
the average CG dinucleotide frequency of these unequally
represented T/F variants was significantly higher (P < 0.0001)
than that of T/F viruses in different tissues and the dominant
variants in inoculum, but was slightly lower than the average
CG frequency of the non-dominant variants in inoculum
(Figure 5B). High CG dinucleotide frequency within the env
gene was recently demonstrated to be deleterious to HIV
replication (Takata et al., 2017). Our data further suggested that
host CG suppression might also play a role in transmission
bottleneck selection. Additionally, identical SIVmac251 variants
belonging to this cluster were detected simultaneously in
descending colon/jejunum and the inoculum in 2 out of 6
macaques (highlighted with red branches in Figure 5A).

DISCUSSION

Epidemiological observation suggested that the risk of HIV
transmission was higher for anorectal exposure than vaginal
exposure(Patel et al., 2014), whichmight be due to the differences
of transmission bottleneck and infection multiplicity (Li et al.,
2010; Tully et al., 2016) between modes of sexual transmission.
As the transmission of multiple founder variants might associate
with faster HIV disease progression (Janes et al., 2015), we
hypothesized that characterizing the T/F viruses under a high
multiplicity infection setting could provide new insights into
the mechanisms of HIV/SIV anorectal transmission. In current
study, we employed a single high dose SIVmac251 challenge model
in Chinese rhesus macaques to characterize T/F viruses. This
model has previously been shown to be able to establish infection
by multiple founder viruses in Indian rhesus macaques (Liu et al.,
2010). Specifically, we challenged 6 rhesus macaques intrarectally
with 3.1× 104 TCID50/monkey of SIVmac251 and euthanized the
animals for virus detection at 6 or 10 dpi. A recent study showed
dramatic shifts in the frequencies of the viruses that composed
the HIV-1 population within hosts infected by multiple viral
lineages (Kijak et al., 2017), suggesting that detection at the very
early phase of infection may provide a more accurate view of
the T/F viruses. We found that the number of T/F viruses in
peripheral blood ranged from 2 to 8, which was comparable
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with previously published data (Liu et al., 2010) and closely
resembled the clinical data showing that 2–10 founder viruses
could identified in multivariant transmissions (Li et al., 2010).
The dominant T/F variants came from the dominant variants in
the inoculum, and were identified in all tissues of all infected
monkeys. The high transmission efficiency may be due to the
significantly lower CG dinucleotide frequencies in the env gene
(Figure 5B), as a previous finding suggested that high CG content
in the env gene was deleterious to HIV replication (Takata
et al., 2017). Our findings are inconsistent with a previous study
which suggested that founder viruses were animal-specific and
primarily derived from rare variants in the inoculum (Yuan
et al., 2017). This discrepancy is possibly caused by differences
betweenmacaques (Chinese vs. Indian) and SIVmac251 inoculums
used in the two studies. In addition to peripheral blood, we also
analyzed the env sequences obtained from rectum, descending
colon, jejunum, and spleen. To our surprise, the data showed
that rectum (the inoculation site) was not the tissue that
comprised the most diverse T/F variants. Although no statistical
significance was reached, the number of T/F viruses observed
in rectum tended to be lower than other tissue compartments.
This finding was corroborated by the observation that a cluster
of rare T/F viruses was not detected in rectum tissues of any
monkeys, but was identified in the descending colon, jejunum,
spleen, or plasma. Compartmentalization of HIV-1 in chronically
infected patients and in vivo cell-to-cell transmission have been
extensively reported (van Marle et al., 2007; Bull et al., 2009;
Schnell et al., 2009; Bednar et al., 2015; Law et al., 2016). However,
our study is the first to indicate that the distribution of T/F viruses
is different among tissues in very early SIV rectal transmission.

To further delineate the T/F viruses in different tissue
compartments, we analyzed the phylogenetic relationships of
SIVmac251 env sequences for each monkey and found that a
cluster of rare T/F viruses was transmitted at low efficiency in
all monkeys (highlighted with red branches in Figures 3, 4 and
Figures S7, S8), which was unequally represented in different
tissue compartments. Most strikingly, it was absent from rectum
tissues in all 6 macaques. This result indicates that rectum is
less susceptible to the infection of this cluster of variants. It
also implies that rectum may not be the only site of SIV entry
under this particular experiment setting, which is consistent with
previous studies showing that multi-site entry was possible after
intra rectal exposure (Ribeiro et al., 2011; Smedley et al., 2014).

SIV can disseminate very rapidly after mucosal inoculation
(Ribeiro et al., 2011; Barouch et al., 2016), which may explain

our finding that the dominant variant cluster presented in all
tissues of all monkeys (Figures 3, 4 and Figures S7, S8). However,
the finding that some rare viruses were not detectable in rectum
could not be decidedly explained by rapid in vivo dissemination,
because T/F viruses usually need to be expanded locally before
dissemination (Li et al., 2005; Stone et al., 2010) and it is very
unlikely that locally expanded viruses migrate to distal sites with
no evidence of the expansion at the portal of entry. Under our
experiment setting, possibility of virus entry via descending colon
mucosa could not be completely excluded as we found that a
rare SIVmac251 variant was shared only by descending colon and
inoculum in Rh050429.

Although a relatively large number of env sequences were
generated in our study (985 reading-frame intact sequences
in total; on average 31, 38, and 34 sequences were obtained
from rectum, descending colon, and jejunum for each monkey,
(Table 1), the sampling depth could not ensure that we have
captured the entire pool of T/F variants. Therefore, some very
rare variants may have potentially been missed. In spite of
this limitation, our observations did demonstrate that a rare
T/F lineage was unequally represented between rectum and
other tissues at the very early phase of rectal SIV infection
and suggested that CG dinucleotide host suppression might
contribute to the bottleneck selection.
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