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Niche adaptation has long been recognized to drive intra-species differentiation and
speciation, yet knowledge about its relatedness with hereditary variation of microbial
genomes is relatively limited. Using Leptospirillum ferriphilum species as a case study,
we present a detailed analysis of genomic features of five recognized strains. Genome-
to-genome distance calculation preliminarily determined the roles of spatial distance
and environmental heterogeneity that potentially contribute to intra-species variation
within L. ferriphilum species at the genome level. Mathematical models were further
constructed to extrapolate the expansion of L. ferriphilum genomes (an ‘open’ pan-
genome), indicating the emergence of novel genes with new sequenced genomes.
The identification of diverse mobile genetic elements (MGEs) (such as transposases,
integrases, and phage-associated genes) revealed the prevalence of horizontal gene
transfer events, which is an important evolutionary mechanism that provides avenues for
the recruitment of novel functionalities and further for the genetic divergence of microbial
genomes. Comprehensive analysis also demonstrated that the genome reduction by
gene loss in a broad sense might contribute to the observed diversification. We thus
inferred a plausible explanation to address this observation: the community-dependent
adaptation that potentially economizes the limiting resources of the entire community.
Now that the introduction of new genes is accompanied by a parallel abandonment
of some other ones, our results provide snapshots on the biological fitness cost of
environmental adaptation within the L. ferriphilum genomes. In short, our genome-
wide analyses bridge the relation between genetic variation of L. ferriphilum with its
evolutionary adaptation.

Keywords: Leptospirillum ferriphilum, mathematical models, pan-genome, hereditary variation, adaptive
evolution

INTRODUCTION

The emergence of next generation sequencing technologies accompanied with developing
methodological and computational approaches has yielded valuable insights into the genetic
traits of microorganisms in various habitats worldwide, such as their metabolic capabilities
and evolutionary adaptation (Cordero and Polz, 2014; Ji et al., 2014; Zhang and Sievert, 2014;
Youssef et al., 2015; Zhang et al., 2016a,b,e, 2017a). Plentiful genome data deluge in public
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databases have fueled the field of comparative genomics. Studies
on bacterial genomes significantly expanded the scope of inter-
species divergence (Ullrich et al., 2016; Zhang et al., 2016e).
Also, intra-species differentiation has been observed based on
individual genomes of certain species (Zhang et al., 2016a,b,
2017a). Spatial distance and environmental heterogeneity are
recognized to be two major factors that contribute to genetic
variation of microbial genomes and populations (Ramette
and Tiedje, 2007). At the spatial scale, the contribution of
environmental factors to microbial biogeography is relatively
more than that of geographic distributions (Lin et al., 2013).
As such, it is of value to determine the potential relevance
between hereditary variation of bacterial strains and adaptation
to different ecological niches, probably reflecting the responsive
mechanisms to local environmental perturbations.

Novel genes, in theory, would be added to the genome of
the species after new genomes are sequenced (Medini et al.,
2005), thereby expanding microbial gene pool. The coinage ‘pan-
genome’ (‘pan,’ derived from the Greek word ‘παν,’ meaning
‘whole’) was first introduced a decade ago (Tettelin et al.,
2005) in order to delineate the intra-species diversity. Pan-
genome analysis provides a framework not only to estimate the
genomic diversity by means of the dataset at hand, but also
to predict, via mathematical extrapolation based on sufficient
samples (at least five genomes; Vernikos et al., 2015), the
number of additional whole genomes that are necessary to
fully characterize the entire gene repertoire of a given species.
Bacterial pan-genome is composed of ‘core genome’ containing
genes shared by all strains and ‘dispensable genome’ containing
genes shared by a subset of the strains and the strain-specific
genes (Medini et al., 2005; Tettelin et al., 2008). Core genome
encodes biological functions that are essential to basic lifestyle
and phenotypes, while dispensable genome was responsible
for species diversity and probably contributes to the selective
advantages, such as econiche adaptation. The flexible gene pool
endows microorganisms with strain-specific adaption to local
environmental conditions (Acuña et al., 2013). Accordingly, it
is of interest to estimate the sizes of pan-genome, core genome,
and new genes of a given species as novel genomes are added,
and further identify the relative contribution of dispensable
genome to inheritance variation and its relatedness with specific
adaptation to environmental niches.

Leptospirillum spp. are Gram-negative, vibrio- or spiral-
shaped, and obligately chemolithotrophic bacteria (Coram and
Rawlings, 2002), which are phylogenetically affiliated with the
deep branching class Nitrospira (Bonnefoy and Holmes, 2012;
Goltsman et al., 2013). They ubiquitously occur in a variety of
acidophilic microbial communities (Zhang et al., 2016c), and are
recognized to be the critical biological catalysts in both natural
and deliberate metal sulfide biooxidation processes (Coram and
Rawlings, 2002; Chen et al., 2013). Species of Leptospirillum
genus are the dominant iron-oxidizing bacteria in metal-tolerant,
acidophilic microbial consortia that prompt ferric iron [Fe(III)]-
mediated oxidative dissolution of sulfide minerals, suggesting
their key roles in the biogeochemical cycle of iron. Under the
environmental conditions characterized by temperature above
40◦C and pH value below 1.0, leptospirilla have been reported

to be the principal contributors responsible for the formation of
acid mine drainage (Sand et al., 1992; Schrenk et al., 1998; Coram
and Rawlings, 2002).

Considerable variation among Leptospirillum isolates has been
exhibited in previous studies (Harrison and Norris, 1985). To
date, four known groups within Leptospirillum clade are group I
(L. ferrooxidans), group II (L. ferriphilum and L. rubarum), group
III (L. ferrodiazotrophum), and group IV (Hippe, 2000; Coram
and Rawlings, 2002; Tyson et al., 2005; Goltsman et al., 2013;
Zhang et al., 2016c). Each is an obligately chemolithotrophic
organism capable of assimilation of inorganic form of carbon,
solely deriving energy from aerobic oxidation of iron (Hippe,
2000; Coram and Rawlings, 2002). In Leptospirillum groups, a
diazotrophic lifestyle has been previously documented (Parro and
Moreno-Paz, 2004; Tyson et al., 2005; Goltsman et al., 2009, 2013;
Galleguillos et al., 2011, 2013). Of all leptospirilla, L. ferriphilum
(ferri, iron; philum, loving) has been proposed to be a separate
species, which was clearly distinguished from L. ferrooxidans
isolates by means of a 16S rRNA phylogeny (Coram and
Rawlings, 2002). In their study, some efforts were invested in
order to delineate certain key phenotypes of L. ferriphilum in
the aspects of its physiological and physical properties, such as
nutritional type, cell shape, and optimum conditions for bacterial
growth.

Recently, several L. ferriphilum genomes are available
in public database, owing to the implementation of high-
throughput sequencing technologies. Much research has focused
on individual genomes of L. ferriphilum isolates in various
ecological environments, yet relatively little is known about
their phylogenetic differentiation. In this study, we therefore
selected a total of five distinct strains (DX, ZJ, ML-04,
YSK, and Sp-Cl) for comparative survey. We present the
comprehensive study of L. ferriphilum pan-genome and the
elucidation of genetic diversity among L. ferriphilum strains.
Our results shed light on the prevalence of horizontal gene
transfer (HGT) events, accompanied by genome reduction, and
are conducive to elaborating the potential relevance between
hereditary differentiation driven by gene gain and/or loss and
evolutionary adaption of L. ferriphilum genomes.

MATERIALS AND METHODS

Bacterial Genomes Used in This Study
Five L. ferriphilum genomes available in NCBI repository were
collected for this study, including the draft genomes of strains
DX and ZJ isolated from two different copper mine tailings in
China, the complete genome (NCBI ID: CP002919) of strain
ML-04 obtained from an acidic water near a hot spring in China
(Mi et al., 2011), the complete genome (NCBI ID: CP007243) of
strain YSK isolated from an acid mine drainage in China (Jiang
et al., 2015), and the draft genomes of strain Sp-Cl obtained from
a bioleaching solutions draining in Chile (Issotta et al., 2016).
However, genome of strain DSM 14647 (Cárdenas et al., 2014)
was excluded in our study due to the relatively low values of
BLASTN-based average nucleotide identity (ANI; <95%) and
tetranucleotide composition regression (TETRA; <0.99) with
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other available L. ferriphilum genomes in the public database,
which were calculated by the software JSpecies v1.2.1 (Richter
and Rosselló-Móra, 2009) (unpublished data). General features of
bacterial genomes used in this study were summarized in Table 1.
Herein, the quality of microbial genomes was evaluated by the
CheckM package (Parks et al., 2015) with the default parameters.

Genome-to-Genome Distance
Calculation
Genome sequence-based classification of microorganisms
underlying genome Blast distance phylogeny has been recognized
to be a digital DNA–DNA hybridization (DDH) replacement
(Meier-Kolthoff et al., 2013). In this study, an updated and
enhanced platform Genome-to-Genome Distance Calculator
(GGDC) v2.11 with improved DDH-prediction models and a
set of novel features such as confidence-interval estimation was
employed to calculate the intergenomic distances between pairs
of entirely sequenced genomes. Distance values d(X, Y) between
genomes X and Y were calculated according to the following
formulae:

d1(X, Y) = 1−
HXY +HXY

λ(X, Y)
(1)

d2(X, Y) = 1−
2 · IXY

λ(X, Y)
(2)

in which, XY denotes BLAST run using subject genome X and
query genome Y, HXY represents the total length of all high-
scoring segment pairs (HSPs) between both genomes, λ(X,Y)
indicates the sum of both genomes’ lengths, and IXY means the
sum of identical base pairs over all HSPs. An easy-to-use toolkit
HemI for heatmaps (Deng et al., 2014) was then used to visualize
the distance values.

Pan-Genome Analysis of L. ferriphilum
Species
In this protocol, entire protein sequences were first extracted
using in-house Perl scripts. In order to determine the orthologous
clusters among these five strains, a BLASTP all-versus-all pairwise
comparison of the complete proteomes was performed to identify
Best Bidirectional Blast Hit (BBBH). The determination of BBBH
was based on the BLAST program with E-value threshold of 1e−5

and sequence identity cut-off of 50%. Of note, predicted MGEs
were excluded, given that they might interfere with the results
due to lineage-specific expansions (Carretero-Paulet et al., 2015).
The orthologous clusters were classified into core-, dispensable-,
and unique-genomes implementing the program PanOCT v3.18
(Fouts et al., 2012) with the following criteria: E-value cut-off
set to 1e−5, sequence identity threshold of 65%, and match
length cut-off of 65 bp. The results of pan-genome analysis were
manually curated to minimize the possibility of false-negative
gene calls. Functional annotation of core genes, dispensable
genes, and strain-specific genes was performed using the BLASTP
algorithm against the extended Clusters of Orthologous Groups
(COG) database (Franceschini et al., 2013) with an E-value

1http://ggdc.dsmz.de/distcalc2.php

threshold of 1e−5. The COG classification was screened based
on the highest hit coverage value as previously described (Ullrich
et al., 2016).

Extrapolation Models for L. ferriphilum
Pan-Genome
The number of core genes within a given phylogenetic clade
and the number of new genes depend on how many bacterial
strains are taken into account. As stated by Vernikos et al.
(2015), mathematical extrapolation would be robust if sufficient
genomes (at least five) are considered. In our study, the
sequential inclusion of five L. ferriphilum strains within all
possible combinations was simulated, as previously described
by Tettelin et al. (2005). The size of L. ferriphilum pan-genome
was extrapolated by fitting the power law regression function
Ps = κnγ, where Ps is the total number of non-orthologous genes
within its pan-genome, n is the number of sequenced strains, and
κ and γ are free parameters (Tettelin et al., 2008). The exponent
γ < 0 indicates a ‘closed’ pan-genome species since the size of its
pan-genome approaches a constant with the increase of bacterial
genomes. Conversely, for 0 < γ < 1, species is considered to
harbor an ‘open’ pan-genome. In light of the dataset’s normality
(Supplementary Figure S1 and Supplementary Table S1), averages
of the shared genes were extrapolated implementing an
exponential decay function Fc = κcexp(-n/τc) + �, where Fc
denotes the number of core genes, and κc, τc, and � are free
parameters (Tettelin et al., 2005). In addition, the exponential
regression function Fs = κsexp(-n/τs) + tg(θ) was used to model
the median sizes of new genes per added genome, where Fs is
the number of new genes when the nth genome is added, and
κs, τs, and tg(θ) are free parameters (Tettelin et al., 2005). In the
nth genome, N = 5!/[(n – 1)!·(5 – n)!] represents the number of
independent combinations.

Prediction of Mobile Genetic Elements
Insertion sequences (IS) and transposases distributed over
L. ferriphilum genomes were predicted and classified using
the ISFinder platform (Siguier et al., 2006). A developed
IslandViewer 3 (Dhillon et al., 2015), which integrates two
sequence composition genomic islands (GIs) prediction method,
i.e., IslandPath-DIMOB (Hsiao et al., 2003) and SIGI-HMM
(Waack et al., 2006), and a comparative genomic GIs prediction
method IslandPick (Langille et al., 2008), was applied for
the computational identification of putative GIs. In addition,
CRISPR (Clustered Regularly Interspaced Short Palindromic
Repeats) loci were identified using the web tool CRISPRFinder
(Grissa et al., 2007) or CRISPR Recognition Tool (Bland et al.,
2007).

Comparative Analysis of Architecture
and Gene Repertoire of L. ferriphilum
Genomes
A developed tool Circos (Krzywinski et al., 2009) was used to
visualize the similarities and differences of genomic elements
arising from BLASTN-based whole genome comparisons.
Genomic regions of interest were further analyzed by pairwise
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TABLE 1 | Genome characteristics of Leptospirillum ferriphilum isolates from various acidic environments worldwide.

Feature Strains within the Leptospirillum ferriphilum species

DX ZJ ML-04 YSK Sp-Cl

Geographic origin Bioleaching heap,
Jiangxi, China

Bioleaching heap,
Fujian, China

Acidic water near a hot
spring, Tengchong,
China

Acid mine drainage,
Jiangxi, China

Bioleaching solutions
draining, Atacama
Desert, Chile

Accession number MPOJ00000000 MPOK00000000 CP002919 CP007243 LGSH00000000

Genome size (Mb) 2.36 2.34 2.41 2.33 2.48

Genome status Draft Draft Complete Complete Draft

Coverage (×) 165 52

Completeness (%)∗ 93.15 93.02 — — 90.42

GC content (%) 54.50 54.70 54.60 54.50 54.40

# Contigs 30 104 1 1 74

Protein-coding sequences 2,324 2,312 2,378 2,273 2,419

rRNA operons 1 1 2 2 1

tRNA genes 49 48 53 52 48

IS elements 69 63 106 74 64

COG 1,695 (72.9%) 1,713 (74.1%) 1,746 (73.4%) 1,689 (74.3%) 1,714 (70.9%)

Reference Zhang et al., 2017b Zhang et al., 2017b Mi et al., 2011 Jiang et al., 2015 Issotta et al., 2016

∗The genome completeness was calculated using CheckM (Parks et al., 2015). Strains ML-04 and YSK were not included since their genomes were complete.

comparisons and functional annotation. The entire annotations
of targeted genes were subsequently manually checked by
sequence alignment against the online server Sequence Similarity
Search – BLAST2. Pairwise comparisons of specific genomic
clusters within L. ferriphilum strains were visualized using
EasyFig v2.1 (Sullivan et al., 2011). In addition, rRNA and tRNA
genes were predicted using the online servers RNAmmer v1.2
(Lagesen et al., 2007) and tRNAscan-SE v2.0 (Lowe and Eddy,
1997), respectively.

Availability of Supporting Data
The data sets for draft genomes of L. ferriphilum DX
(MPOJ00000000) and ZJ (MPOK00000000) were available in
the NCBI repository. The versions described in this paper were
version MPOJ02000000 and MPOK02000000, respectively.

RESULTS

General Features of L. ferriphilum
Genomes
A summary of the features of each L. ferriphilum genome was
shown in Table 1. We listed the essential characteristics, such as
genome size, GC content, and the number of predicted protein-
coding sequences (CDSs). Generally, the five genomes varied in
size (ranging from 2.33 to 2.48 Mbp) with the number of CDSs
ranging from 2,273 to 2,419 (excluding RNA genes), indicating
an intra-species variation. The CheckM program (Parks et al.,
2015) was employed to estimate the completeness of draft
genome of L. ferriphilum isolates, suggesting the high values of
genome completeness (≥90.42%). Quality estimates of genomes
based on collocated marker genes exhibit a bias, leading to an

2http://www.genome.jp/tools/blast/

overestimated completeness. As stated by Parks et al. (2015),
nevertheless, bias correction could be approximate owing
to confounding factors such as gene collocation so long as
the observed genomes are substantially complete (>70%).
Furthermore, L. ferriphilum Sp-Cl has larger genome, but the GC
content is slight different compared to its counterparts. All strains
harbor many tRNA genes (ranging from 48 to 53) that cover all
the 20 amino acids. While the majority of CDSs (ranging from
70.9 to 74.3%) in individual genomes could be assigned to COG
categories, the remaining CDSs showed no sequence identity
to any previously reported sequence. Of all isolates, functional
analysis based on COG classification revealed that the five most
abundant function categories are ‘Cell wall/membrane/envelope
biogenesis [M],’ ‘Energy production and conversion [C],’ ‘Amino
acid transport and metabolism [E],’ ‘Replication, recombination,
and repair [L],’ and ‘Translation, ribosomal structure, and
biogenesis [J]’ (Supplementary Table S2).

Genome-to-Genome Distance
Calculation
We inferred the genome-content-based distance matrix using
a digital DDH approach. GGDC analysis showed a summary
of strain-to-strain comparisons of L. ferriphilum genomes,
suggesting that the strain-to-strain distances varied in genome
content (Figure 1). Based on the paired comparisons, genomic
variation among bacterial strains in some instances might
be expected to comply with environmental heterogeneity and
geographic distributions. For instance, distance phylogeny
mirrored that strain Sp-Cl, which was isolated from leaching
solutions draining from the bioleaching heap at Spence mine
(Issotta et al., 2016), was more distantly associated with the others
analyzed in this study. Strains ZJ, DX, and YSK, isolated from
bioleaching environments at Dexing copper mine, were most
closely related to each other.
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FIGURE 1 | Distance phylogeny depicting the potential genome-genome distance by paired comparison using the online platform GGDC v2.1.

Core and Pan-Genome Analysis
We further performed pan-genome analysis to identify
corresponding core and dispensable genome. A total of 3,455
predicted CDSs were found in the genomes of five L. ferriphilum
strains and grouped into 2,402 homologous gene clusters.
Further inspection uncovered that a core genome containing
1,779 putative CDSs was identified in L. ferriphilum species
using a five-way best-match BLASTP search (Figure 2). This
core genome represented 74 to 78% of proteome within each
strain, illustrating a relatively high degree of genomic diversity
compared to other bacterial groups such as Erwinia amylovora
(Mann et al., 2013). Core genome encodes proteins that are
responsible for fundamental housekeeping functions (Loper
et al., 2012), and dispensable genome mainly contributes to
species diversity and confers selective advantages (Medini et al.,
2005; Tettelin et al., 2008; Vernikos et al., 2015). As expected, the
vast majority of genes that are essential to the basic lifestyle of
the species made up the core genome. Of the 1,779 core genes,
relatively high percentage of CDSs were predicted to be assigned
to COG categories [M] (7.14%), [E] (6.97%), [C] (6.91%), and [J]
(5.62%) based on functional annotation (Figure 2).

Apart from the core genome, these dispensable genes
contain strain-specific genes and genes shared by a subset of
L. ferriphilum genomes. Pairwise comparisons provide insights
into the strain-specific genes that are unique in each genome.
Functional analysis by means of COG classification showed that
the abundant genes only present in individual genomes were
assigned to COG category [L], compared to that in core genome.

Modeling the Expansion of L. ferriphilum
Pan-Genome
In theory, new genes would expand the genome of the species,
as novel strain is sequenced (Medini et al., 2005). Accordingly,
a mathematical extrapolation based on the available data might
provide an opportunity to estimate the sizes of core genes and
pan-genome of bacterial species. Counting CDSs only, a large
number of pan-genome (a total of 3,455 CDSs in five strains)
includes 1,779 core genes and 1,676 dispensable genes. Each of
the five genomes of L. ferriphilum species contains 133 to 309
CDSs (6 to 13% of the predicted proteome) that are unique in
respective strain (Figure 2). Based on mathematical modeling,

FIGURE 2 | Pan-genome analysis of L. ferriphilum isolates. Venn diagram
showing the core genome shared by all strains and strain-specific genes
unique in individual genomes are indicated in the figure center. The
percentages of core genes, DX-specific genes, ZJ-specific genes,
ML-04-specific genes, YSK-specific genes, and Sp-Cl-specific genes
assigned to COG classification are shown on the 1st to 6th ring from the
inside. Detailed description for COG categories are provided in Supplementary
Table S2.

the genomic dataset at hand was used to further predict the
estimated number of additional genes that might be available to
fully characterize intra-species diversity (Figure 3).

The predicted number of core genes with sequential inclusion
of each new sequenced genome was extrapolated by fitting the
exponential decay function Fc = κcexp(-n/τc)+� (Tettelin et al.,
2005). The resulting permutations of step-wise addition for each
of the five genomes were shown, and the average counts were
taken on the size of core genome. As depicted in Figure 3A,
the number of core genes shared by all observed strains initially
decreased with the addition of new genome. The extrapolated
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FIGURE 3 | Mathematical modeling of L. ferriphilum pan-genome estimating
the sizes of core genes (A), new genes and pan-genome (B). More details for
modeling approaches are presented in Section “Extrapolation Models for
L. ferriphilum Pan-genome.”

curve following a steep slope reached a minimum of 1,797
[mean ± standard deviation (SD): 1,797 ± 15] genes after the
5th genome was included (Supplementary Table S3). As predicted
by exponential regression model, the number of core genes,
which are conserved genes universally present in all considered
strains (Zhang and Sievert, 2014), was relatively constant, and
the additional genome added would not expected to significantly
affect its size.

The number of new genes added by novel sequenced
genome could be examined by fitting a decaying exponential
to determine the expansion of L. ferriphilum pan-genome. The
‘open’ or ‘closed’ pan-genome within a given bacterial species
was mathematically evaluated by fitting exponential regression
model (Tettelin et al., 2008). An ‘open’ pan-genome has a
large and undetermined number of additional genes, and its
size would increase unboundedly with the number of sample
strains. In contrast, the size of ‘closed’ pan-genome would quickly
saturate to a limiting value after a certain number of sequenced
genomes are added, suggesting that novel sequenced genome
could not expand species’ pan-genome (Tettelin et al., 2008;
Zhang and Sievert, 2014; Vernikos et al., 2015). In our study,
the resulting extrapolation showed that the number of new
genes was relatively large, and this number decreased to 140
(median ± SD: 140 ± 5.2) after the 5th genome was included
(Figure 3B and Supplementary Table S3). In other words, a non-
zero asymptotic value (140) of additional strain-specific genes
would be added when novel genome was sequenced, leading
to an ‘open’ pan-genome. Furthermore, a power law regression

function Ps = κnγ revealed the L. ferriphilum pan-genome with
an average parameter (γ) of 0.24 (median ± SD: 0.24 ± 0.01;
Supplementary Table S3). For 0 < γ < 1, the pan-genome is open
(Tettelin et al., 2008). That was equivalent to say that the size of
L. ferriphilum pan-genome followed the Heaps’ law (Heaps, 1978)
and was increasing and unbounded with the inclusion of novel
genomes.

Identification of Potential Mobile Genetic
Elements
Mobile genetic elements are defined as specific genome segments,
which encode for putative functions related to intra- and
extracellular movement of DNA, and are regarded to be
signatures of HGT events (Loper et al., 2012; Ullrich et al.,
2016). In this study, MGEs including transposases, integrases,
and phage-associated genes were identified and compared in
all five L. ferriphilum genomes. In addition, genomic islands
(GIs) and CRISPR/Cas systems (clustered regularly interspaced
palindromic repeats/CRISPR-associated genes) were taken into
account.

Transposases and integrases in L. ferriphilum isolates were
predicted using ISFinder (Supplementary Table S4). The number
of transposases per strain ranged from 63 (ZJ) to 106 (ML-04).
While members of the IS1595, IS21, ISL3, and Tn3 families were
most common, there were also IS classes that were only present
in individual genomes; such as IS1 in Sp-Cl.

Except for transposons, the genomes harbored 3 to 15 GIs
ranging from 6 to 82 kbp in size (Supplementary Table S5). In
prokaryotic genomes, GIs are defined as the clusters of genes that
contain integrative conjugative elements, prophages, integrons,
conjugative transposons, and integrated plasmids (Langille et al.,
2010). GIs carried significant cargo genes that potentially related
to certain selective advantages, such as virulence and drug
resistance, and might increase ecological fitness (Whittle et al.,
2002; Mavrodi et al., 2009; Seth-Smith and Croucher, 2009).
In general, the five genomes in our study were predicted to
harbor 29 GIs, and the number of GIs in ML-04 (15) was
much more than those in others. As is common in most
bacteria, numerous genes within these GIs were annotated as
hypothetical protein, suggesting that biological functions of these
elements still need to be explored. Among these cargo genes
of GIs, some were likely to encode predicted functions that
were related to restriction-modification systems (GI3 and GI4
in ML-04), transcriptional regulators (GI2 and GI3 in DX; GI6,
GI7, GI10, GI11, GI12, GI14, and GI15 in ML-04), assorted
transporters (GI6, GI13, GI14, and GI15 in ML-04; GI1 in Sp-
Cl), signal transduction protein (GI9 in ML-04), acetylglutamate
kinase (GI1 in DX; GI1 in ZJ; GI1 in ML-04; GI1 in YSK;
GI2 in Sp-Cl), and secretion systems (GI6, GI7, and GI13 in
ML-04). Several GIs also included IS family transposases (GI2
and GI4 in DX; GI3, GI4, GI5, GI6, and GI9–GI14 in ML-
04; GI2 and GI4 in YSK; GI3 in Sp-Cl) and phage integrase
family proteins (GI1 and GI8 in ML-04; GI1 in YSK; GI2 in
Sp-Cl).

CRISPR (clustered regularly interspaced short palindromic
repeats), which occur in many bacterial and archaeal genomes,
are responsible for prokaryotic immunity to the invasion of
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phages and plasmids (Loper et al., 2012; Plagens et al., 2015;
Ullrich et al., 2016). In strains DX, ML-04, and YSK, putative
CRISPR identified by the CRISPRFinder server (Grissa et al.,
2007) were present within the called genes, instead of in these
intergenic regions. Besides, the predicted repetitive elements
were not contiguous to genes that potentially encode typical
CRISPR-associated proteins, which were necessary for CRISPR
functionality. Conversely, L. ferriphilum strains Sp-Cl and ZJ
were predicted to harbor a couple of CRISPR system, in
which the palindromic repeats consist of a repeat-spacer array,
immediately upstream/downstream of one/two cas genes (e.g.,
cas1, cas2, and cas6) or other CRISPR-associated genes (e.g., csf2
and cse3; Supplementary Figure S2). Based on comparison to
CRISPR/Cas systems in other bacteria (Makarova et al., 2011),
the related systems in Sp-Cl and ZJ were classified to be type I-E
(Supplementary Table S6), which were reported to target foreign
DNA. The CRISPR/Cas systems present in Sp-Cl and ZJ strongly
suggested that the co-evolution occurring both phage and host
was an important mechanism that might drive adaptive evolution
of bacterial genome.

Comparison of Genome Architectures
Highlighting Specific Genomic Regions
of Interest
BLASTN-based whole genome comparisons were performed and
visualized using the Circos software (Supplementary Figures
S3A–E). On the whole, the presence or absence of genome
segments visually revealed the intra-species diversification of
L. ferriphilum isolates at genomic level. In this context, 14 sections
from corresponding genomes were further investigated by means
of pairwise alignment and manual annotation.

Using the draft genome of strain DX as reference for the
BLASTN-based genome comparison, many genomic regions
unique in this strain were identified (Supplementary Figure S3A).
Further inspection showed that a large cluster (approximate
16 kbp) on the contig11 was predicted to harbor 19 genes, most of
which were annotated as hypothetical proteins (Supplementary
Table S7). Intriguingly, two genes encoding putative type VI
secretion-associated proteins were found to be located in this
region. Type IV secretion system (T4SS) is a large protein

complex, which has been regard to be the signature of
conjugative DNA transfer (Rêgo et al., 2010; Wallden et al.,
2010; Trokter et al., 2014). Likewise, T4SS-associated proteins
were also predicted in other genomic regions from various
strains. Especially, a nearly complete set of Dot/Icm secretion
system, which is belonging to T4SS, were detected in Sp-
Cl genome (sections 11 in Supplementary Figure S3E and
Supplementary Table S7). In addition, a series of genes encoding
putative type IV pilus biogenesis proteins were predicted to be
distributed on contig11 in strain Sp-Cl (Supplementary Table
S7). As is reported, type IV pili facilitate the adhesion of
microbial cell on mineral surfaces (Jin et al., 2011), thereby
providing a reaction space between microbial strains and mineral
surface. Additionally, many unique regions in a subset of
genomes were identified by pairwise comparison (Supplementary
Table S7). These genome segments were predicted to harbor
a plenty of genes, although most of them were annotated
as hypothetical proteins with unidentified functions. Further
investigation showed that a collection of HGT signatures,
including putative phage-associated genes and transposases, were
dispersed in the neighborhood of the aforementioned genes.
Accordingly, we inferred that these genes with certain functions
might be introduced via HGT events.

In the genomes of L. ferriphilum strains except for DX and
ML-04, notably, a large cluster (approximate 32 kbp) harboring
42 genes was identified to be potentially associated with nitrogen
fixation (Figure 4). Pairwise comparison of potential nitrogen-
fixing gene cluster in L. ferriphilum isolates using EasyFig was
attempted to demonstrate the identical gene content, order,
orientation, and high nucleotide sequence identity of the 42
genes. As stated by Baker and Banfield (2003), the fixation of
externally-derived nitrogen in extremely low pH environments
was difficult to be directly observed, thus nitrogen fixation
in these settings was enigmatic. However, previous studies
documented that Leptospirillum groups including L. ferriphilum
have been shown to possess a diazotrophic lifestyle (Parro and
Moreno-Paz, 2004; Tyson et al., 2005; Goltsman et al., 2009,
2013; Galleguillos et al., 2011, 2013). Very recently, a complete
genome of L. ferriphilum DSM 14647T was acquired in virtue of
re-sequencing, and a previously undiscovered nitrogenase cluster

FIGURE 4 | Predicted genomic segments potentially associated with nitrogen fixation in the genomes of L. ferriphilum strains ZJ, YSK, and Sp-Cl. The putative
nif-genes (orange) are indicated using the software EasyFig, and the others include genes encoding hypothetical proteins (hp) and proteins with identified functions.
Genomic loci of all analyzed genes are also given. More details are presented in Supplementary Table S7.
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for N2 fixation was reported (Christel et al., 2018). In our study,
however, nif -associated genes encoding putative nitrogenase
structural subunits NifHDK, MoFe cofactor biosynthesis proteins
NifENX, and various additional subunits were absent in
L. ferriphilum strains DX and ML-04 (Supplementary Table S7).
Furthermore, signatures of HGT were detected in order to infer
the potential origin of genes involved in nitrogen fixation. In
strains ZJ, YSK, and Sp-Cl, however, no putative transposases,
integrases, as well as phage-associated genes were predicted
in the genomic neighborhoods. We thus interpreted this as
an indication that nif -associated genes in the genomes of
L. ferriphilum strains ZJ, YSK, and Sp-Cl might be inherited from
a common ancestor, while the absence of homologous genes in
L. ferriphilum strains DX and ML-04 was more likely the result of
gene loss rather than gene gain caused by the event of HGT.

DISCUSSION

In Bacillus anthracis, the number of new genes rapidly converges
to zero after the addition of fourth sequenced genome, and the
pan-genome size quickly saturates to a limiting value (Medini
et al., 2005). Thus, only four genome sequences might be
sufficient to characterize the pan-genome of this species well. In
terms of Staphylococcus aureus strains species, a prediction model
was observed in the study of 17 existing genomes (Boissy et al.,
2011). In this case, the number of new genes added to the pan-
genome tends to zero until the 30th predicted genome is added,
indicating a ‘closed’ pan-genome. According to the Heaps’ law
model, a threshold parameter (0 < γ < 1) in our mathematical
modeling suggested that the pan-genome of L. ferriphilum is
‘open.’ As an ‘open’ microbial pan-genome, species colonizing
multiple environments may exchange genetic material with the
others in multiple ways (Medini et al., 2005; Tettelin et al.,
2008), resulting in the emergence of additional genes with novel
sequenced genomes and thus enlarging the gene repertoire of
species. Compared to other species with an ‘open’ pan-genome,
such as E. amylovora (Mann et al., 2013), L. ferriphilum species
has relatively more dispensable genes, indicating the higher
genome plasticity via genetic exchange during evolution. In
contrast to other species such as Buchnera aphidicola with a low
capacity to acquire alien genes (Medini et al., 2005), especially,
the introduction of novel genes might contribute to fascinating
discoveries of novel traits of L. ferriphilum isolates.

The acquisition of genes, often accompanied by HGT events,
and the loss of genes and genome segments are the two main
mechanisms that drive adaptive evolution of microbial genomes
(Gogarten et al., 2002; Boon et al., 2014; Albalat and Cañestro,
2016). MGEs including transposases, integrases, and phage-
associated genes are generally regarded as indicators of HGT
(Waack et al., 2006; Juhas et al., 2009; Acuña et al., 2013;
Ullrich et al., 2016). In this study, various MGEs were predicted
and classified in the five L. ferriphilum genomes (see section
“Identification of Potential Mobile Genetic Elements”). Notably,
the investigation of unique genomic regions in a subset of
genomes revealed that signatures of HGT were predicted to be
located in the neighborhood of these observed genomic regions,

suggesting that L. ferriphilum genomes might undergo several
events of rearrangements and HGT to recruit the novel genes
with certain functions. Species inhabiting isolated econiches with
limited access to the global gene pool of microorganisms have
few opportunities for the acquisition of foreign genes (Medini
et al., 2005). By contrast, L. ferriphilum species was predicted to
have an ‘open’ pan-genome, indicating the capacity to introduce
alien genes by genetic exchanges with other community members
in the common microhabitats. The identification of MGEs,
especially plentiful phage-associated genes, further suggested that
HGT might play a critical role in bacteria-phage co-evolution
and speciation of L. ferriphilum strains. Collectively, extensive
gene recruitment via HGT has extended the genomic intra-
species diversity, suggesting plentiful lateral exchange of genetic
material as a high-efficient adaptive strategy in these adverse
environments.

Comparisons of genome architectures of five L. ferriphilum
strains revealed that nitrogen-fixing gene cluster in strains ZJ,
YSK, and Sp-Cl was likely to be originally derived from a common
ancestor, while the nif -genes might be lost in strains DX and
ML-04. In the latter two strains, apparently, the incapacitation
of nitrogen fixation via gene loss has profoundly contributed to
shaping their metabolic profiles and to reducing their genome
size. In some organisms, genome reduction could be explained by
the Black Queen Hypothesis, a theory that seeks to demonstrate
the community-dependent adaptation (Morris et al., 2012).
In free-living organisms, genome reduction may leave them
dependent on co-occurring members of microbial community
for lost metabolic functions. And the loss of certain dispensable
functions in individual members became beneficial as long as
the production of metabolic function is just sufficient to support
the entire community. Many studies revealed that acidophilic
prokaryotes including Acidithiobacillus and Leptospirillum spp.
ubiquitously occurred in extremely acidic environments such
as acid mine drainage (Breuker et al., 2009; Chen et al.,
2013; Zhang et al., 2016c,d). However, nitrogen fixation in
these settings seems to be partitioned into a small fraction
of microbial members in a common community (Méndez-
García et al., 2015), such as Acidithiobacillus ferrooxidans (Valdés
et al., 2008) and L. ferrodiazotrophum (Tyson et al., 2004).
In largely aerobic and microaerophilic acidic environments,
molecular oxygen hinders the activity of nitrogenase. Instead,
A. ferrooxidans may circumvent this barrier by using the electron
donor tetrathionate and electron acceptor ferric iron (rather than
O2) for nitrogen fixation (Norris et al., 1995; Baker and Banfield,
2003). In this case, these diazotrophs including A. ferrooxidans
may more effectively fix the environmental nitrogen, and then
provide alternative nitrogen compounds for the growth of
other co-existing species without nitrogen-fixing ability. Besides,
more than one strain belonging to the same species could be
co-occurring in certain environments or industrial processes
(Remonsellez et al., 2009; He et al., 2010; Mutch et al., 2010).
Accordingly, it was inferred that some strains of L. ferriphilum
species harboring the ability of nitrogen fixation co-exist in a
common community, and could contribute by initially fixing
nitrogen to support the nitrogen supply of whole community
(including homologous strains lacking nif genes and other
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members of the microbial community). As for L. ferriphilum
strains DX and ML-04, it appears to be a way to compromise
via losing the ability of nitrogen fixation in the context of
sufficient public goods (nitrogen compounds) produced by
other diazotrophic members in the common community. This
‘compromise’ to some extents, may be selectively favored by
reducing their nutrient requirements and further economizing
the limiting resources of the whole microbial community.

Extrapolation modeling revealed that L. ferriphilum species
was predicted to harbor an ‘open’ pan-genome. That is, more
novel genes were introduced to offset the ‘abandon’ genes
after new L. ferriphilum genomes were sequenced. Since the
introduction of new genes is observed to be accompanied
by a parallel abandonment of some other ones, it is likely
that trade-off between environmental adaptation and biological
fitness might drive the evolution of L. ferriphilum genomes. In
other words, the recruitment of novel genes potentially related
to species-specific adaptation might contribute to the selective
abandonment of some genes that are likely to be redundant in
an exclusively biotrophic lifestyle, probably driving the adaptive
evolution of L. ferriphilum species. An intriguing study was
that some mechanisms within Saccharomyces paradoxus have
evolved to compensate for the fitness cost of improving cadmium
resistance (Chang and Leu, 2011). Other studies on antibiotic
resistance of microorganisms exhibited that the fitness cost on
these mechanisms is accompanied by a parallel reduction of
biological fitness, such as substrate utilization (Kang and Park,
2010) or bacterial growth rate (Andersson and Hughes, 2010).
Collectively, findings presented here imply that L. ferriphilum
genomes might make sacrifices for the improvement of adaptive
evolution via subordinating certain biological functions.

CONCLUSION

In L. ferriphilum species with an ‘open’ pan-genome, novel
genes lead to the expansion of its gene repertoire after multiple
genomes were sequenced. The introduction of new genes by

genetic material exchange in multiple ways such as HGT might
be a crucial evolutionary force of microbial species to respond
to the external environmental perturbations. Furthermore, the
recruitment of new genes was observed to be accompanied by
a parallel abandonment of some other genes. In other words,
the fitness cost of improving environmental adaptation might
drive the evolution of L. ferriphilum genomes. Taken together,
the findings advance our understanding of evolutionary strategies
of L. ferriphilum genomes, and further provide robust evidences
for the potential relatedness between hereditary variation of
L. ferriphilum genomes with its adaptive evolution.
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