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High mortality and hospitalization rates have seen Listeria monocytogenes as a
foodborne pathogen of public health importance for many years and of particular
concern for high-risk population groups. Food manufactures face an ongoing challenge
in preventing the entry of L. monocytogenes into food production environments (FPEs)
due to its ubiquitous nature. In addition to this, the capacity of L. monocytogenes
strains to colonize FPEs can lead to repeated identification of L. monocytogenes in
FPE surveillance. The contamination of food products requiring product recall presents
large economic burden to industry and is further exacerbated by damage to the brand.
Poor equipment design, facility layout, and worn or damaged equipment can result in
Listeria hotspots and biofilms where traditional cleaning and disinfecting procedures
may be inadequate. Novel biocontrol methods may offer FPEs effective means to
help improve control of L. monocytogenes and decrease cross contamination of
food. Bacteriophages have been used as a medical treatment for many years for
their ability to infect and lyse specific bacteria. Endolysins, the hydrolytic enzymes of
bacteriophages responsible for breaking the cell wall of Gram-positive bacteria, are
being explored as a biocontrol method for food preservation and in nanotechnology
and medical applications. Antibacterial proteins known as bacteriocins have been used
as alternatives to antibiotics for biopreservation and food product shelf life extension.
Essential oils are natural antimicrobials formed by plants and have been used as
food additives and preservatives for many years and more recently as a method
to prevent food spoilage by microorganisms. Competitive exclusion occurs naturally
among bacteria in the environment. However, intentionally selecting and applying
bacteria to effect competitive exclusion of food borne pathogens has potential as a
biocontrol application. This review discusses these novel biocontrol methods and their
use in food safety and prevention of spoilage, and examines their potential to control
L. monocytogenes within biofilms in food production facilities.

Keywords: Listeria monocytogenes, biofilms, biocontrol, bacteriophages, bacteriocins, endolysins, competitive
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INTRODUCTION

Listeria monocytogenes is a Gram-positive, rod shaped, facultative
anaerobe capable of causing food borne illnesses particularly
in high-risk population groups including the elderly, immune
compromised, pregnant women, and neonates (Farber and
Peterkin, 1991). While L. monocytogenes associated illness is
not as common as that of other food borne pathogens like
Salmonella, Campylobacter, or Escherichia coli, its mortality
rate can be considered the highest. Approximately 30 % of
invasive listeriosis cases lead to mortalities with most requiring
hospitalization, and therefore demanding L. monocytogenes can
be considered as a food borne pathogen of public health
importance (Lomonaco et al., 2015; Véghova et al., 2016). Due to
its ubiquitous nature, L. monocytogenes poses a food safety risk
as it is frequently introduced into the processing environment
through raw ingredients. L. monocytogenes can adhere to a variety
of abiotic surfaces with some strains persisting for numerous
years and acting as a source of continuous cross contamination
(Fox E. et al., 2011; Coughlan et al., 2016; Colagiorgi et al., 2017).

Due to significant food safety risks, the control of
L. monocytogenes has become a regulatory requirement that
food business operators must adhere to. Regular cleaning,
disinfecting, and sanitizing of food contact and non-food contact
surfaces are required as part of a sanitation plan that also
incorporates maintenance of equipment and buildings, pest
control, and general hygiene. In addition, the implementation
of good manufacturing practices and effective hazard analysis
critical control point plan aids in reducing the risk of food borne
illness (Drew and Clydesdale, 2015). However, L. monocytogenes
is a difficult organism to eradicate and its presence still occurs
even with the best management plans (Tompkin, 2002; Drew
and Clydesdale, 2015).

While the exact mechanisms can be unclear for how
L. monocytogenes is able to persist in food production
environments (FPEs) so successfully, researchers have
proposed that there are numerous factors at play. Poorly
maintained equipment, surfaces, and unhygienic factory design
can result in niches containing adequate nutrients, water,
and protection from cleaning allowing bacteria to survive
and grow while also introducing bacteria to subinhibitory
levels of disinfectants (Carpentier and Cerf, 2011; Fox E.M.
et al,, 2011; Ibba et al.,, 2013; Meoretro et al., 2017). Typically
disinfectants, when applied correctly, can sufficiently inhibit
the colonization of introduced planktonic cells; however, dosing
failures and applying disinfectants to wet surfaces can result in
equipment being inadequately disinfected and bacteria being
exposed to subinhibitory chemical levels (Martinez-Suarez
et al, 2016; Moretro et al., 2017). Incorporating desiccation
processes has been shown to increase the effectiveness of
disinfections procedures (Overney et al., 2017); however, an
ample amount of drying time is difficult when continuous or
even daily production runs are required. It is also important
to note the difference between resistance, an increase in
concentration or time required to exert the same reduction,
and tolerance, an adaptation in a microbes susceptibility
potentially the result of exposure to subinhibitory levels

(Cerf et al, 2010; Ortega Morente et al., 2013). For example,
some L. monocytogenes strains are known to carry genes for
disinfectant chemical efflux pumps, such as gacH and bcrABC.
The distribution of these genes tends to vary on a strain by
strain basis instead of being unique to a specific lineage or
subtype (Dutta et al., 2013; Ortiz et al., 2015; Moretro et al.,
2017). Although it has been reported that these genes only
result in tolerance to quaternary ammonium compounds
at levels far below the concentrations actually used in the
food industry (Tezel and Pavlostathis, 2015), the ability
to form biofilms is also a crucial factor in the survival of
L. monocytogenes. Biofilms are composed of numerous cells
attached to each other or an abiotic surface surrounded by an
extracellular matrix containing a mixture of polysaccharides,
proteins, and extracellular DNA (da Silva Fernandes et al,
2015; Fagerlund et al., 2017). This extracellular matrix provides
a protective barrier around the internalized microbial cells
from desiccation and heat, contributes to increased adhesion,
and is a reservoir of nutrients (Colagiorgi et al, 2016). In
addition, biofilms can impede the activity of antimicrobial
agents as the matrix limits their diffusion potential and contains
cells with differing susceptibility while also allowing for the
acquisition of new genetic traits like those mentioned above
through horizontal gene transfer. Further, biofilms typically
consist of multiple species that can allow for the colonization of
transient strains or provide increased attachment and survival
to strains not typically good biofilm formers (Coughlan et al.,
2016).

THE BIOCONTROL METHODS
MOVEMENT

While tolerance to disinfectants and sanitizers is not considered
as significant an issue as antibiotic resistance, their continued
use and potential ineffectiveness against biofilms warrant new
strategies for the control of L. monocytogenes. As consumers
become more conscious of food safety significance, the use
of novel biocontrol methods is gaining further interest. This
return to biocontrol methods of microbes and plants has the
potential to relieve some of the tolerance to disinfectants and
decrease some of the selective pressures that their overuse
has on maintaining resistance markers (Coughlan et al., 2016).
Biocontrol methods with potential to act against listerial
biofilms include bacteriophages, their endolysins, competitive
bacterial species and their antimicrobial products, bacteriocins,
and plant-derived products and will be discussed in this
review.

BACTERIOPHAGES

The most abundant microorganism on earth, bacteriophages
(phages) are viruses that infect bacteria for propagation, live
naturally in the environment, and anywhere host bacteria
are found (Bai et al, 2016; Pérez Pulido et al, 2016).
Phages are classified based upon their morphology (head and
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tail, either contractile or non-contractile, or no tail), nucleic
acid (double stranded or single stranded; deoxyribonucleic or
ribonucleic acid), and life cycle, which is of most relevance
for biocontrol. There are two types of life cycles phages can
undergo after entering the bacterial cell: the lysogenic cycle
(temperate phages) or the lytic cycle (Figure 1). Phages may
be capable of a lysogenic cycle that converts to the lytic
cycle in unfavorable conditions, or undergo a solely lytic life
cycle. Temperate phages are not suitable as a biocontrol agent
as integration into the host genome may result in increased
pathogenicity through horizontal gene transfer (Hagens and
Loessner, 2007; Salmond and Fineran, 2015). In comparison,
Iytic phages are ideal as a biocontrol agent due to their fast-Iytic
action.

Although identified over a hundred years ago, interest in
phages has only recently been reignited with the rise of antibiotic
resistance among bacteria (Hagens and Loessner, 2007). The
utility of phages has included the treatment of diseases in
humans and animals, typing of bacterial strains, decontaminating
meat carcasses after slaughter, and targeted inactivation of
pathogenic and spoilage bacteria on food contact and non-
contact surfaces as well as surfaces of ready to eat products
and during packaging and storage (Hagens and Loessner, 2007;
Strauch et al., 2007). The application of phages as an innovative

approach to control biofilms in the FPE is also beginning to
be explored. While there has been great achievement in the
use of phages from a therapeutic perspective, their success
in the FPE is not as simple. Factors like the composition
and structure of the biofilm, temperature, the metabolic state
of the bacteria in the biofilm, the extracellular matrix in
general, food components, and nutrients all provide additional
challenges to the effectiveness of phage application (Parasion
et al, 2014). While there have been some reports of phage
resistance (Fister et al, 2016), it occurs more gradually than
the development of antibiotic resistance as phages are able to
mutate continuously, like bacteria, and resistance is further
slowed by using a combination of phages active against the one
bacterial species (Hagens and Loessner, 2007; Sadekuzzaman
et al, 2017). There is a substantial amount of research
conducted on phages’ ability to protect food from Listeria,
with two commercial Listeria phage products, ListShield™
and Listex™ P100 approved as food preservatives with the
generally recognized as safe status since 2006. However, studies
investigating the efficacy of these products and other Listeria
phages against biofilms are few, with most having focused on
Listex™ P100.

Biofilm maturity has the potential to reduce the efficacy
of phage treatment, as well as any control method. Various
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studies have examined this concept utilizing preformed biofilms
at various maturity levels, ranging from 24 h to 2 weeks,
with most studies reporting a minimum 1-log reduction. Most
studies to date have utilized stainless steel as the surface to
form L. monocytogenes biofilms and examine the efficacy of
bacteriophage treatments. This reflects the widespread presence
of these surfaces, both food contact and non-contact in
food processing environments. The success of bacteriophage
treatments at inactivating L. monocytogenes biofilms on these
surfaces, however, has shown mixed results. A number of studies
demonstrated promising results when Listex'™ P100 was applied
to L. monocytogenes biofilms on stainless steel, with reductions
in the order of 5-log being achieved (Soni and Nannapaneni,
2010; Montanez-Izquierdo et al., 2012). Both of these studies used
an application treatment of 24 h at ambient room temperature.
Tacumin et al. (2016) also applied Listex™ P100 for 24 h at 20°C
onto stainless steel wafers and report the complete elimination of
L. monocytogenes biofilm. This prolonged treatment application,
however, in many cases is not practical in an FPE. In addition,
lacumin et al. (2016) pressed the stainless steel wafer onto
an agar plate to replicate the process of cross-contamination
in the FPE; however, it did not take into consideration the
phage products ability or inability to act on biofilms in the
crevices or corners where these might be thicker than a flat
surface.

A shorter treatment time of 2 h was applied by Sadekuzzaman
et al. (2017) when running a similar inactivation test with
ListShield™; however, this was associated with a much lower
inactivation of just 2-log when applied to L. monocytogenes
biofilm on stainless steel. This was even less effective on a
rubber surface, achieving a 1-log reduction in L. monocytogenes
cell numbers. The results of Sadekuzzaman et al. (2017) also
reflect those observed by Gutiérrez et al. (2017) who saw
a similarly low inactivation achieved by a 4 h ListShield™
treatment, typically 1-log or less. Although the latter study
did show greater inactivation with Listex'™ P100 under the
same treatment conditions, the Listex™ P100 commercial phage
preparation showed a reduced activity range, only capable of
infecting 7 of the 11 strains tested. An important aspect in
phage application is the ratio of phage to bacteria known as
the multiplicity of infectivity. To increase the likelihood the
phage will infect the bacterium, the phage needs to be at a
higher ratio than the number of target bacterial cells (Montafiez-
Izquierdo et al., 2012). High multiplicity of infectivity has been
reported to result in efficient phage treatment with one study
recommending a multiplicity of infectivity around five was
required for adequate reductions by Listex™ P100 (Montafiez-
Izquierdo et al., 2012).

Apart from temperature, multiplicity of infectivity, and
treatment time, other factors may influence efficacy of biocontrol
treatments, notably the presence of organic matter such as the
food matrix. A further parameter which must be considered
when examining efficacy of treatment on surfaces is the surface
architecture itself, which may range from a smooth rendered
surface to a scored surface with associated crevices which may
be colonized by bacteria and their biofilms. Chaitiemwong
et al. (2014) considered both surface crevices and food matrices

(diluted food residues of ham, salmon, endive, or milk) when
measuring the efficacy of Listex™ P100 treatment. Results
suggested deeper crevice features on the surface decreased
the treatment efficacy, with inactivation in the magnitude
of > 3-log achieved on 0.2 mm crevices compared to the
max 1.4-log CFU/mL observed in crevice depth of 5 mm.
Of particular note was the difference seen when comparing
the food matrix, with lower inactivation observed for milk
and vegetable when compared with meat or fish. Ganegama
Arachchi et al. (2013) mimicked conditions in fish processing
and demonstrated the presence of fish protein led to a lower
associated biofilm density compared to control stainless steel
experiments when a fish protein matrix was added to the
cultivation of L. monocytogenes biofilm on stainless steel. This
highlights the complex role the food matrix may play in both
biofilm formation and subsequent efficacy of bacteriophage
treatment, demonstrating the need for further studies to
understand the significance of food matrix on bacteriophage
treatment efficacy.

Taken together, current literature detailing phage biocontrol
studies directed at L. monocytogenes, such as those detailed above,
shows differing success in their ability to decrease established
biofilms. The often low reductions achieved demonstrate the
challenges biofilms pose for not only bacteriophages but all
control methods, but this is not to say that there is no place
for phages as a potential biocontrol method. As with many
disinfection regimes, additional interventions such as steps to
loosen biofilm or remove organic matter can increase the
success of phage treatments (Ganegama Arachchi et al., 2013).
Further research considering multi-species biofilms and in-
facility application will help determine the true potential of this
biocontrol approach.

ENDOLYSINS

Endolysins (lysins) are hydrolytic enzymes required for
bacteriophage dissemination from the host bacterial cell.
They occur at the end of the lytic cycle to release the phage
virions by breaking down peptidoglycan in the bacterial cell
wall in what is termed lysis from within (Chan and Abedon,
2015; Schmelcher and Loessner, 2016). Researchers have
harnessed lysins through protein expression production systems,
generally in E. coli. Following purification of the lysin, it
can be applied externally to the cell wall, thus not requiring
phage infection, for biopreservation and biocontrol application
(Garcia et al., 2010). Lysins are grouped based upon the cell
wall component they attack with the five main classes being
N-acetylglucosaminidases,  endo-p-N-acetlyglucosaminidases,
Iytic transglycosylases, endopeptidases, and N-acetylmuramoyl-
L-alanine amidases (Garcia et al, 2010; Schmelcher and
Loessner, 2016). Lysins are highly specific with a narrow
spectrum of activity making them host specific with some
lysins only being active on the bacterial strain the phage
was isolated from (Oliveira et al, 2012). In addition, they
are fast acting and no development of resistance has been
reported to date (Schmelcher and Loessner, 2016). Most
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research has occurred on Gram-positive bacteria using the
lysis from without approach as the peptidoglycan layer is
exposed. Although limited, antimicrobial activity of lysins
on Gram-negative bacteria has been reported when used in
conjunction with EDTA, a membrane permeablizer (Chan and
Abedon, 2015).

The antimicrobial activity of lysins has mostly focused on
infection control of staphylococcal bacteria. Other applications
that have been considered include use in agriculture to prevent
plant disease by either intense application of cell lysates
expressing a chosen lysin or development of transgenic plants
by incorporation of the lysin gene into the plant genome
(Dtiring et al., 1993; Kim et al, 2004); as a rapid detection
and imaging method of pathogenic bacteria (Schmelcher
et al, 2010; Bai et al., 2016); and transformation of listerial
bacteriophage endolysin encoding genes into dairy starter
cultures as a biopreservation method (Gaeng et al., 2000).
Antilisterial lysins isolated to date have predominately focused
on the control of planktonic cells in vitro with promising
results although further validation is required (Table 1).
Only a few antilisterial lysins have been assessed in food
products and the food matrix and environment have been
found to affect the antimicrobial activity (Oliveira et al,
2012).

To date there is only one lysin, PlyLM, which has been
tested against L. monocytogenes biofilms after 100 % susceptibility
on planktonic L. monocytogenes and Listeria innocua cells was
achieved (Simmons et al., 2012). PlyLM reduced the monolayer
biofilm to the same level as the application of lysozyme and
proteinase K. When used in combination with proteinase K,
or both proteinase K and lysozyme, synergistic effects were
observed, and the biofilm was effectively digested. However,
biofilms were only grown for 24 h at 37°C, and therefore the
efficacy of these enzymes under other conditions merits further
investigation, for example, performance at lower temperatures
which are more reflective of those of most FPEs. More research
has been undertaken on staphylococcal biofilms, predominantly
monospecies biofilms, which have achieved reductions in biofilm
mass. Of interest is their efficacy against persister cells. Persister
cells are metabolically inactive subpopulations of cells, which
are “super-resistant” to antimicrobial agents such as antibiotics
(Brooun et al., 2000; Wood, 2017). Studies have shown these
persister cells occur as a subpopulation of bacterial biofilms,
and as such can present a significant obstacle to biofilm
inactivation by antimicrobials (Brooun et al, 2000; Singh
et al., 2009). Several studies have shown a promising role for
lysins to inactivate persister cells in biofilms (Gutiérrez et al.,
2014; Schuch et al., 2017). The success being reported against
staphylococcal biofilms suggests that the potential lysins may
have against biofilms in a food production context, particularly
in targeting Listeria biofilms, which are a significant problem
in FPEs. Another phage enzyme, extracellular polysaccharide
depolymerase, has also be shown to degrade biofilm EPS;
however, they are highly specific to the strains the phage
infects (Chan and Abedon, 2015). A similar approach targeting
L. monocytogenes in biofilms could also present an alternative
control measure.

COMPETITIVE BACTERIAL SPECIES

Competitive exclusion is where one bacterial species competes
with another species over resources and/or space in a habitat,
successfully reducing the number of cells or excluding that
species (Hibbing et al., 2010). This competitive exclusion can
be the result of the production of antimicrobials such as
bacteriocins, organic acids either acting directly against the
species it is competing with or acting on the environment altering
the pH, or alternatively physically outcompeting other bacterial
species for nutrients and/or space and limiting normal survival
or proliferation of those competitive species. This strategy
is typically categorized into three components: competition,
where planktonic cells of both species are co-cultured for
a period of time; exclusion, where the antagonistic species
are grown to a biofilm cell density prior to the addition of
planktonic cells of the target species; or displacement, in which
the target species are grown to biofilm cell density prior to
addition of planktonic antagonists (Woo and Ahn, 2013; Pérez-
Ibarreche et al., 2016). As biofilms protect microorganisms from
chemical cleaners and disinfectants, the use of non-pathogenic
microorganisms may assist sanitation approaches in controlling,
preventing, or eradicating unwanted species like food borne
pathogens.

Competitive exclusion studies typically pit planktonic cells
of the antagonist species (i.e., the species which will exert
a competitive exclusion effect) against planktonic cells of the
target species in a competition assay, grown together for a
period of time facilitating biofilm formation. Daneshvar Alavi
and Truelstrup Hansen (2013) used a short incubation time of
72 h which resulted in a 1-log decrease in L. monocytogenes
cell density after application of Serratia proteamaculans. A
similar reduction was also reported by Fox et al. (2014) of
L. monocytogenes biofilm cell density after 96 h when grown
in co-culture with Janthinobacterium lividum. However, greater
reductions have been reported when cells were incubated for
longer periods with results around log 4.5 and 5.5 on stainless
steel coupons and polytetrafluoroethylene, respectively (Pérez-
Ibarreche et al., 2016). Zhao et al. (2004) also reported higher
magnitude reductions of 7.8-log reduction over 28 days at
15°C by two bacterial isolates, Lactococcus lactis (Lc. lactis) and
Enterococcus durans. In another experiment performed at 8°C
for 28 days, four isolates, including the previous two isolates
were also capable of reductions around 7-log units. However,
the higher reductions reported by Zhao et al. (2004) and Pérez-
Ibarreche et al. (2016) were produced by lactic acid bacteria
(LAB) whose inhibitory activity has been studied extensively
for many years, particularly as probiotics (Jeong and Frank,
1994).

The inhibitory effect of LAB was further explored by Guerrieri
et al. (2009) and Gomez et al. (2016) as a preformed biofilm
preventing L. monocytogenes biofilm formation as part of the
exclusion strategy. Gomez et al. (2016) tested a variety of
LAB strains and found reductions ranged from 4- to 7-log
units over 24 and 48 h; however, by 72 h, L. monocytogenes
growth had increased by almost half fold of the control
indicating that these strains were only capable of exclusion
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TABLE 1 | Antilisterial lysins reported in literature, key summary, and application.

Endolysin Reported findings Use Reference
Ply118 Rapidly lysed all Listeria strains tested and against three Bacillus species. BC, IC Loessner et al., 1995
Ply500 BC, IC
Ply511 Rapidly lysed all Listeria strains tested against. BC, IC
PlyP35 Determined optimal temperature, NaCl, pH, and various ions conditions. BC, IC Schmelcher et al., 2012
PlyP40 Lysed L. monocytogenes strain and L. innocua. BC, IC Loessner and Schmelcher, 2010
PlyP825 Inhibited all growth in L. monocytogenes strains used. BC, IC Grallert et al., 2012
PlyPSA Determined crystalized structure RMD Korndorfer et al., 2006
PlyP100 Lysed all L. monocytogenes, Listeria strains in cheese, and a Bacillus BC, BP Van Tassell et al., 2017
subtilus strain tested against
LysZ5 Lysed L. monocytogenes, L. innocua, and Listeria welshimeri; reduced BC, BP Zhang et al., 2012
L. monocytogenes numbers in soya milk.
PlyLM Lysed all L. monocytogenes and L. innocua strains tested against; digested BC Simmons et al., 2012

L. monocytogenes biofilms when combine with a protease.

BC, biocontrol; IC, infection control; RMD, rapid multiplex detection; BF, biopreservation.

within the first 24-48 h. However, Lc. lactis 368 strain was
able to completely exclude the growth of L. momnocytogenes
for the entire period, although it should be noted that all
experiments were performed at a relatively elevated temperature
and as such lower temperatures reflective of many FPEs
require further consideration. In comparison, Guerrieri et al.
(2009) showed the potential of LAB bacteria at refrigeration
temperatures with a Lactobacillus plantarum (Lb. plantarum)
strain capable of a 4-log reduction over a 10-day period. Mariani
et al. (2011) used the native biofilm microflora of wooden
cheese ripening shelves to achieve a 1- to 2-log reduction
over a 12-day period, although this reduction was less than
that observed in Guerrieri et al. (2009) and Gomez et al.
(2016).

The third strategy displacement, as reviewed by Woo and
Ahn (2013), demonstrated that the use of planktonic antagonist
LAB strains as a post-treatment control method targeting
L. monocytogenes was less effective compared to pre-treatment,
although two strains (Lactobacillus paracasei and Lactobacillus
rhamnosus) were capable of a 3-log reduction in L. monocytogenes
biofilm cell density over 24 h when incubated at 37°C.

While most studies are performed in laboratories, Zhao et al.
(2006, 2013) took the concept of competitive exclusion a step
further and looked at its applicability in poultry processing
facilities. In a fresh poultry facility, two LAB strains (Lc. lactis
and E. durans) were added to two enzyme-based cleaners
and applied as a foam to selected drains four times in the
first week and then two times for the following 3 weeks.
Sampling continued for 18 weeks after the last treatment. Most
drains experienced significant reductions within the first week
after only four applications and all drains maintained lower
levels of Listeria throughout the sampling period (Zhao et al,,
2006). Importantly, two drains reported significant reductions
16 weeks after treatments finished. Similar parameters were
applied to the application of the same strains at a ready
to eat poultry processing facility. By the end of the first
week of application, Listeria was not detected in five of the
six drains with all drains reporting negative results between
weeks 8 and 13 (Zhao et al, 2013). It should also be

noted that the strains utilized were known to either possess
nisin or other forms of antimicrobials; however, it was not
elucidated if the inhibition was the result of the production of
antimicrobials.

There have been some encouraging results in the use of
LAB against L. monocytogenes biofilm cells in laboratory-based
experiments (Table 2); however, very few have been trialed in
actual FPEs, apart from Zhao et al. (2006, 2013). The results from
their two studies have shown promising results as an alternative
control method utilizing E. durans and Lc. lactis; however, further
longitudinal research surrounding the in-facility application is
required. In addition, the application of other bacterial species
identified in some of the studies mentioned above, for example,
J. lividum and S. proteamaculans, warrants in-facility testing.
However, it should be noted that the LAB strains utilized for
in-facility application studies were isolated from the production
environment indicating that specific strains may work best in the
environment they were isolated from and these strains may vary
depending on the food industry.

Houry et al. (2012) reported the use of bacterial species in
a novel biocontrol approach. In the study, they identified a
subpopulation of bacilli known as bacterial swimmers which
were capable of creating transient pores within the biofilm
structure. By pre-treating Staphylococcus aureus biofilms with
bacterial swimmers, which also produced an anti-stapylococcal
bactericide, they achieved a greater inactivation of S. aureus
in biofilm by facilitating access of toxic substances in the
environment into the biofilm.

BACTERIOCINS

An important component of the competitive survival strategy
of bacteria is the production of antimicrobial products. One
group of ribosomally synthesized antimicrobials are the heat
stable peptides known as bacteriocins (Cotter et al., 2005; Galvez
et al.,, 2008; Winkelstroter et al.,, 2015). It has been suggested
that most bacteria produce at least one bacteriocin and LAB
are known to be prolific producers (Cotter et al., 2005). Most
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TABLE 2 | Bacterial species active against L. monocytogenes and purported mode of action.

Bacterial species

Mode of action

Studies

S. proteamaculans

J. lividum

Lc. lactis

E. durans
Lb. plantarum 396/1

Lb. paracasei

Lb. rhamnosus

Lb. sakei

LAB - Lc. lactis 368, Lb. helveticus
354, Lb. casei 40, and W. viridescens 113

Native microbial flora of cheese ripening
wooden shelves

Sanchez et al. (2010) identified a bacteriocin-like substance
was produced at low temperatures capable of inhibiting

L. monocytogenes. Inhibition was suggested to be the result of
Jameson effect.

Specific strain utilized not tested for antimicrobial compounds.
J. lividium are reported to have antibacterial compounds
capable of inhibiting Gram-positive bacteria (O’Sullivan et al.,
1990).

Neither of the studies by Zhao et al. tested for production of a
bacteriocin; however, this species has previously be reported to
produce nisin.

Neither of the studies tested for the bacteriocin; however, this
species has previously be reported to produce enterocin.
Inhibition was attributed to production of an organic acid.

May be the result of competition for sites and resources. As a
probiotic strain it may produce bacteriocin, organic acid or
hydrogen peroxide.

May be the result of competition for sites and resources. As a
probiotic strain, it may produce bacteriocin, organic acid or
hydrogen peroxide. A previous study isolated an antilisterial
bacteriocin from this species (Jeong and Moon, 2015).
Bacteriocin producing strain.

Not identified as bacteriocin-producing strains. May be result of
biosurfactants, or exclusion by trapping (killing cells embedded
in biofilm).

Established biofilms on active cheese ripening wooden shelves
were used. Inhibition may have been the result of competition

Sanchez et al., 2010;
Daneshvar Alavi and Truelstrup
Hansen, 2013

Fox et al., 2014

Zhao et al., 2004, 2006, 2013

Zhao et al., 2004, 2006, 2013

Guerrieri et al., 2009
Woo and Ahn, 2013

Woo and Ahn, 2013

Pérez-lbarreche et al., 2016
Gomez et al., 2016

Mariani et al., 2011

for sites and nutrients.

bacteriocins have a narrow spectrum of activity, that is, they
are active against the same species that produces them but
the producer is immune to them, while some have a broad
spectrum of activity acting on members within the same genus
as well as other genera and species (Cotter et al., 2005). The
mode of activity varies depending on the particular class of
bacteriocin and can include pore formation, or inhibition of
key cellular processes such as peptidoglycan production, DNA
replication, mRNA, or protein synthesis, to name a few (Cotter
et al., 2005). There are two main groups: Class I (also known
as lantibiotics), peptides that undergo post-translational changes,
and Class II, which do not (Cotter et al, 2013). Among
the most well-characterized and successful bacteriocins to date
is nisin, a Class I bacteriocin from Lc. lactis which has
been approved for use in food as a preservative/additive by
the World Health Organization, European Union, and the
United States Food and Drug Authority (Cotter et al., 2005).
A great deal of research has gone into identifying more
bacteriocins active against L. monocytogenes planktonic cells and
biofilms, an important arena as nisin resistance is slowly being
reported.

Most studies can be classified into two groups based upon
how the bacteriocin is applied: either as whole bacterial cells
known or suspected of bacteriocin production, or alternatively
the bacteriocin extract itself, applied either as a crude
or semi-purified product. Their utility against preformed
L. monocytogenes biofilms of varying times has been the
subject of numerous studies, with some reporting promising

results. For example, Gomez et al. (2016) assessed Lc. lactis,
Lactobacillus sakei, and Lactobacillus curvatus, all known to
produce nisin Z, sakacine A, and sakacine P, respectively,
against 48 h preformed biofilms. Lb. sakei and Lb. curvatus
were capable of complete inactivation over 72 h whereas
the two Lc. lactis strains provided a 6-log reduction by the
end of the test period. Winkelstroter et al. (2015), however,
were unable to produce results of a similar magnitude when
L. monocytogenes was co-cultured with Lb. paraplantarum,
only achieving 2-log inactivation at 24 and 48 h before
decreasing by 72 h. Guerrieri et al. (2009) took an alternative
approach and reported that Lb. plantarum and Enterococcus
casseliflavus were able to inactivate L. monocytogenes 7-day
preformed biofilms by 3.9- and 3.7-logs over a 10 day-
period. Importantly, the results could be associated with
bacteriocin production, as no changes to the pH were
observed.

Another technique is extracting the bacteriocin in the form
of cell-free supernatant (CFS), as a crude bacteriocin fermentate
or semi-purifying the product. The antimicrobial activity of
CFS has shown mixed success in co-inoculation studies to
prevent the formation of biofilms by L. monocytogenes, with
Camargo et al. (2016) reporting significant reductions after
24 h, whereas Bolocan et al. (2017) only observed between
1.6- and 3.6-log CFU/cm? reduction after 72 h depending
on the media used. In the latter study, however, the CES
extract which produced the highest reduction was from an
isolate known to also produce an organic acid which was not
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removed, and therefore this result may not be associated solely
to the antimicrobial activity of the bacteriocin. When Camargo
et al. (2016) applied the CFS to 24 h preformed biofilms
for 2.5 h, they found biofilm formation continued in some
isolates.

Other researchers have compared the two methods, bacterial
cells and extracts again with varying results. Garcia-Almendérez
etal.’s (2008) analysis on 4-day preformed biofilms demonstrated
a crude bacteriocin fermentate from Lc. lactis known to produce
nisin A was capable of a 2.7-log reduction over 24 h. However,
a greater reduction over 5-logs was achieved when the Lc.
lactis was applied for 6 h, then rinsed, and placed in a
desiccator for five days. Whereas, Winkelstroter et al. (2011)
co-inoculated L. monocytogenes with Lb. sakei or its CFS and
found that any decreases observed in the first 24 h were
diminished with time, as results at 48 h were comparable
to the pure culture levels. A promising approach by Pérez-
Ibarreche et al. (2016) involved the supplementation of Lb.
sakei cells with a semi-purified bacteriocin for 6 h, which
resulted in a twofold reduction in L. monocytogenes numbers on
the stainless steel surface, or an additional 1-log reduction on
polytetrafluoroethylene.

As mentioned previously, the bacteriocin nisin has been
approved for commercial purposes and has paved the way as
an alternative biocontrol method. Research into bacteriocins
has been performed with comparable results to the other non-
commercial bacteriocins discussed above. Minei et al. (2008)
found that nisin was capable of inhibiting L. monocytogenes
biofilm formation for 9 h on stainless steel coupons, and although
cell growth did recommence after this time, a 3.5-log inactivation
was still maintained by 48 h. On the other hand, Henriques and
Fraqueza (2017) shortened the treatment time to 5 min and even
at the highest concentration, no activity was recorded, although
activity was defined as a > 5-log decrease.

From the above, it is obvious that results vary significantly
depending on if bacteriocin producing bacterial cells or the
bacteriocin extracts is used. Results from bacteriocin extracts
can be correlated to the antimicrobial action of the bacteriocin
with greater certainty; however, additional analysis is required
particularly when whole cells are used to help ensure that the
measured inhibition is not the result of competitive exclusion
or the production of other antimicrobials such as organic acids.
The co-inoculation and preformed biofilm studies reflect the
ability of the bacteriocin to either prevent the formation or
affect the removal of established biofilms in the FPE; however,
the length of time the biofilms are grown for prior to the
bacteriocin being applied also affects the antimicrobial activity as
mature biofilms may provide better resistance. Although several
studies show that promising results most require additional
analysis at temperatures and other environmental conditions
mirroring the FPE to identify potential candidates suitable
for further testing. With the potential resistance to nisin
arising, the identification of other bacteriocins is essential.
In addition, the application of synergistic antimicrobials to
further combat the development of resistance should be
considered.

PLANT-DERIVED ANTIMICROBIAL
PRODUCTS - ESSENTIAL OILS

An alternative to the use of chemicals, microorganisms, or
their derivatives is the use of plant-derived antimicrobial
products such as essential oils (EOs). Herbs and spices
are commonly known to exhibit antimicrobial activity and
have been used by various cultures for flavoring, as a food
preservative or for medicinal purposes. EOs play a key role
in protecting plants from bacteria, fungi, viruses, insects, and
animals (Perricone et al., 2015). Traditional distillation, cold
press/expressing, solvent extractions, and enfleurage methods
have been used to extract EOs from plant-derived materials;
more recently, modern techniques including microwave or
ultra sound assisted extraction, pressurized extractions, and
super critical fluid extraction have been used to obtain EOs
from a variety of plant sources (including roots, wood, bark,
twigs, leaves, seeds, buds, flowers, and fruits). However, the
constituents and compositions of EOs vary significantly from
high concentrations to trace amounts based upon the plant
part, plant age, and extraction method used, in turn influencing
their antimicrobial activity (Lemberkovics et al.,, 2004; Reyes-
Jurado et al., 2014; Perricone et al., 2015; Xia et al., 2017).
Key molecules in EOs with the most effective antibacterial
activity are typically from aldehyde and phenol chemical
classes which include compounds such as cinnamaldehyde,
carvacrol, eugenol, or thymol (Bakkali et al., 2008; Perricone
et al., 2015). EOs are able to permeabilize the cell membrane
resulting in the leakage of ions or other cell content, and may
also disrupt key genetic functions and/or cellular components
like proteins, polysaccharides, phospholipids, fatty acids, and
essential enzymes due to the lipophilic nature of EOs (Bakkali
et al,, 2008; de Oliveira et al., 2010, 2012a; Perricone et al,
2015).

While there are thousands of EOs described, it is reported
around 300 of these have generally recognized as safe approval
and are used commercially for flavoring or fragrance; however,
more detailed information is required for their use as a biocontrol
agent (Burt, 2004; Reyes-Jurado et al., 2014). Most research
surrounding the antimicrobial activity of EOs focuses on their
effects on planktonic cells of food spoilage and pathogenic
bacteria either in standard laboratory conditions or in their
application on food items. This application on food as a biocide
has major limitations as higher concentrations are required
potentially interfering with the sensory attributes of the food
(Burt, 2004; Chorianopoulos et al., 2008). In addition, some
components of food items, mainly fats, proteins, carbohydrates,
water, salt, antioxidants, pH, and other preservatives or additives
used may impact upon the activity of the EOs (Perricone
et al., 2015). Further research is required to understand the
impact EOs have on bacterial pathogens and in particular
their ability to prevent or eradicate biofilms in FPEs. Some
research is occurring within this space; however, there is
limited research against L. monocytogenes biofilms with a few
studies looking at the extracted EOs, the active components
of specific EOs, or altering the EO chemical composition.
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de Oliveira et al. (2010) assessed the EOs from fresh citronella
(Cymbopogon nardus) and lemongrass (Cymbopogon citratus)
leaves applied alone or in combination; however, it was the
Citronella EO which demonstrated the highest reductions
against both the 3 and 240 h preformed biofilms with
complete reduction after 60 min of application. Similar results
reported in another study by de Oliveira et al. (2012b)
found 2% (vol/vol) Chinese cinnamon extract (Cinnamomum
cassia) was capable of reducing a 48 h preformed biofilm to
below the detection limit (2.84-log CFU/cm?) after 20 min;
however, both of these studies applied the EOs at temperatures
above 20°C.

Essential oils contain a mixture of major and minor molecules
responsible for their antimicrobial activity with some of the major
components being explored further. The active components of
clove (eugenol) and spearmint (carvone) EOs were tested on
a 6 h preformed L. monocytogenes biofilm but were found to
increase biofilm mass by Leonard et al. (2010). Citral and nerol, in
contrast, both major components from lemongrass (C. citratus)
and Lippia rehmannii (nerol only), displayed a similar reduction
as the positive control ciprofloxacin.

Additional microbial species can also impact upon the activity
of the EO or active component. For example, Leonard et al’s
(2010) study as mentioned above was on L. monocytogenes
monospecies biofilms and reported a mixture of results among
the EO and the various active components tested, whereas
de Oliveira et al. (2012a) looked at the activity of Chinese
cinnamon and its active component, Cinnamaldehyde, on a
mixed biofilm of L. monocytogenes and enteropathogenic E. coli
on stainless steel coupons dipped in reconstituted whole milk.
The EO and cinnamaldehyde were both capable of reducing
the mixed biofilm to below the detection limit of 2.84-
log CFU/cm? whereas the EO and active components only
provided reductions just over 2-logs on the L. monocytogenes
biofilm. Chorianopoulos et al. (2008) examined the EO and
hydrosol (by-product of the steam distillation) of Satureja
thymbra (Pink Savory) and showed similar results when
grown in a mixed biofilm with a food borne pathogen
(L. monocytogenes and Salmonella enterica) and a spoilage
bacterium (Pseudomonas putida). It was noted that the optimized
application time was 60 min and any increase in time provided
no additional reduction. The impact other microbial players
may have on the activity of EOs requires further exploration
in order to gain insights into the various relationships at
play.

A common problem for the use of EOs as a biocontrol
method on food products is the associated impacts on taste
at concentrations required for appropriate antimicrobial effect.
A process to concentrate the EOs for application at a
lower volume with the same potentially high antimicrobial
activity may be required in the case of some EOs. Krogsgird
Nielsen et al. (2017) looked at emulsifying and encapsulating
isoeugenol oil to increase the antimicrobial effectiveness at
a smaller volume with the addition of electrostatic forces to
attract negatively charged bacteria to positively charged EOs.
Although the concept of emulsification and encapsulation sounds
promising, the minimal biofilm eradication concentrations

(MBECs) for the coated and uncoated emulsified products
were only half a log lower than the pure isoeugenol when
tested in standard laboratory medium at three temperatures
(6, 12, and 25°C) and no difference was observed in carrot
juice. This observation requires further exploration as the
reductions in the MBEC did not correlate to observations under
confocal microscopy. Of note was the morphological changes
observed in the mixed biofilms of Pseudomonas fluorescens and
S. aureus from uniform layers to clusters of numerous cells,
which requires further research to determine if there are any
implications.

As mentioned previously, the use of EOs at concentrations to
exhibit sufficient antimicrobial activity has the potential to impart
undesirable flavor and when applied in an FPE may also result
in an excessive sensorial impact. In addition, the interactions of
EOs with components of the food matrix from food debris may
also impact on the applicability of EOs in food environments.
Only a few studies have investigated the application of EOs to
disrupt or prevent the formation of biofilms. Further research on
parameters specific to industry will allow a better decision on the
application of EOs as an alternative or supplementary biocontrol
method.

CONCLUDING REMARKS

While current sanitation processes are effective against
planktonic cells, the potential for tolerant strains to
increase due to interactions at subinhibitory levels and
the potential reliance on them as antimicrobials, as the
case in the health industry, is a cause for concern. The
ability to eradicate established biofilms and prevent new
biofilms from being formed is a challenging task which
food production managers are charged with, as biofilms
can present increased food safety risks. A wuseful tool in
understanding the microbial community is metagenomics
analysis of the FPE. By understanding the FPE microbiome,
valuable information can be gained regarding persistence
or transience of strains. This facilitates source tracking of
persistent strains, can identify other microbial species that
may provide either a positive or negative effect on the target
strain, and can identify strains surviving the disinfection
processes (Dass and Anandappa, 2017; Doyle et al., 2017).
From this information, the appropriate biocontrol method
can then be determined. There have been some significant
advances in the development of biocontrol methods, particularly
bacteriophages that have progressed to commercial products
with the results of some studies validating their progression
to commercialization. The use of competitive bacterial species
has also showed some promising results with the concept
of utilizing antagonist strains isolated from the production
environment providing individualized treatment options.
Bacteriocins and endolysins have also shown their ability to
significantly reduce established biofilms; however, they typically
require some form of purification process to achieve these
results. The sensory implications of EOs at concentrations
required to exert antimicrobial effects are a limiting factor
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in their use as a sole biocontrol method, and therefore
they may find more appropriate utility as a supplementary
method targeting non-food contact surfaces. However, like all
biocontrol methods, efficacy can be impacted by a variety
of factors including temperature or time the control method
was applied for, the use of one species or multiple species
biofilms, biofilm growth method, or surface matrix composition.
Standardization in the assessment of novel biocontrol methods
against biofilms is required, in addition to assessment under
conditions reflective of FPEs before appropriate comparisons can
be made.
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