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The development of antibiotic tolerance is believed to be a major factor in the lengthy

duration of current tuberculosis therapies. In the current study, we have modeled

antibiotic tolerance in vitro by exposing Mycobacterium tuberculosis to two distinct

stress conditions: progressive hypoxia and nutrient starvation [phosphate-buffered saline

(PBS)]. We then studied the bacterial transcriptional response using RNA-seq and

employed a bioinformatics approach to identify important transcriptional regulators,

which was facilitated by a novel Regulon Enrichment Test (RET). A total of 17 transcription

factor (TF) regulons were enriched in the hypoxia gene set and 16 regulons were enriched

in the nutrient starvation, with 12 regulons enriched in both conditions. Using the same

approach to analyze previously published gene expression datasets, we found that three

M. tuberculosis regulons (Rv0023, SigH, and Crp) were commonly induced in both stress

conditions and were also among the regulons enriched in our data. These regulators

are worthy of further study to determine their potential role in the development and

maintenance of antibiotic tolerance in M. tuberculosis following stress exposure.
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INTRODUCTION

Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), which is the ninth most
frequent cause of death worldwide, surpassing the mortality due to HIV/AIDS (World Health
Organization, 2017). The success of M. tuberculosis as a human pathogen is related to its ability
to persist in host tissues despite prolonged therapy with multiple antibiotics (World Health
Organization, 2016). Several factors are believed to contribute to the phenomenon of antibiotic
tolerance, which is defined as the reversible ability of bacteria to survive exposure to bactericidal
antibiotics (Kester and Fortune, 2014; Brauner et al., 2016), including the harsh microenvironment
encountered by M. tuberculosis bacilli within necrotic lung lesions (Dutta and Karakousis, 2014).
Exposure of M. tuberculosis to progressive hypoxia and nutrient starvation in vitro, two stresses
that are believed (Loebel et al., 1933; Via et al., 2008) to prevail within such lesions in vivo, results
in bacterial growth arrest and tolerance to the cell wall-active agent isoniazid (Wayne and Hayes,
1996; Betts et al., 2002; Xie et al., 2005; Gengenbacher et al., 2010).
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Prokaryotic cells can adapt and respond to environmental
stresses by altering their gene expression or by modifying the
activity or stability of existing proteins.Most commonly, bacterial
metabolic adaptations are regulated at the transcriptional level
through the action of transcription factors (TFs), which are DNA-
binding proteins capable of repressing or activating transcription
of specific genes (Browning and Busby, 2004). Examples of
bacterial TFs include sigma factors, which confer promoter
recognition and specificity to the RNA polymerase holoenzyme
under various stress conditions (Ishihama, 2010), and two-
component systems, usually consisting of a membrane-bound
sensor histidine kinase and a cognate DNA-binding response
regulator (Podgornaia and Laub, 2013). TFs exert their activity in
the bacterial cell by activation of their respective regulons, which
are a set of transcriptionally co-regulated operons (Liu et al.,
2016). The number of TF genes present in each bacterial species
appears to be proportional to the number of environmental
stimuli encountered by that organism (Romero-Rodríguez et al.,
2015). The M. tuberculosis genome is predicted to contain
209 different TF genes (Cole et al., 1998), attesting to the
complicated lifecycle of the organism and the requirement
for bacterial survival under different environmental stresses,
including in airborne particles, along the epithelial lining of
the airways, within the arrested phagosome of macrophages,
and in the necrotic debris of caseous granulomas (Ehrt et al.,
2015). Given the growing emergence of antibiotic resistance,
the essentiality of bacterial transcription for prokaryotic cell
viability under physiologically relevant stress conditions, and the
lack of homology with human proteins, bacterial TFs represent
an attractive target for drug development (Bem et al., 2015).
An improved understanding of the TFs (and their respective
regulons) required for M. tuberculosis survival during periods of
stress may yield novel strategies to target persistent organisms,
with the ultimate goal of shortening TB treatment.

In the current study, we used RNA-seq to study the change
in global gene expression of M. tuberculosis during progressive
hypoxia (Wayne and Hayes, 1996) and nutrient starvation (Betts
et al., 2002), which induce bacterial stasis and tolerance to
bactericidal antibiotics (Wayne and Hayes, 1996; Betts et al.,
2002; Xie et al., 2005; Gengenbacher et al., 2010), relative
to exponential growth in nutrient-rich broth. RT-qPCR was
performed on a subset of genes to strengthen our confidence
in the high-throughput data. A novel regulon enrichment test
(RET) was used to identify enriched regulons corresponding
to TFs in the M. tuberculosis stress response. Our efforts
somewhat parallel the work of Du et al. (2016) but whereas these
authors have focused on identifying regulators during reaeration
(after hypoxia) we focus on core regulators of the response
to multiple stresses. Our identified TFs may reflect potential
vulnerabilities for the rational development of small molecule
inhibitors targeting persistentM. tuberculosis.

MATERIALS AND METHODS

In Vitro Conditions
Mycobacterium tuberculosis strain CDC1551 (Ahmad et al.,
2009) was used in all experiments. Prior to exposure to stress

conditions, bacterial cultures were grown from frozen stocks to
early exponential-phase (OD600nm = 0.3) in Middlebrook 7H9
broth supplemented with 10% OADC enrichment (BD), 0.2%
glycerol, and 0.05% Tween-80.

For nutrient starvation studies, the early exponential-phase
bacteria were washed twice with phosphate-buffered saline (PBS)
(Quality Biological Gaithersburg, MD) and resuspended in
100ml of PBS containing 0.05% Tween-80 in a 250-ml flask.
The final OD600nm after resuspension was approximately 0.1.
Cultures were incubated at 37◦C for 3 days without shaking
prior to RNA extraction. For progressive hypoxia studies, early
exponential-phase bacteria were washed twice with Dubos-
Tween-Albumin broth (DTA) and then resuspended in DTA
containing 0.5µg/mL methylene blue to a final OD600nm of
approximately 0.001. Twenty milliliters of this culture was added
to 30-mL cylindrical glass tubes (19 × 145mm) each containing
a magnetic stir bar and plugged with a rubber stopper to prevent
gas exchange. The tubes were then placed upright on a magnetic
platform and checked every 2–3 days for color changes. Samples
were collected when tubes were observed to have a yellowish
color (about 14 days after inoculation).

RNA Extraction
At least 100mL of bacterial culture (five hypoxia tubes or
one PBS/Tween-filled flask) was used to generate sufficient
material for a single RNA-seq sample. Bacteria were pelleted by
centrifugation at 3,000 rpm at 4◦C in 2-mL tubes containing
0.1mm Zirconia/silica beads (BioSpec Products), and the cells
were lysed by eight cycles of bead-beating for 30 s each (total
of 4min). The tubes were chilled on ice for 1min after the first
four cycles. The remainder of the extraction was performed as
described previously (Thayil et al., 2011). At least three RNA
samples were collected from each of the three conditions (7H9,
PBS, or hypoxia). The quality of RNA samples was assessed using
an Agilent Bioanalyzer (Agilent Technologies).

RNA-seq
RNA-seq was performed by the Next Generation Sequencing
Center at the Sidney Kimmel Comprehensive Cancer Center
of the Johns Hopkins University School of Medicine. Strand-
specific cDNA libraries were constructed using Encore R©

Complete Prokaryotic RNA-seq DR Multiplex Systems 1–8 and
9–16 (Nugen). Eight cDNA libraries were sequenced using an
Illumina R© HiSeqTM 2000.

Identification of Differentially Expressed
Genes (DE)
Reads were de-multiplexed and adapter sequences removed
to yield reads of 100-bp length. Raw reads were mapped
to the M. tuberculosis CDC1551 genome (GenBank Assembly
GCA_000669715.1) using EDGE-pro v1.3.1 (Magoc et al., 2013)
(running Bowtie2 internally). Samples containing fewer than 5×
105 reads mapping to the CDC1551 genome were removed from
the analysis (one sample) as these were assumed to suffer from
technical errors during processing. After removal, our dataset
included three samples from the log-phase condition, two from
hypoxia, and two from PBS starvation. Output from EDGE-pro
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was input to DEseq2 v1.16.1 for differential expression analysis
using default settings (Love et al., 2014). Fourteen additional
RNA-seq samples (12 after removal of low-count samples),
processed in an identical way, were also input to DESeq2 with
our eight samples to improve the dispersion estimates. Briefly,
these additional samples were collected from CDC1551 under a
phosphate-depletion model (Rifat et al., 2009) and from a rpoB-
H526Dmutant (Rifat et al., 2017) (CDC1551 background) under
the same set of stress conditions. Results from a careful analysis
of these additional samples will be reported elsewhere. Genes
were declared significantly differentially regulated if Benjamini–
Hochberg adjusted p-values (Wright, 1992) were <0.05 and
log2-fold-change relative to rich medium was >1 or <-1.

The GenBank flat file downloaded from NCBI the gene
annotations labeled with a unique V735# and homologous Rv#
(referencing the gene annotations of Mtb strain H37Rv). To
allow for comparisons between this genome and the previously
sequenced CDC1551 genome (Fleischmann et al., 2002), we
built a local BLAST database of the CDC1551-2002 gene list
and found the closest homologs in the new CDC1551 assembly
using the command-line BLAST tool available from NCBI (ncbi-
blast-2.4.0+ with settings: “blastn -task dc-megablast -outfmt 5 -
evalue.001 -max_hsps 1 -max_target_seqs 50”). BioPython (Cock
et al., 2009) v1.70 assisted with processing.

Primer Design and RT-qPCR
Primers for RT-qPCR were designed using Primer3 (Untergasser
et al., 2012) followed by Primer-BLAST (Ye et al., 2012) to check
for non-specific amplifications. Each designed primer was 18–20
nucleotides long and was predicted to yield a product of 95–
105 nucleotides. sigA primers were designed previously, yielding
a predicted 124-bp amplification product (Chuang et al., 2013).
Primers were synthesized by Integrated DNA Technologies, Inc.
A quick method to verify the efficiency of primer pairs was
utilized. Given that all primer pairs were expected to yield a
similar product size (and thus have similar fluorescence per
molecule), we reasoned that all efficient pairs (>1.8 fold/cycle)
should give approximately the same CT-value when genomic
DNA was loaded in each reaction. This approach was used
to test the CT-values for all primer pairs in triplicate. Primer
pairs yielding products with significantly higher CT-values (>1.5
cycles from the median) were discarded and new primers were
designed, as described above. The sigA primers, which were
among the most highly efficient primers in our assay, were
used for quality testing of redesigned primers. Additionally, melt
curves were collected for all primer pairs using genomic DNA
as template to confirm the absence of non-specific amplification.
The primer pairs used for measuring expression of each gene are
listed in Supplementary Data Sheet 6. Thirty-three genes were
selected (in addition to sigA) for RT-qPCR follow-up among
those genes found to be differentially expressed in the RNAseq
data. Gene selection was non-random and were genes of interest
to the investigators.

Total RNA (80–200 ng) was used for reverse transcription
(RT) followed by qPCR. For each RNA sample, Ambion Turbo
DNase (ThermoFisher) was used for genomic DNA removal.
DNase was then inactivated by addition of EDTA (15mM final

concentration) and incubation at 75◦C for 10min. Each sample
was aliquoted into two tubes. A freshly prepared RT master mix
(Applied BiosystemsHigh Capacity cDNAReverse Transcription
Kit, ThermoFisher) was added to one tube and the same master
mix lacking RT enzyme was added to the other to serve as a
no-RT control. Incubation and inactivation of the RT reactions
were carried out according to the manufacturer’s instructions.
After RT, samples were diluted with a weak TE buffer (1.8mM
Tris-Cl, 0.18mM EDTA, pH 8.0) to 1mL total volume. qPCR
was performed in a total well volume of 10 µL using 3 µL of
each diluted sample per well (∼120–300 pg of original RNA),
5 µL of 2x qPCR master mix (Biorad iTaq Universal SYBR Green
Supermix), and each primer (5 pmol). Cycling conditions for
qPCR were: 5min at 95◦C, followed by 40 cycles of [3 s at 95◦C,
15 s at 55◦C, and 30 s at 68◦C]. Thermocycling was performed
on an Applied Biosystems StepOnePlus qPCR machine using the
fast ramp speed setting.

Technical triplicates were performed for each primer pair
+ sample. Additionally, no-RT and water controls (replacing
sample cDNA with water) were included (in triplicate) on
each qPCR plate. Primers for sigA were used to check for
contamination in these controls. A cycle threshold (CT)-value
for each well was computed using default settings from StepOne
v2.2.2 software provided with the StepOnePlus machine. For
analysis of differential expression, the median CT of the three
technical replicates was used throughout. The housekeeping gene
sigA was used for normalization purposes and the delta-delta CT

method was used to quantify differential gene expression (Livak
and Schmittgen, 2001). qPCR data was processed with custom
Python3 scripts.

Regulon Enrichment Test (RET) and
Mu-Score
To find important regulators of the transcriptional responses we
designed a novel RET. Our RET takes inspiration from the classic
Fisher’s Exact Test (FET), commonly used in gene enrichment
analysis (Bian et al., 2017; Cheng et al., 2017), and is similar
to the hypothesis test for large (2 × 2 and bigger) contingency
tables considered by Agresti and Wackerly using Kendall’s tau
(Agresti and Wackerly, 1977) with the exception that our test
does not penalize for certain off-diagonal entries. The authors
of the VIPER and aREA algorithms consider a similar problem
though their methods are significantly more sophisticated than
ours (Alvarez et al., 2016).

Our RET operates on two sets of genes in which each gene
has been labeled “up,” “down,” or “not-called.” This makes it
amenable for use with many high-throughput data analysis
pipelines where statistical methods are used to test the null
hypothesis of no change in expression level against an alternative
of change in one of two directions. In order to explain our
method, let us call the two sets to be compared, sets A and B.
In this study, we compared gene expression datasets collected
from each stress condition (set A) with a transcription factor
overexpression (TFOE) dataset (Turkarslan et al., 2015) (http://
networks.systemsbiology.net/mtb/content/TFOE-Searchable-
Data-File).Within the TFOE data, the changes in gene expression
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resulting from overexpression of each TF is set B. Therefore,
the total number of RETs done (518) is equal to the number of
stress conditions for which we collected gene expression data
(2) multiplied by the number of TFs for which Turkarslan et al.
collected data (209). In the TFOE dataset, for the overexpression
of a particular TF, we declared genes “up” or “down” if the
reported p-value for a gene is <0.01 and the log2-fold-change
is >1 or <-1, respectively. Genes with larger p-values were
declared “not-called.” These cutoff values were chosen based on
the defaults provided in the spreadsheet provided by Turkarslan
et al. In addition, we removed from the analysis those TFs where,
upon induction with anhydrotetracycline, the authors observed a
<0.5 log2-fold-change of the TF itself. Very slight changes in TF
expression were assumed to unreliably induce the corresponding
regulon. For each TF, 3–7 replicate microarrays were available in
the TFOE dataset.

Our RET begins by forming a 3 × 3 contingency table
comparing the two gene sets where the diagonal represents the
number of genes found to be up, down, or not-called in both gene
sets and the off-diagonal represents genes where the two datasets
disagree (e.g., gene 1 is up in set A but down or not-called in set
B). After table construction, we calculate an enrichment score (S)
for how well the two datasets match:

S = Nup,up + Ndown,down − [Nup,down +Ndown,up].

where Nup,up is the number of genes labeled as up in both datasets
(and similarly for Ndown,down, Nup,down, Ndown,up). Notably, genes
not declared up or down in at least one of the datasets did not
count toward the score, although these genes were retained in
the analysis, as described below. This is advantageous as many
datasets of interest have substantial numbers of genes in this
category due to small sample sizes or strict statistical cutoffs,
which can significantly affect the score if they are weighed
positively or negatively.

To calculate the statistical significance of a 3 × 3 table we
condition on the margins and assume that (at least) one of
the datasets was generated randomly. Thus, a multivariate
hypergeometric distribution is an appropriate model of
randomness for the gene labeling (analogous to the univariate
hypergeometric model assumed in enrichment analyses using
the classic FET). One advantage to this setup over FET is that
no categories need to be pooled or removed, thus preserving
information and potentially increasing the power of the test.

Our chosen distribution can be described with an analogy.
Imagine two persons playing a game. Each are given a list of
genes and asked separately to place each gene into one of three
categories: “up,” “down,” or “not-called” as they see fit. The
players are told how many genes to include in each category. The
score for the players is calculated as the number of genes both
players placed into either the “up” or “down” category minus
the number of genes the players placed in different categories.
Any genes assigned to the “not-called” category by at least one
player do not count toward the score. Assume that (at least) one
of the players is assigning genes to categories by picking genes
out of a hat. What is the probability that the score for the players
is S or greater? This probability is the p-value. High scores (low

p-values) suggest that neither player is picking categories out of a
hat.

To calculate a p-value for an observed enrichment score (Ŝ)
we used Monte-Carlo sampling and a two-tailed hypothesis test

[i.e., p-value = P(|S| > |Ŝ|)]. Samples were generated from a
multivariate hypergeometric distribution with parameters Nup,•,
Ndown,•, and Nnc,• (total number of genes labeled in dataset 1
as “up,” “down,” and “not-called,” respectively). The first N•,up
(total number of genes labeled in dataset 2 as “up”) of these
samples are labeled as “up” in Monte-Carlo simulated dataset 2
and so on for N•,down and N•,nc. Thus, the total number of
sub-samples that must be drawn from the hypergeometric for
a single Monte-Carlo sample is equal to the total number of
genes considered (in our case, this is the number of genes in
the CDC1551 genome). We generated 1 million Monte-Carlo
samples for calculating each p-value.

Each Monte-Carlo computed p-value is only an estimate, and
to be conservative we have used the one-sided Clopper-Pearson
confidence interval to calculate a 95% upperbound for each
p-value. Usually this adjustment makes only tiny changes in the
p-value, but it can make a large difference when the region of
rejection contains very few Monte-Carlo samples (such as for
very small p-values, or small Monte-Carlo sample sizes).

After computation of p-values for each regulon we then
use the Benjamini-Yekutieli (Benjamini and Yekutieli, 2001)
procedure to control the False Discovery Rate at 25% (using
the Python3 package, statsmodel v0.8.0 to compute the adjusted
p-values). This method was chosen instead of the less-
conservative Benjamini-Hochberg method as we are unable to
prove that the set of TFOE regulons met the PRDS (Benjamini
and Yekutieli, 2001) condition required for the correctness of the
Benjamini-Hochberg procedure.

We also introduce a measure of the effect size for an
enrichment, which we call the “mu-score.” The mu-score is
defined as:

mu-score = S/(Nup,up +Ndown,down +Nup,down +Ndown,up).

Therefore, the mu-score is bounded between −1 and +1,
representing perfect discordance and perfect concordance,
respectively. It is not defined if all genes are in the “not-
called” category. We have found that the mu-score is an
especially useful normalized metric when comparing with a
TFOE dataset. In this case, the mu-score measures the down-
or up-regulation of the TF regulon (as defined by the TF
overexpression data). Specifically, a mu-score of +1 means that
all genes induced/repressed under the condition studied were
expressed in the same direction as during TF overexpression
(discounting genes not differentially-expressed).

Comparison With Published Microarray
Datasets
We compared our results with results published for a similar
hypoxia model (Voskuil et al., 2004) and PBS starvation model
(Betts et al., 2002). From the literature hypoxia dataset we used
only the day 10 data for comparison as this was the time
point where optical density reached its plateau (corresponding to
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Non-Replicating Persistence stage 2) (Wayne and Hayes, 1996).
Wayne and Hayes (1996) report that the optical density plateau
corresponds to dye discoloration and therefore we expected that
data collected from this time point would be most comparable to
our data. Following Voskuil et al., a gene was classified “up” or
“down” if the intensity was at least 1.6-fold different compared
to a log-phase culture (as specified for “moderately induced or
repressed” transcripts). Otherwise the gene was declared “not-
called.” Though experimental conditions were similar, there were
some notable differences between the setup of Voskuil et al.
and our own: they used Mtb strains H37Rv and clinical isolate
1,254 whereas we have used only strain CDC1551, they excluded
methylene blue from their hypoxia cultures whereas we have
included it, they used 2-color hybridizingmicroarrays tomeasure
gene expression whereas we have used RNA-seq, for log-phase
cultures they used a 7H9 medium excluding oleic acid and
catalase whereas we have included these additives, and they
started their hypoxia cultures at OD 0.004 whereas we have
started ours at 0.001. Three technical replicates were available
from this dataset.

From the published PBS starvation model data (Betts et al.,
2002) we used the 96 h time point as this was the closest available
(in h) to our sampling time point at 72 h. We used the list of
differentially regulated genes as provided in their supplement
data (genes not on this list were considered “not-called”). Though
experimental conditions were similar, there were some notable
differences between the setup of Betts et al. and our own: for
log-phase cultures they used a 7H9 medium excluding oleic acid
whereas we have included this additive, and for PBS starvation
cultures they excluded Tween-80 whereas we have included it to
reduce bacterial clumping. Three replicates were available from
this dataset.

We applied our RET to find enriched regulons in each of
the literature datasets using the same TF overexpression dataset
(Turkarslan et al., 2015). We used the same cutoff for adjusted
p-values to define enriched regulons.

Distribution of Code and Datasets
Code to replicate the performed analysis (except for analysis of
the qPCR data) is available as a repository on GitHub (https://
doi.org/10.5281/zenodo.1013210) under the MIT license. Code
was written in a combination of R, Python3, bash, and makefile.
The raw reads and gene expression summary data are available
in the Gene Expression Omnibus (GSE104599). Note that the
raw data for the 14 additional samples added to improve
the dispersion estimate of Deseq2 are included in the GEO
submission. However, summary data for these additional samples
are not provided as this analysis is ongoing.

RESULTS

RNA-seq revealed the upregulation of a total of 462 and 337
M. tuberculosis genes (with 185 genes in the intersection)
during progressive hypoxia and nutrient starvation, respectively,
relative to exponential growth. Conversely, 490 and 262 genes
(153 genes in the intersection) were downregulated during

M. tuberculosis exposure to progressive hypoxia and nutrient
starvation, respectively (Supplementary Data Sheet 1).

Since high-throughput techniques such as RNA-seq may be
prone to systematic variation and biases, we tested a subset of
genes by RT-qPCR using the same experimental samples. Overall,
RT-qPCR yielded similar results to RNA-seq (Figure 1). A few
genes showed somewhat reduced magnitudes of differential
expression using RT-qPCR but the overall trend is strong
(R2 = 85% for hypoxia, R2 = 81% for nutrient starvation—using
the y= xmodel to compute the residual sum of squares).

In order to identify TFs that may play an important
role in M. tuberculosis adaptation to progressive hypoxia and
nutrient starvation, we used the large dataset published by
Turkarslan et al. (2015), in which the authors measured global
M. tuberculosis gene expression following overexpression of
209 different TFs, and applied our RET to our RNA-seq data
from each stress condition. We found that 17 TF regulons
were enriched in the hypoxia gene set and 16 TF regulons
were enriched in the nutrient starvation dataset (Supplementary
Data Sheets 2, 3). A total of 12 TF regulons were enriched
in both conditions (Table 1). The induction of 4 regulons was
accompanied by concomitant upregulation of the corresponding
TF (sigE, whiB3, and sigH, Rv1049). However, five regulons were
upregulated in each stress condition while their corresponding
TFs were significantly downregulated (whiB5, Rv0023, Rv0757,
Rv0818, and sigC), and the downregulation of one regulon
was accompanied by significantly increased expression of its
TF (Rv2887). The remaining two TFs (Crp, Rv0081) were not
expressed in the same direction under each of the stresses though
their regulons were upregulated (mu-score> 0). Notably, in both
stress models and both datasets, the regulons were expressed in
the same direction (ie mu-score was always either positive or
negative).

We next applied our RET to previously published microarray
datasets describing M. tuberculosis transcriptome changes
following exposure to progressive hypoxia (Voskuil et al., 2004)
and nutrient starvation (Betts et al., 2002). Twelve regulons,
including the DosR regulon, were enriched in the previously
published hypoxia dataset, and 19 regulons were enriched in
the nutrient-starvation dataset (Supplementary Data Sheets 4,
5). Three regulons were commonly enriched in both conditions
(Table 2). All three were also found to be enriched in the same
directions in our RNA-seq data (Table 1).

DISCUSSION

Recently, there has been significant interest in targeting
phenotypically tolerant M. tuberculosis to shorten anti-TB
therapy (Gold and Nathan, 2017). However, the molecular
mechanisms underlying mycobacterial antibiotic tolerance
remain to be elucidated (Gold and Nathan, 2017). An improved
understanding of the regulatory pathways governing antibiotic
tolerance in M. tuberculosis may yield novel strategies to
accelerate eradication of infection. In particular, M. tuberculosis
TFs regulating antibiotic tolerance during infection-relevant
stress conditions may represent attractive targets for drug
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FIGURE 1 | Comparison of RNA-seq and RT-qPCR methodologies. Each data point represents a single gene. The x-axis shows the mean expression fold change of

each gene in hypoxia (A) or PBS nutrient starvation (B) relative to 7H9 using the RNA-seq methodology (and inferred with DESeq2). The y-axis is the same

measurement (mean 11CT ) but using the RT-qPCR methodology to measure gene expression. The red line is y = x. Genes were hand-selected based on the

RNA-seq data.

TABLE 1 | Regulons showing significant enrichment using our collected RNA-seq data.

TF name Hypoxia mu-score Hypoxia TF log2FC PBS mu-score PBS TF log2FC TF Description (NCBI)

Rv0022c 0.63 −1.78 0.57 −0.94 Transcriptional regulator WhiB-like WhiB5

Rv0023 0.50 −3.23 0.74 −1.55 Transcriptional regulator

Rv0081 0.50 0.85 0.66 −1.96 ArsR family transcriptional regulator

Rv0757 0.72 −0.10 1.00 −0.31 OmpR family two-component system response regulator

Rv0818 0.58 −1.12 0.62 −1.09 Transcriptional regulator

Rv1049 0.79 0.79 0.65 1.48 Transcriptional repressor

Rv1221 1.00 3.65 1.00 3.49 RNA polymerase sigma factor SigE

Rv2069 1.00 −0.84 0.75 −0.07 RNA polymerase sigma factor SigC

Rv2887 −0.71 2.20 −0.84 1.33 Transcriptional regulator

Rv3223c 0.57 2.73 0.46 1.27 RNA polymerase sigma factor SigH

Rv3416 0.44 2.20 0.56 2.80 Transcriptional regulator WhiB-like WhiB3

Rv3676 0.78 0.04 0.75 −0.41 Transcriptional regulator Crp

For each dataset, mu-scores are as defined in the Methods section. log2FC = log (base 2) of the fold change in read counts for the TF itself relative to log-phase growth.

development, as it may be possible to disturb TF-DNA binding
and inhibit the tolerant state with sufficient specificity to avoid
human toxicity. As proof of concept, the novel compound
SMARt-420 was recently shown to sensitize M. tuberculosis
to ethionamide by inhibition of a transcriptional repressor
(Rv0078) of an ethionamide-activating enzyme (Rv0077c)
(Blondiaux et al., 2017). Additionally, elucidation of M.
tuberculosis stress adaptation strategies may yield insight into the
selective susceptibility of the organism to the key sterilizing drug
pyrazinamide during anaerobic incubation (Wade and Zhang,
2004).

In this study, we have identified several TFs and regulons
of potential interest in the adaptation of M. tuberculosis to
hypoxia and nutrient starvation. Perhaps most intriguing are
those regulons responding to both stresses (Table 1), as thesemay
represent important components of a universal M. tuberculosis
stress response. We speculate that at least some of these
regulatory pathways may be involved in the development of

antibiotic tolerance, which is a common phenotypic feature of
M. tuberculosis exposed to each condition.

There are several potential explanations for the discordance
we observed between mu-scores and log2-fold-change for
certain TF/regulon pairs (i.e., different expression directions
for a TF and its corresponding regulon). The regulons
with large mu-scores but with no change in or opposite
changes in the corresponding TF transcript levels may undergo
a post-translational modification, becoming more (or less,
in the case of Rv2887) active during the stress condition
relative to nutrient-rich broth. Well-described mechanisms for
changes in the activation status of TFs include undergoing a
chemical/conformational change [e.g., phosphorylation (Roberts
et al., 2004) or binding of ligands (Pyles and Lee, 1996)] or a
change in the activation of protein partners (Song et al., 2003).
In fact, this hypothesis has been described in the case of CRPMT

(Rv3676), as discussed below. Another possible explanation for
these discrepancies is the potential loss of correlation between
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TABLE 2 | Regulons showing significant enrichment in two previously published gene expression datasets collected from a hypoxia and a PBS-starvation model.

TF name Hypoxia mu-score Hypoxia TF log2FC1 PBS mu-score PBS TF log2FC2 TF description (NCBI)

Rv0023 0.64 −0.55 0.66 −0.73 Transcriptional regulator

Rv3223c 0.62 0.59 0.53 −0.33 RNA polymerase sigma factor SigH

Rv3676 0.47 −0.47 0.60 0.21 Transcriptional regulator Crp

mu-scores are as defined in the Methods section. log2FC = log (base 2) of the fold change in fluorescence for the TF itself relative to log-phase growth. 1Data from Voskuil et al. (2004);
2Data from Betts et al. (2002).

transcript levels and protein levels due to heterogeneity in protein
degradation rates or because transcriptional changes precede
changes in protein levels.

The gene rv3676, also known as crp [cyclic adenosine
monophosphate (cAMP)-responsive protein], is known to
encode a TF (CRPMT) that binds cAMP. We found that
its regulon was upregulated (positive mu-score) in both our
RNA-seq data and in the previously published microarray
datasets under both hypoxia and nutrient starvation conditions
(Tables 1, 2). Previous studies have highlighted the considerable
overlap between CRPMT-regulated genes and theM. tuberculosis
transcriptional responses to hypoxia and PBS (Bai et al., 2005).
While CRPMT has some activity without bound cAMP, this ligand
increases the affinity of CRPMT for DNA (Bai et al., 2005). This
findingmay explain our observation that CRPMT transcript levels
are similar or downregulated under the two stress conditions
studied while the CRPMT regulon is upregulated. It has also
been noted that many of the known adenylate cyclases (ACs),
which synthesize cAMP, are upregulated during hypoxia and
PBS starvation (Bai et al., 2011). Though cAMP levels do not
appear to have been measured inM. tuberculosis during hypoxia
or nutrient starvation, our results would fit well with a model
where hypoxia and nutrient starvation trigger an increase in the
levels of cAMP (possibly through upregulation of ACs) leading
to increased activity of CRPMT and expression of its regulon. In
vivo, an M. tuberculosis recombinant strain deficient in CRPMT

was shown to have a significant growth defect in the lungs and
spleens of BALB/c mice (Rickman et al., 2005).

The SigH (Sigma factor H) regulon was consistently
upregulated (positive mu-score) in our RNA-seq data and in
the previously published microarray datasets under both hypoxia
and nutrient starvation conditions (Tables 1, 2). However, sigH
itself was found to be slightly downregulated by Betts et al. (2002)
during nutrient starvation, yet upregulated in the other three
datasets. It is possible that differences in the experimental setups
could account for the discrepancy with the Betts et al. dataset
(see Methods section for a summary of these). Additionally, the
microarrays used by Betts et al. (2002) and Voskuil et al. (2004)
lacked a probe for the cognate anti-sigma factor H gene, rshA
(rv3221A), which obscures the role this anti-sigma factor may
have played in the observed activation of the SigH regulon. SigH
activation has been shown to increase expression of several genes,
including genes involved in maintaining redox equilibrium and
in protein degradation. sigH was shown to be dispensable forM.
tuberculosis growth in the lungs of C57BL/6 and C3H mice, but
was required for lung immunopathology and lethality (Kaushal

et al., 2002). On the other hand, an M. tuberculosis recombinant
strain deficient in sigH was found to be defective for survival
in the lungs of non-human primates and also induced less
immunopathology (Mehra et al., 2012).

The Rv0023 regulon was also upregulated (positive mu-score)
in both our RNA-seq data and in the previously published
microarray datasets under both hypoxia and nutrient starvation
conditions (Tables 1, 2). Expression of rv0023 was consistently
downregulated across the various stress conditions and in
the previously published datasets. Thus, Rv0023 may undergo
an increase in activation status during the transition from
exponential growth in nutrient-rich broth to growth-limiting
conditions. Rv0023 is not well-studied but is known to be
involved in theM. tuberculosis response to hypoxia (Rustad et al.,
2014). Our data also support a role for this protein in the M.
tuberculosis response to nutrient starvation. The rv0023 gene has
been predicted to be non-essential, although deficiency of this
gene appears to induce a growth defect (DeJesus et al., 2017).
Future studies to evaluate the role of rv0023 in M. tuberculosis
antibiotic tolerance and survival during stress conditions will
likely require extended incubation to cultivate a genetic deletion
strain and/or the use of conditional knock-down systems (Kim
et al., 2013; Rock et al., 2017).

Additionally, we found nine regulons (WhiB5, Rv0081,
Rv0757, Rv0818, Rv1049, SigE, SigC, Rv2887, WhiB3) to be
significantly enriched in our nutrient starvation and hypoxia
models, although they were not significantly induced in at
least one of the literature datasets. Rv0757 (PhoP) is a two-
component system regulator, which is phosphorylated by PhoR
(a histidine kinase) (Ryndak et al., 2008). It has previously
been linked to the M. tuberculosis hypoxia response (Galagan
et al., 2013), and our data suggests it is also activated
during nutrient starvation. Rv0818 (GlnR) has been previously
linked to nitrogen starvation. Our results suggest GlnR is also
activated during progressive hypoxia. The Rv2887 regulon was
the only one found to be downregulated despite increased
transcript levels of the TF during each of the stress conditions,
suggesting inactivation of Rv2887 during stress exposure. Loss-
of-function mutants in this TF have previously been associated
with resistance to novel antimycobacterials (Winglee et al.,
2015; Warrier et al., 2016), but not to the first line anti-
mycobacterial agents isoniazid and rifampicin, as measured by
MIC. However, it remains to be determined whether rv2887
deficiency is associated with M. tuberculosis antibiotic tolerance,
as measured by minimum bactericidal concentration or time-kill
kinetics.
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Somewhat surprisingly, we did not identify the DosR regulon
(as defined by the Turkarslan et al. data) as enriched (in either
direction) in our RNA-seq data (Supplementary Data Sheet
2). However, the DosR regulon was detected as significantly
enriched in the previously published microarray data using our
RET (Supplementary Data Sheet 4). Therefore, it appears the
DosR regulon was simply not expressed in our hypoxia model.
These discrepant findings may be attributable to methodological
differences between our study and that of Voskuil et al. (2004),
including the use of methylene blue in our study and the different
bacterial strains used in each study. Other potential contributing
factors are described in the Materials and Methods. Despite this,
we found that all the regulons enriched in both the published
hypoxia dataset and the nutrient starvation datasets (Rv0023,
SigH, and Crp) were also enriched in our analysis, underscoring
the similarities in experimental design between the previously
published studies and ours.

This study had several limitations. The TF overexpression
dataset we used (Turkarslan et al., 2015) may yield false
positive data since these genes may have been overexpressed at
superphysiological levels, leading to non-specific DNA binding
and transcription, or may have triggered a non-specific stress
response unrelated to the specific TF in question. Furthermore,
given that the TF overexpression dataset was collected only in
nutrient-rich broth, it is possible that we missed additional TFs,
which are only active under stress conditions. Notably, 62 (of the
209) regulons had 2 or fewer members suggesting these TFs may
have limited activity in nutrient-rich conditions. Additionally,
while oxygen is limited within the tuberculous lesions where
at least some bacilli are believed to reside in vivo (Via et al.,
2008; Hoff et al., 2011), broad nutrient starvation models have
been argued to simulate lack of some particular molecule that is
necessary for bacterial growth or virulence (Loebel et al., 1933).
However, a precise description of the factors that are lacking
is vaguely defined in the literature and a thorough cataloging
effort to determine the levels of available nutrients within these
lesions has yet to be undertaken, although a recent effort suggests
this may be possible with existing technology (Marakalala et al.,
2016).

With respect to the bioinformatics analysis, no null-model
of gene enrichment completely captures the true distributions
involved. Our choice assumes that at least one of the datasets
is “random” with fixed numbers of genes in each category,

thus motivating our use of the multivariate hypergeometric.
Another approach would be to allow the number of genes in each
category to vary (i.e., a multinomial distribution) and compute
the maximum p-value over all possible multinomial parameters,
analogous to Barnard’s test for 2D tables (Barnard, 1947).
However, this likely becomes computationally difficult with the
3 × 3 tables considered here. More sophisticated models could
include prior knowledge of gene regulation, though defining the
relevant statistical distributions to perform a hypothesis test may
require significant data gathering. Additionally, the Monte-Carlo
method we have used here to compute p-values for the RET is
computationally slow, suggesting another area for improvement
of this method possibly by modifying existing exact methods
(Mehta and Patel, 1983).

Our study highlights some specific M. tuberculosis TFs
that we believe are worthy of further study. Recombinant
strains deficient in these TFs should be tested for survival
during exposure to hypoxia, nutrient starvation, and other
physiologically relevant stress conditions. In addition, such
mutants should be tested for susceptibility to bactericidal
antibiotics, such as isoniazid, under these conditions to examine
the role of the missing TF/regulon in observed antibiotic
tolerance.
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