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Streptococcus gallolyticus subsp. gallolyticus Sgg (formerly known as S. bovis type
I) is the main causative agent of septicemia and infective endocarditis (IE) in elderly
and immunocompromised persons. It belongs to the few opportunistic bacteria, which
have been strongly associated to colorectal cancer (CRC). A literature survey covering
a period of 40 years (1970–2010) revealed that 65% of patients diagnosed with an
invasive Sgg infection had a concomitant colorectal neoplasia. Sgg is associated mainly
with early adenomas and may thus constitute an early marker for CRC screening. Sgg
has been described as a normal inhabitant of the rumen of herbivores and in the
digestive tract of birds. It is more rarely detected in human intestinal tract (2.5–15%).
Recent molecular analyses indicate possible zoonotic transmission of Sgg. Thanks to
the development of a genetic toolbox and to comparative genomics, a number of
factors that are important for Sgg pathogenicity have been identified. This review will
highlight the role of Sgg pili in host colonization and how their phase-variable expression
contributes to mitigate the host immune responses and finally their use as serological
diagnostic tool. We will then present experimental data addressing the core question
whether Sgg is a cause or consequence of CRC. We will discuss a few recent studies
examining the etiological versus non-etiological participation of Sgg in colorectal cancer
with the underlying mechanisms.
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INTRODUCTION

Streptococcus gallolyticus belongs to the Group D streptococci, a large group of phenotypically
diverse bacteria known as the S. bovis/S. equinus complex (SBSEC), which consist of safe-
graded bacteria used in food-fermentation, commensal bacteria of the gut and opportunistic
pathogens in both humans and animals. About 15 years ago, a revised classification of this
streptococcal group has been proposed (Poyart et al., 2002; Schlegel et al., 2003), but the new
taxonomy is still not completely adopted by the scientific community, especially the clinicians,
resulting in confusing names in the literature. The currently admitted classification based on
multilocus sequence typing (MLST) data defines seven subspecies: Streptococcus gallolyticus subsp.
gallolyticus (Sgg), S. gallolyticus subsp. macedonicus (Sgm), S. gallolyticus subsp. pasteurianus
(Sgp), Streptococcus infantarius subsp. infantarius (Sii), Streptococcus lutetiensis, Streptococcus
alactolyticus and Streptococcus equinus (Jans et al., 2015). Sgg is an opportunistic pathogen
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causing septicemia and endocarditis in elderly persons.
Intriguingly, several clinical studies have demonstrated a strong
association between invasive infections with Sgg and colon
neoplasia in humans (Boleij et al., 2011). Colorectal cancer (CRC)
is firstly a genetic disease that develop over several years involving
a series of genetic changes (i.e., somatic mutations and epigenetic
modifications) known as the adenoma-carcinoma sequence.
Emerging studies have closely linked CRC development with
gut microbiota changes (Braten et al., 2017; Flemer et al., 2017;
Gao et al., 2017; Lucas et al., 2017). Earlier studies indicated a
strong correlation between CRC and intestinal colonization by
single bacterial species, such as colibactin-producing Escherichia
coli, toxin-producing Bacteroides fragilis, Fusobacterium spp.
and Streptococcus gallolyticus subspecies gallolyticus (Sgg).
Sgg is commonly found in the flora of herbivores’ rumen,
and therefore transmission from animal to human is highly
suspected. In this review, we will discuss the specific traits that
make Sgg a successful opportunistic pathogen in humans. We
will then ask the million-dollar question whether Sgg is a cause or
consequence of CRC. Recent evidence supporting the oncogenic
role of Sgg but also evidences supporting the beneficial role of
tumor microenvironment for Sgg outgrowth will be discussed.

S. gallolyticus subsp. gallolyticus (Sgg) Is
an Opportunistic Pathogen
Sgg is a normal inhabitant of the gastrointestinal tract of different
mammalian herbivores and birds. This bacterium was first
isolated from Koala feces most probably because Sgg is able to
degrade tannins, which are highly polar polyphenolic molecules,
present in high quantity in eucalyptus leaves (Osawa, 1990).
S. gallolyticus owes its name to its capacity to decarboxylate
gallate, an organic acid derived from tannins hydrolysis (Osawa
and Sasaki, 2004). S. gallolyticus can also be found outside the
animal host as a saprophyte (Chamkha et al., 2002; Braten
et al., 2017; Flemer et al., 2017; Gao et al., 2017; Lucas et al.,
2017). Sgg was also detected in the human intestinal tract, but
remains a low-abundance species (2.5–15%). However, a recent
study conducted in Germany using sensitive PCR technique to
detect Sgg indicated a higher carriage rate estimated at 62.5%
in the stools of 99 healthy volunteers (Dumke et al., 2017).
Rural residency and animal contact were shown to increase the
detection rate of Sgg in humans further supporting the zoonotic
potential of this bacterium. Indeed, the first complete genome of
Sgg has provided several insights into the adaptation of Sgg to
the rumen of herbivores and its capacity to cause endocarditis
(Rusniok et al., 2010). In particular, it revealed the existence of
many genes involved in plant carbohydrates degradation, two
genes encoding tannases and a gene encoding a bile salt hydrolase
conferring the bacterium the ability to survive in the gut.
Metabolic pathways analysis indicates that Sgg should be able to
synthesize all 20 amino-acids and most vitamins, thus displaying
few nutritional requirements (Rusniok et al., 2010). Similar
to other pathogenic streptococci, Sgg encodes an extracellular
capsule exhibiting a high degree of similarity to S. pneumoniae
serotype 23F. It was proposed that the polysaccharide capsule
protects Sgg from the host innate immune responses, blocking

for example pro-inflammatory IL-8 response in epithelial cells
(Boleij et al., 2011). Surface proteins of pathogenic bacteria are
often involved in the colonization of host tissues. Three pilus
loci were revealed and further studied. To analyze the role of
these pili, a genetic toolbox was developed enabling inactivation
or overexpression of specific genes in Sgg UCN34 (Danne et al.,
2013).

Colonization of Host Tissues by
S. gallolyticus subsp. gallolyticus
Like their counterpart in Gram-negative bacteria, Gram-positive
pili have often been associated with bacterial attachment and
colonization of the host tissues (Danne and Dramsi, 2012). In Sgg,
pili were first revealed by ultrastructural studies from pigeons
virulent strains (Vanrobaeys et al., 1999). Molecular evidence was
provided a decade later in strain TX20005 when a genome-wide
analysis revealed the presence of three putative pilus operons
(Sillanpaa et al., 2009). The first complete genome of another
Sgg clinical isolate UCN34 confirmed the presence of three pilus
operons, namely pil1, pil2 and pil3 (Rusniok et al., 2010). Both
pil1 and pil3 are highly conserved loci among sequenced Sgg
strains, whereas pil2 appears more variable (Sillanpaa et al., 2009;
Rusniok et al., 2010). The first virulence factor characterized
in Sgg was the Pil1 pilus. This pilus was shown to mediate
Sgg binding to collagen types I and IV and in the bacterial
attachment to the heart valves, thereby initiating endocarditis
development (Danne et al., 2011). The Pil1-associated adhesin
was shown to bind to various types of collagen with different
affinities (Sillanpaa et al., 2009). More recently, the Pil1 adhesin
was shown to bind to blood factor XII with a very high affinity,
leading to activation of human contact system, which in turn
results in prolongation of the coagulation time (Isenring et al.,
2017). Manipulation of the host coagulation system by Sgg is
proposed to contribute to virulence. Interestingly, Sgg isolates
causing septicemia in pigeons are not able to bind to collagen
type I (Vanrobaeys et al., 2000). While collagen type I is the
major structural component of human heart, collagen type IV is
found in the basal lamina layer underneath epithelial tissue. It
is worth pointing out that colonic tumors display higher levels
of collagen IV compared to normal tissues (Skovbjerg et al.,
2009), which may explain a higher colonization of tumor sites
by Sgg.

Next, it was shown that the Pil3 pilus was involved in Sgg
binding to colonic mucus and thus promotes colonization of
murine distal colon (Skovbjerg et al., 2009; Martins et al., 2015,
2016). By immunofluorescence on intestinal tissues following
mice infection, Sgg was mainly found entrapped in the mucus
layer (Skovbjerg et al., 2009; Martins et al., 2015, 2016). The Pil3A
adhesin was shown to bind to MUC2 and MUC5AC mucins
(Skovbjerg et al., 2009; Martins et al., 2015, 2016). MUC2 mucin
is a major constituent of the adhesin mucus, whereas MUC5AC is
not detected under normal circumstances. Importantly, aberrant
and mislocalized expression of MUC5AC mucin in adenomas
and carcinomas has been reported (Bartman et al., 1999; Sylvester
et al., 2001; Bryant and Stow, 2004), as well as modification
of mucins glycosylation patterns during colonic carcinogenesis
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(Devine and McKenzie, 1992; Itzkowitz et al., 1992; Mann et al.,
1997; Jenab et al., 2001; Mesquita et al., 2003).

Pil1 and Pil3 pilus are expressed heterogeneously in Sgg
UCN34 population (Danne et al., 2014). In UCN34, two
distinct sub-populations were found: two-third of low-piliated
bacteria (PilLow), and one third of high-piliated bacteria (Pilhigh).
The molecular mechanism involved in this regulation has
been identified as a combination of phase variation and
transcriptional attenuation (Danne et al., 2014). Genetic evidence
demonstrated that this heterogeneous expression is dependent
on changes in the pil1 promoter region which includes a leader
peptide composed of a variable number of GCAGA repeats
followed by a transcription terminator. Addition or deletion
of a single repeat by slip-strand mispairing during replication
modifies the length of the regulatory leader peptide to be
translated. The synthesis of a longer leader peptide controls
the switch of pilus transcription through a destabilization of
a stem-loop transcription terminator upstream of pil1 genes
(Danne et al., 2014). Hyper-piliated bacteria were found more
prone to phagocytosis by human macrophages and had a
lower rate of survival in human blood compared to bacteria
expressing low levels of pili (Danne et al., 2014). Thus, it
was proposed that stochastic expression of the pilus in Sgg is
an advantageous bacterial feature insuring an optimal tissue
colonization and dissemination while evading the host immune
responses.

Pilus components of pathogenic streptococci were shown to be
promising vaccine candidates because they can induce protective
immunity in mouse models (Margarit et al., 2009; Soriani
and Telford, 2010). Since pili are often highly immunogenic
surface appendages, detection of specific anti-pilins IgG may
constitute an ideal serological diagnostic tool that could help in
discriminating patients with early adenomas from healthy people.
A small proof of concept study combining four pilus proteins
demonstrated some potential for this approach (Boleij et al.,
2012b). Using a larger cohort (576 CRC cases and 576 controls
matched by sex, age and providence), it was shown that only
14% of CRC patients displayed Sgg-specific IgG antibodies (Butt
et al., 2016). Detection of Sgg presence by measuring mucosal IgA
antibodies may increase the sensitivity of this test.

Colorectal Cancer and Microbiota
Colorectal cancer (CRC) is one of the most commonly diagnosed
tumors with a high mortality rate (Ferlay et al., 2015). The
global burden of CRC is expected to increase by 60% to more
than 2.2 million new cases and 1.1 million deaths by 2030
(Arnold et al., 2017). The majority of CRC cases are detected in
Western countries with an incidence increasing every year, which
correlates with population aging.

CRC development is a complex multi-factorial process
occurring over many years as the result of an accumulation
of genetic and epigenetic alterations in proto-oncogenes,
tumor suppressor genes, and/or DNA repair genes, leading to
transformation of normal colonic epithelium into glandular
structures called adenocarcinomas (Fleming et al., 2012). The
underlying causes of CRC are complex and heterogeneous. Both
genetic and environmental factors can influence the initial steps

and/or progression of CRC, which complicates the study of the
disease etiology.

Depending on the origin of mutations, CRC can be classified
as sporadic (70%) or inherited (30%). One key feature of both
sporadic and familial CRC tumors is their high degree of
genomic instability, arising from distinct molecular mechanisms
defining different tumor molecular subtypes: (1) chromosomal
instability (CIN), (2) microsatellite instability (MIS) resulting in
hyper mutated tumors, (3) epigenetic instability with alteration
in CpG island methylation (Muller et al., 2016). Despite this
important molecular heterogeneity, defined signaling pathways
are consistently altered in CRC tumors, including Wnt,
TGF-beta, PI3K, RTK-RAS and P53 signaling (The Cancer
Genome Atlas Network, 2012). Wnt pathway, which is crucial
for intestinal epithelium homeostasis, is indeed constitutively
activated in more than 90% of CRC tumors, and loss of function
mutations in its negative regulator APC are found in 80% of
non-hypermutated and 50% of hyper-mutated CRC tumors (The
Cancer Genome Atlas Network, 2012).

In addition to genetic alterations, the tumor
microenvironment plays a critical role in CRC development
and important contributing factors are linked to nutrition,
inflammation, epigenetics modifications and gut microbiota. The
gut microbiota is currently considered as an organ which plays
a crucial role in regulating host intestinal homeostasis through
its capacity to modulate several biological processes including
barrier, immunity and metabolic functions. A combination of
external factors can influence microbial composition, including
host genetics, diet, lifestyle, and environmental factors. These
perturbations in the microbiota shift influence the balance
between healthy and carcinogenesis. Alterations of the colon
microbiota is recognized as an important player in the initiation
and progression of CRC (Schwabe and Jobin, 2013 #337;
Gagniere et al., 2016 #364; Braten et al., 2017; Flemer et al., 2017;
Gao et al., 2017; Lucas et al., 2017). In addition, microbiota can
modulate cancer therapy by its extensive metabolic capacity and
profound immunomodulatory effects (reviewed by Pope et al.,
2017 #462).

A critical question regarding CRC associated bacteria is
whether they represent a consequence of altered host mucosal
tissues or if the bacteria by themselves can have an oncogenic or
pro-tumoral effect (Sears and Garrett, 2014; Raskov et al., 2017).
Using microbiota transfer experiments in various CRC animal
models, several studies have clearly shown that cancer-associated
microbiota plays a role in cancer progression (Couturier-Maillard
et al., 2013). Depletion of the intestinal bacterial microbiota in
mice using antibiotics reduces the risk of colon cancer (Schwabe
and Jobin, 2013 #337). Several molecular mechanisms have been
proposed to explain bacteria-induced pro-tumoral effects: (i)
induction of chronic inflammation; (ii) bacterial transformation
of host metabolites into carcinogens; (iii) expression of specific
bacterial factors such as toxins endowed with oncogenic
properties, (iv) barrier failure (Schwabe and Jobin, 2013 #337;
Gagniere et al., 2016 #364). A few bacterial species have been
identified as playing a role in colorectal carcinogenesis such
as Fusobacterium nucleatum (Fn), enterotoxigenic Bacteroides
fragilis (ETBF), colibactin- and genotoxin-producing Escherichia
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coli, Enterococcus faecalis, Clostridium septicum (Gagniere et al.,
2016 #364).

Both Fn and ETBF were shown to alter the Wnt/β-catenin
signaling pathway. F. nucleatum was shown to adhere to and
invade colonic cells through its unique surface adhesin FadA
(Rubinstein et al., 2013). FadA binds to the host cell receptor
E-cadherin promoting attachment and invasion of epithelial
cells by Fn. FadA binding to E-cadherin leads to activation
of β-catenin signaling (Bryant and Stow, 2004), resulting in
increased cell proliferation (Rubinstein et al., 2013). ETBF
are prevalent in the colon mucosa of CRC patients and able
to modulate the mucosal immune responses and to induce
epithelial cell changes (Sears et al., 2014; Boleij et al., 2015;
Purcell et al., 2017). It was shown that ETBF secrete a zinc-
dependent metalloprotease toxin called BFT which cleaves
E-cadherin, thus causing nuclear translocation of β-catenin,
increased c-Myc expression and cell proliferation (Wu et al.,
2003). Of note, Helicobacter pylori, which is the sole bacterium
clearly responsible for gastric cancer development, activates
the β-catenin pathway resulting in increased cell proliferation
(Parsonnet et al., 1991; Franco et al., 2005). H. pylori strain
specific CagA protein is translocated into the host cell cytoplasm
by a type IV secretion pilus where it interacts with tyrosine
kinase c-Met receptor and its co-receptor CD44, leading to
β-catenin activation and cellular proliferation (Suzuki et al.,
2009; Bertaux-Skeirik et al., 2015). Besides CagA, several other
mechanisms leading to β-catenin activation have been described
in H. pylori altering the expression of Wnt ligands (Kirikoshi
et al., 2001), activating Wnt receptors (Gnad et al., 2010),
suppressing GSK3β (Sokolova et al., 2008; Nakayama et al., 2009),
interfering with β-catenin/TCF4 complex by down-regulating the
gastric tumor suppressor Runx3 (Liu et al., 2012), and interacting
with E-cadherin to disrupt the E-cadherin/β-catenin complex
(Murata-Kamiya et al., 2007) highlighting the importance of this
signaling pathway in cancer development.

Epidemiological Association Between
CRC and S. gallolyticus subsp.
gallolyticus
Sgg is an important cause of endocarditis, an inflammation of
the inner layer of the heart (the endocardium) (Hoen et al.,
2002). A relationship between Sgg-induced endocarditis and
CRC was established for the first time by McCoy and Mason
(1951). Later on, several epidemiological studies confirmed this
association ranging from 47 to 85% between Sgg and CRC,
depending on the techniques used for Sgg detection (Klein
et al., 1977; Waisberg et al., 2002; Kok et al., 2007; Gupta
et al., 2010; Corredoira et al., 2015; Chand et al., 2016).
Most of these studies were performed on a selected cohort of
patients with a history of Sgg bacteremia/endocarditis. A recent
molecular analysis of tumoral and adjacent normal tissues from
unselected CRC patients by quantitative PCR using Sgg-specific
primers showed that about 74% of tumor tissue and 47% of
adjacent normal tissues were positive to Sgg (Kumar et al.,
2017). In striking contrast, another study on unselected CRC
patients showed a much lower prevalence using quantitative

real-time PCR. Only 6 out of 190 patients included (3.2%)
were positive for Sgg (Andres-Franch et al., 2017). Nevertheless,
the six positive cases were all from tumor tissue samples,
while none of the normal mucosa samples presented Sgg DNA
(Andres-Franch et al., 2017). These contradictory results either
result from differences in the sampled population, but more
likely from differences in the methodology used to detect
Sgg (site of detection, number of samples, sample processing,
conservation, enrichment of Sgg in specific medium, primers,
qPCR techniques).

A recent comparison of colorectal neoplasms associated to
Clostridium septicum (Cs) to Sgg showed several differences
in clinical presentation, underlying conditions, prognosis and
long-term follow-up (Corredoira et al., 2017). Sgg positive cases
were associated with advanced (52.3% vs. 5.2% for Cs) and
non-advanced adenomas (28.1% vs. 0% for Cs) and the tumor
was located mostly in the distal colon (65.6%) but also in the
cecum/ascending colon (23.4%) and transverse colon (10.9%). In
contrast, Cs positive cases were mostly associated with advanced
neoplasia/invasive carcinoma (94.7% vs. 19.5% for Sgg) that were
mostly located in the cecum/ascending colon (73.7%). These
differences suggest that each bacterium (here Cs or Sgg) affects
differently tumor development and that Sgg may play a role at
the very early steps of CRC development. This hypothesis is in
line with earlier observation that the majority of patients with Sgg
positive endocarditis had asymptomatic colorectal tumors that
were occasionally benign adenomas (Klein et al., 1977). Since the
publication of the first complete genome of Sgg strain UCN34
(Rusniok et al., 2010), molecular studies were undertaken to
determine if Sgg is a cause or a consequence of CRC. It is also
possible for both scenarios to co-exist (Figure 1).

Sgg as a Promoter of Colorectal Cancer
In favor of an etiological role of Sgg in CRC, the first experimental
evidence that S. bovis could accelerate cancer development was
reported in AOM-treated rats using S. bovis strain NCTC 8133
through increased inflammatory pathways (Ellmerich et al.,
2000). However, following revision of S. bovis classification the
strain NCTC 8133 was shown to belong to S. bovis type II/I now
renamed S. infantarius (Biarc et al., 2004). In 2010, a molecular
study demonstrating a significantly higher detection of Sgg in
human neoplastic tissues versus normal adjacent tissue from the
same patient was published (Abdulamir et al., 2010). It showed
that bacterial colonization was accompanied by mRNA increase
of genes encoding inflammatory molecules such as IL-1, COX-2,
and IL-8; The authors proposed that this specific inflammatory
response may drive the development of CRC (Abdulamir et al.,
2010). A very recent study demonstrated that Sgg strain TX20005
promotes colorectal tumor development through increase of
epithelial cell proliferation (Kumar et al., 2017). Using in vitro
cell lines, Kumar et al. (2017) first showed that Sgg TX20005
increased cell proliferation in the following human colon cancer
cell lines: HCT116, HT29, LoVo, but not in other colonic cell
lines such as SW480, SW1116, or normal colonic cells CCD
841 CoN, FHC. Increased proliferation in responsive cell lines
was associated with upregulation of β-catenin levels and its
oncogenic downstream targets (c-Myc, cyclin D). Furthermore,
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FIGURE 1 | Two working models explaining Sgg association with colorectal cancer (CRC). (1) Sgg as a passenger bacterium: In pre-neoplastic epithelium, activation
of the Wnt pathway leads to the downregulation of bile acids transporter Slc10A2 resulting in accumulation of bile acids- which in turn activates a specific
“bacteriocin” enabling Sgg to kill related commensals (e.g., Enterococci). This local microbial imbalance can contribute to the development of CRC. (2) Sgg as a
driver bacterium: High colonization of Sgg in pre-malignant epithelium can induce specific inflammatory responses (IL-1, COX-2, and IL-8) and increased cell
proliferation associated with upregulation of β-catenin levels and its oncogenic downstream targets (c-Myc and cyclin D), thus accelerating transformation from
pre-malignant to malignant epithelium.

using murine models, Kumar et al. (2017) showed that HCT116
cells cultured in vitro with Sgg and then injected into nude mice
developed larger tumors as compared to control mice injected
with HCTT16 co-cultured with non-pathogenic Lactococcus
lactis MG1363. Secondly, in AOM-induced murine model of
CRC, mice orally treated with Sgg displayed higher number of
tumors, higher level of dysplasia, increased cell proliferation and
β-catenin level in colon crypts as compared to control mice
treated with L. lactis bacteria (Kumar et al., 2017). Interestingly,
a preeminent early mutation in CRC is in the tumor suppressor
gene APC found in 80% of human sporadic colon cancers
and also responsible for the familial adenomatous polyposis
syndrome, one of the main forms of hereditary colon cancer.
Apc loss leads to the constitutive activation of Wnt/β-catenin
pathway, which in turn induces cell proliferation and rapid loss
of epithelial differentiation (reviewed in Zhan et al., 2017). Future
studies will certainly aim at unraveling the molecular bases of
Sgg-induced up-regulation of β-catenin in responsive cells.

Sgg Benefits From the Tumor
Microenvironment
Consistent with intestinal dysbiosis reports in CRC, metabolomic
studies revealed that CRC microenvironment is strongly altered
when compared to normal mucosal environment (Hirayama
et al., 2009). Key features indicate a drastic decrease in glucose
and pyruvate levels and an increase in lactate (low pH),
amino acids, lipids, and fatty acids. Growth of Sgg in spent
media of human malignant colonic cells (Caco-2 and HCT116)
was investigated and compared to other intestinal bacteria. It
was shown that particular metabolites derived from increased
glycolysis in tumor cells, such as F6P, 3PG or alanine, benefit to

Sgg for its own multiplication (Boleij et al., 2012a). In line with
these findings, S. bovis was found to be one of the most efficient
bacteria to utilize glucose in an experimental human in vitro gut
fermentation model (Egert et al., 2007).

In addition, it is tempting to hypothesize that interactions
mediated by both Pil3 and Pil1 with colonic mucins expressed in
tumors such as MUC5AC and collagen type IV, respectively, can
further increase Sgg preferential colonization of dysplastic tissues
within the colon.

Finally, we recently showed that Sgg strain UCN34 is able to
produce a specific bacteriocin, named gallocin, which contributes
to enhance bacterial colon colonization in tumor bearing mice
(Aymeric et al., 2017). It was shown that gallocin is able to
inhibit the growth of closely related Enterococci commensals,
thus creating an appropriate colonization niche for Sgg. Gallocin
activity is strongly potentiated in the presence of secondary
bile acids such as deoxycholic and lithocholic acids, which are
known risk factors for CRC. By comparing Apc+/− mice and
their WT counterparts the authors showed that the presence of
intestinal polyps per se, was sufficient to enhance Sgg UCN34
colonization in a gallocin-dependent manner. Indeed, following
a one shot inoculation, Sgg UCN34 persisted for 3 months in
adenoma-bearing host, whereas it was progressively excluded
from the gut of healthy mice. This colonization advantage was
lost with the gallocin-deficient mutant. The authors further
unraveled a new link between Wnt pathway activation, an early
step in CRC development, and increased luminal concentration
of secondary bile acids by showing that Wnt activation resulted
in decreased expression of the apical bile acids transporter
Slc10A2 and reduced luminal bile acids reabsorption. Apc
mutation, increased carcinogenic secondary bile acids and
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SGG colonization may thus be part of a vicious pro-tumoral
triangle.

CONCLUSION

For more than 50 years, clinical studies have strongly linked the
presence of Streptococcus bovis biotype I, renamed Streptococcus
gallolyticus subsp. gallolyticus (Sgg), to CRC. The first direct
demonstration of the etiological role of Sgg isolate TX20005
in promoting CRC development was provided very recently
(Kumar et al., 2017). But Sgg has also been shown to behave
as a passenger bacterium benefiting from tumor metabolites
(Boleij et al., 2012a) and able to secrete a specific “bacteriocin”
that can kill closely related gut commensals (Aymeric et al.,
2017) thus enabling a better colonization of murine colon in
CRC-context. We thus conclude that Sgg is both a passenger
and a cancer promoting bacterium (Figure 1). But in order
to become a driver bacterium, Sgg first needs to colonize the
colon and it does so only if pre-malignant conditions exist. So
Sgg is not the principal cause of CRC but an auxiliary factor
accelerating the development of CRC. Ultimately, the strong
association of Sgg with CRC constitutes a solid argument to

recommend a systematic colonoscopy for assessment of occult
neoplasia in patients suffering of Sgg infections. Development
of new molecular tools for the sensitive and specific detection
of specific CRC-associated bacteria should help in the early
detection of subclinical colonic lesions but may also add a weapon
in the oncologists’ arsenal as demonstrated recently (Bullman
et al., 2017; Yu et al., 2017). A future area of investigation will be
to study the relationship between Sgg and host immunity, another
important player in CRC development.
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