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Host specialization is a key evolutionary process for the diversification and emergence
of new pathogens. However, the molecular determinants of host range are poorly
understood. Smut fungi are biotrophic pathogens that have distinct and narrow host
ranges based on largely unknown genetic determinants. Hence, we aimed to expand
comparative genomics analyses of smut fungi by including more species infecting
different hosts and to define orphans and positively selected genes to gain further
insights into the genetics basis of host specialization. We analyzed nine lineages of
smut fungi isolated from eight crop and non-crop hosts: maize, barley, sugarcane,
wheat, oats, Zizania latifolia (Manchurian rice), Echinochloa colona (a wild grass), and
Persicaria sp. (a wild dicot plant). We assembled two new genomes: Ustilago hordei
(strain Uhor01) isolated from oats and U. tritici (strain CBS 119.19) isolated from wheat.
The smut genomes were of small sizes, ranging from 18.38 to 24.63 Mb. U. hordei
species experienced genome expansions due to the proliferation of transposable
elements and the amount of these elements varied among the two strains. Phylogenetic
analysis confirmed that Ustilago is not a monophyletic genus and, furthermore, detected
misclassification of the U. tritici specimen. The comparison between smut pathogens
of crop and non-crop hosts did not reveal distinct signatures, suggesting that host
domestication did not play a dominant role in shaping the evolution of smuts. We
found that host specialization in smut fungi likely has a complex genetic basis: different
functional categories were enriched in orphans and lineage-specific selected genes.
The diversification and gain/loss of effector genes are probably the most important
determinants of host specificity.
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INTRODUCTION

Host specialization is commonly found among plant pathogens. Specialist pathogens are favored in
ecological contexts of restricted host species diversity, interspecific competition, and due to genetic
trade-offs in adaptation to different hosts (Barrett et al., 2009; Johnson et al., 2009). Moreover,
the co-evolutionary process itself is conducive to ever-increasing host specialization. The strong
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host selective pressure is likely to result in more specialized
pathogen lineages over time and phylogenetically restricted host
ranges (Gilbert and Webb, 2007; Johnson et al., 2009; Antonovics
et al., 2013).

The intimate interaction between plants and specialist
pathogens suggests that co-speciation should be common.
However, host shifts/jumps rather than co-speciation are the
main mode of pathogen speciation and a major route for disease
emergence (Giraud et al., 2008, 2010; de Vienne et al., 2013;
Choi and Thines, 2015). This raises intriguing questions such
as how do specialized pathogens shift and specialize on a novel
host, and which are the genetic determinants of host specificity.
Different hosts have different defense mechanisms, biochemical
composition, and associated microbiota to which pathogens
must adapt to in order to be able to infect, colonize, feed and
reproduce (Barrett and Heil, 2012; Haueisen and Stukenbrock,
2016). Hence, specialization to any specific host likely requires a
different set of adaptations.

Many pathogens show extraordinary genome plasticity
enabling the quick response to selection pressures imposed by a
new host (Plissonneau et al., 2017). Analysis of host adaptation
processes through comparative genomic studies showed that
gene gain/loss, gene family expansion/contraction, and adaptive
mutations were the most likely mechanisms across different
pathosystems (Ma et al., 2010; Raffaele et al., 2010; Burmester
et al., 2011; Baltrus et al., 2012; Kirzinger and Stavrinides,
2012; Grandaubert et al., 2015; Poppe et al., 2015; Yoshida
et al., 2016; Zhong et al., 2016). Given the genetic specificity
of each interaction, it is crucial to concurrently analyze a host-
specialized species and its most closely related species. Adding
more closely related species colonizing different hosts will likely
reveal genomic differences reflecting adaptations to the host
(Wollenberg and Schirawski, 2014).

Smut fungi are a relevant group of host specialized plant
pathogens. Despite the growing interest in smut diseases as
a threat to agriculture, edible delicacies, and biotechnological
applications (Feldbrügge et al., 2013; Toh and Perlin, 2016),
the genetic basis of host specialization in smut fungi remains
largely unknown. Species from distinct subdivisions of the
Basidiomycota are considered “smut” fungi. In this study,
we refer to smut diseases within the Ustilaginaceae family,
which comprises more than 600 species. Smut species infect
hosts from many angiosperm clades. However, most of smut
species are highly specialized on a single or a few host species,
affecting mainly members of the Poaceae family (Begerow et al.,
2004). Despite the restricted host range of smut pathogens,
closely related pathogens do not infect sister host species.
Such incongruence between host and pathogen phylogenies
suggests that smut fungi become specialized mostly following
host shifts within the Poaceae family (Begerow et al., 2004).
The estimated divergence dates of four smut pathogens from
agronomically important crops support the hypothesis that the
host specialization evolved after the speciation of the host, but
before the domestication of the host (Munkacsi et al., 2007).

Smut diseases are characterized by the production of a sooty
dark brown mass of teliospores (Bakkeren et al., 2008; Morrow
and Fraser, 2009). The life cycle comprises three genetically

and morphologically distinct phases: diploid teliospores, haploid
yeast like-cells and dikaryotic infective hypha (Piepenbring,
2009). Despite of their similarities, the mode of plant infection
and symptom development vary among smut species. For
example, Ustilago maydis, the causal agent of common smut
of maize and teosinte, infects all aerial parts of the host plant
(stems, leaves, tassels, and ears) and locally induces tumor
formation (Bölker, 2001; Matei and Doehlemann, 2016); while
most of smut species become systemic and the symptoms
occur only in floral tissues (Piepenbring, 2009). The route
of infection also varies among species, with some penetrating
through the ovary, coleoptile, leaves, roots, or young buds.
A common secondary symptom of many smut diseases is the
hypertrophy of specific host organs, forming tumor-like galls.
Other secondary symptoms described for some species are
changes in inflorescence and branching architectures (Ghareeb
et al., 2011), inducing the formation of multiple female
inflorescences in Sporisorium reilianum infecting maize (Ghareeb
et al., 2015) and tillering in S. reilianum infecting sorghum
(Matheussen et al., 1991).

In order to investigate the genetic basis of host specialization,
we performed a comparative genomics study of smut fungi,
including seven previously available genome sequences.
Additionally, we sequenced the genomes of two species isolated
from wheat and oats to increase the scope of the host range.
Hence, we compared a total of nine smut pathogens isolated from
eight distinct hosts, including seven isolates from domesticated
hosts (maize, barley, oats, wheat, sugarcane, Zizania latifolia)
and two species infecting non-crop hosts (Echinochloa colonum,
Persicaria sp.). The Persicaria sp. pathogen, Melanopsichum
pennsylvanicum, is one of the few Ustilaginaceae smut species
known to infect a dicot host (Sharma et al., 2014).

We compared the predicted effector content and the repertoire
of plant cell wall degrading enzymes among smut lineages.
Secreted effector proteins are key virulence factors in host
interactions, acting to suppress host defenses and manipulate the
physiology of the host (Kemen et al., 2015). Differences in effector
repertoire were associated with the host range of different groups
of pathogens (Kirzinger and Stavrinides, 2012; Feldbrügge et al.,
2013; Rovenich et al., 2014). Plant cell wall-degrading enzymes
play central roles in host penetration and nutrient acquisition
during fungal infections. The arsenal of those enzymes also
varies among fungi, reflecting their lifestyles and host preferences
(King et al., 2011; Zhao et al., 2014). Zhao et al. (2014), for
example, found that fungal pathogens of dicots often contain
more pectinases than those infecting monocots. We also screened
for genes with signatures of positive selection as different host
species likely impose distinct selection pressures on the associated
pathogen. Finally, we also analyzed evidence for species-specific
genes as potential contributors to host specialization.

MATERIALS AND METHODS

Strains, DNA Extraction and Sequencing
For genome sequencing, we selected U. hordei (strain Uhor01)
isolated from an oats field in Southern Brazil and the U. tritici
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from CBS-KNAW Westerdijk Fungal Biodiversity Institute
(strain CBS 119.19). Yeast-like cells were obtained from U. hordei
teliospores according to Albert and Schenck (1996). Uhor01 is
deposited under FioCruz Culture Collection accession number
CFRVS 40435. For genomic DNA extractions, single colonies
from both species were grown in YM liquid medium (0.3% yeast
extract, 0.3% malt extract, 0.5% soybean peptone, 1% D-glucose),
at 25◦C overnight, in an orbital shaker at 250 rpm. Genomic
DNA was extracted using the Genomic-tip 20G kit (Qiagen, Inc.),
according to the manufacturer’s instructions for yeasts. A total of
10 µg of DNA of each sample was sent to the GCB facility at Duke
University (United States), where a single large insert library
(15–20 kb) was constructed and sequenced in one SMRT cell (P5-
C3 chemistry) using the PacBio RS II (Pacific Biosciences, Inc.)
sequencing platform. DNA from the same extraction was also
used for Illumina paired-end library construction and sequencing
using HiSeq2500 platform with 2 × 125 cycles at Center of
Functional Genomics (ESALQ/USP, Brazil). About 10.4 Gb of
Illumina and 1.6 Gb of Pacbio data were obtained for U. hordei
and about 4.7 Gb of Illumina and 0.5 Gb of Pacbio data were
obtained for U. tritici.

The genome and annotation files of U. maydis, U. hordei,
S. reilianum were retrieved from MIPS1. The sequences of
U. esculenta, U. trichophora, S. scitamineum were retrieved from
NCBI2, and sequences of M. pennsylvanicum from Senckenberg

1http://mips.helmholtz-muenchen.de/
2http://www.ncbi.nlm.nih.gov

Repository3. Among the genomes of S. scitamineum strains
sequenced, we used the best assembly from SSC39B strain in our
analyses (Taniguti et al., 2015), since low intraspecific variability
was reported worldwide (Braithwaite et al., 2004; Raboin et al.,
2007), and all strains were isolated from sugarcane hosts (Que
et al., 2014; Dutheil et al., 2016). More information about the
smut and outgroup species used in the present study are listed
in Table 1.

Genome Assembly and Synteny
We evaluated multiple approaches for the de novo assembly of the
U. hordei and U. tritici genomes. A hybrid assembly using SPAdes
v. 3.10.1 (Bankevich et al., 2012) and AHA from the SMRT
Analysis 2.3.0 (Chin et al., 2013) produced the best assembly
metrics for both species. SPAdes was run for Illumina reads with
the parameters “-k 23,31,39,47,55,63,71,79,87,95” and “–careful”.
AHA was run using the SPAdes assembly and PacBio reads with
normal coverage parameters (default). To further improve the
assembly, PBJelly from the PBSuite v15.8.24 (English et al., 2014)
was used to fill intra-scaffold gaps in the AHA hybrid assembly
through the alignment of long PacBio reads. For running PBJelly
we set up the minimum number of gaps to start to cover with
PacBio reads (–minGap = 1) and the blast aligner parameters
(-minMatch 8 -minPctIdentity 70 -bestn 1 -nCandidates 20 -
maxScore -500 -noSplitSubreads). Pilon v1.18 (Walker et al.,
2014) with the parameters “–mingap 1” and “–fix bases, gaps”

3http://dx.doi.org/10.12761/SGN.2014.3

TABLE 1 | List of analyzed Ustilaginomycotina species, strains, and genomes assemblies.

Abbreviations Species Strain Host/source Project number Reference

SMUTS UhoO Ustilago hordei Uhor01 Avena sativa (oats) PRJNA393983 This work

Utri Ustilago tritici syn. Tilletia
tritici (?)

CBS119.19 Triticum spp. (wheat) PRJNA400640 This work

Umay Ustilago maydis 521 Zea mays (maize) PRJNA1446 Kamper et al., 2006

UhoB Ustilago hordei Uh4857-4 Hordeum vulgare (barley) PRJEA79049 Laurie et al., 2012

Uesc Ustilago esculenta MMT Zizania latifolia (rice-relative) PRJNA263330 Ye et al., 2017

Utcp Ustilago trichophora RK089 Echinochloa colona
(wild grass)

PRJNA316802 Zambanini et al., 2016

Srei Sporisorium reilianum SRZ2 Zea mays (maize) PRJNA64587 Schirawski et al., 2010

Ssci Sporisorium scitamineum SSC39B Saccharum spp.
(sugarcane)

PRJNA275631 Taniguti et al., 2015

Mpen Melanopsichium
pennsylvanicum

Mp4 Persicaria sp.
(wild dicot plant)

PRJEB4565 Sharma et al., 2014

NON-SMUTS Mglo Malassezia globosa CBS7966 Human PRJNA18719 Xu et al., 2007

Msym Malassezia sympodialis ATCC42132 Human PRJEB417 Gioti et al., 2013

Pant Moesziomyces antarcticus
syn. Pseudozyma antarctica.

JCM10317 Lake sediment PRJNA302316 Morita et al., 2014

Paph Moesziomyces aphidis syn.
Pseudozyma aphidis

DSM70725 Aphid excretions PRJNA215967 Lorenz et al., 2014

Pbra Kalmanozyma brasiliensis
syn. Pseudozyma brasiliensis

GHG001 Larva intestinal tract PRJNA217085 de Castro Oliveira et al., 2013

Pflo Anthracocystis flocculosa
syn. Pseudozyma flocculosa

PF-1 Leaf epiphyte associated
with clover powdery mildew

PRJNA185206 Lefebvre et al., 2013

Phub Pseudozyma hubeiensis SY62 Deep-sea cold-seep clam PRJDB993 Konishi et al., 2013

? misclassification detected in this work.
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was also used to align Illumina short reads to the draft assembly
in order to correct single base errors, minor mis-assemblies
and to fill gaps. These Whole Genome Shotgun projects have
been deposited at DDBJ/ENA/GenBank under the accessions
NSHH00000000 and NSDP00000000. The versions described in
this paper are versions NSHH01000000 and NSDP01000000.

Pairwise genome dot plots were generated using the R-package
DECIPHER (Wright, 2016). Sequence homology was defined
using k-mer exact nucleotide matches. Hits were further chained
into blocks of synteny with default parameters.

Gene Prediction and Annotation
Genes in the genomes of U. hordei, U. tritici, U. esculenta,
and U. trichophora were predicted using Augustus v.2.5.5
(Stanke and Morgenstern, 2005). Protein sequences of U. maydis,
U. hordei, and S. scitamineum were used as extrinsic sources
of gene structure evidence to improve sensitivity of gene
predictions. For this, exonerate v.2.2.0 (Slater and Birney, 2005)
was used to generate hints from protein sequence alignments
(protein2genome option). Then, Augustus v.2.5.5 was run using
the hints file, complete gene model, and U. maydis as reference
species.

All predicted proteomes were annotated using InterProScan
v.5.19 (Jones et al., 2014). Pfam protein families, InterPro
domains, gene ontology (GO) classification, and metabolic
pathways were recovered (Supplementary File S1). The predicted
secretome was defined by the presence of a signal peptide and
absence of any transmembrane domain, using Phobius v.1.01
(Käll et al., 2004) and SignalP v4.1 (Bendtsen et al., 2004).
EffectorP was used to predict the effector repertoire from the
predicted secretome based on machine learning (Sperschneider
et al., 2016). Characterized effectors in smut species were
screened for orthologs and tblastn was used to search for
homologous regions in smut genomes. Previously available
transcriptomic data (Zhang et al., 2013; Taniguti et al., 2015; Ye
et al., 2017) were used to validate mispredicted candidate effector
genes using CLC Genomics Workbench V8.01 (CLC Bio).

The proteomes were also screened for CAZymes
(carbohydrate active enzymes) (Lombard et al., 2013) using
Hmmscan from the HMMER v3.1b2 package4 and the dbCAN
HMM profile database (Yin et al., 2012). The hmmscan-parser
script provided by dbCAN was used to select significant matches.
Searches for lipases were also performed with Hmmscan using
the “Lipase Engineering Database” (Fischer and Pleiss, 2003).
Putative peptidases were identified by using batch BLAST at
the MEROPS server (Rawlings et al., 2012). The secondary
metabolite biosynthesis clusters were predicted by AntiSMASH
web version 4.0.0 (Medema et al., 2011).

Distribution of euKaryotic Orthologous Group (KOG) terms
were performed for protein sets using the BLAST search online
tool against the eggNOG 4.0 database5. One-tailed Fisher’s exact
test for KOG enrichment were performed for orphan and
positively selected gene sets using the KOGMWU R package
(Dixon et al., 2015).

4http://hmmer.org/
5http://eggnog.embl.de

Repeats and Transposable Elements
De novo and homology-based identification of repeats were
performed using the RepeatModeler pipeline. A combined
repeat library was constructed concatenating the RepBase library
(release of August 2015) with the de novo repeat family
predictions. The combined repeat library was used as input for
RepeatMasker6.

Orthologous Groups
Orthologous and paralogous groups among the nine genomes
were determined using OrthoMCL with default parameters:
BLASTp e-value cutoff of 1e-5, percent match cutoff of 50, and
inflation index of 1.5 (Li et al., 2003). The output of OrthoMCL
was parsed to separate core and unique clusters, singletons,
single-copy, and one-to-one orthologous genes. Orphan genes
included singletons (genes not assigned to any OrthoMCL
group) and unique clusters (cluster of paralogs unique to one
species). For the phylogenetic tree reconstruction, OrthoMCL
was also performed including the genome of additional
Ustilaginomycotina fungi: Malassezia globosa, Malassezia
sympodialis, Pseudozyma antarctica, P. aphidis, P. brasiliensis,
P. flocculosa, P. hubeiensis (for references see Table 1).

Phylogenetic Tree
A total of 1,776 one-to-one orthologous proteins from 16
genomes (including non-smut species) were aligned using
MUSCLE v.3.6 (Edgar, 2004). Gblocks v.0.91b (Castresana, 2000)
was used to remove all gaps (−b5 = n) and blocks with length
smaller than 5 (−b4 = 5) in each alignment. After Gblocks
filtering, protein alignments smaller than 100 amino acids were
excluded. A total of 1,637 protein alignments were retained
and concatenated for a total 624,996 amino acid positions.
The best-fit amino acid substitution model for the data was
obtained using ProtTest v.3.4.2 (Darriba et al., 2011). The
model of LG+I+G+F was selected based on the likelihood
and Bayesian criteria. A maximum likelihood phylogenetic tree
was constructed using RAxML v.8.2.8 (Stamatakis, 2014) with
100 rapid bootstrap replicates. ASTRAL v.4.10.8 (Sayyari and
Mirarab, 2016) was used to score the RAxML super matrix
tree by each individual gene tree to provide the fraction of the
induced quartet trees that is present in the super matrix tree.
We compared the phylogenomic tree with the widely used ITS
(Internal Transcribed Spacer)-based tree using NCBI accessions
(see Supplementary File S1).

Positive Selection
A total of 4,374 protein-coding sequences with one-to-one
orthologs among the nine smut species were aligned with the
codon-aware aligner pal2nal v.14 (Suyama et al., 2006) and
gaps were removed from the final alignment. After filtering,
4,195 sequence alignments were retained. The protein sequences
were used to build a smut phylogenetic tree using the methods
described above. The ETE3-evol tool (Huerta-Cepas et al., 2016)
was used to automate codeml analysis (Yang, 2007). Sites-specific

6http://www.repeatmasker.org/
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and branch-sites models at each lineage were applied. For the
site-specific analysis, assuming variable selective pressures among
amino acid sites, we performed likelihood ratio tests (LRTs)
between two pairs of models: M2 (selection) against M1 (neutral)
and M8 (beta&ω) against M7 (beta), according to Yang et al.
(2000). Bayes Empirical Bayes (BEB) was employed to infer which
sites in the alignment are under positive selection (≥0.95). For
branch-site analyses, assuming variable selective pressures among
sites and branches in the phylogeny, we specified each lineage
as foreground branch at each round of analysis. For U. hordei
lineages, we also consider the species branch (named UhoOB) as
the foreground branch. LRTs was performed between the models
bsA (neutral/relaxation) and bsA1 (positive selection) and BEB
was used for detect significant sites (≥0.95), according to Zhang
et al. (2005).

SNP Detection Between U. hordei
Strains
The scaffolds from the genome assembly of the U. hordei strain
isolated from oats were aligned to the reference genome of
U. hordei strain isolated from barley using the NUCmer module
from MUMmer v3.0 (Kurtz et al., 2004). We used the repeat-
masked genomes to avoid repetitive regions. To find the set of
single nucleotide polymorphisms (SNPs) in the alignment, we
used the module “show-snps” with -Clr option to select only SNPs
in uniquely aligned sequence.

RESULTS

Genome Assembly of U. hordei and
U. tritici
We assembled the genomes of two smut species infecting
important crops (U. hordei from oats and U. tritici from wheat)
using a combination of Illumina and PacBio reads. The de novo
assemblies resulted in a genome size of 18.63 Mb assembled in
73 contigs ( = 500 bp) for U. tritici and 24.63 Mb assembled
in 2,200 contigs ( = 500 bp) for U. hordei. The assembly of
U. tritici had a higher degree of contiguity (N50 610 kb) than
U. hordei (N50 40 kb). A total of 7,892 and 6,776 protein-coding
genes were predicted in the U. hordei and U. tritici genomes,
respectively (Supplementary File S1). For both species, the two
mating-type loci (a and b) were each located on different scaffolds
(Figure 1).

Phylogenomics
To reconstruct the phylogeny of smut fungi we included seven
additional species from the subphylum Ustilagomycotina. One-
to-one protein orthologs were concatenated and used to build a
super-matrix tree. The super-matrix tree had a quartet support of
64.80% (i.e., 64.80% of all quartet trees induced from gene trees
were present in the super-matrix tree).

The phylogenomic tree showed that the genus Ustilago was
not monophyletic, clustering with members of the Sporisorium
Melanopsichum, Pseudozyma, and Kalmanozyma genera
(Figure 1). The dicot-infecting species, M. pennsylvanicum,

was closely related to the monocot-infecting pathogens in the
phylogenetic tree. The phylogeny of the smut fungi also did
not separate pathogens according to the wild or domesticated
status of their hosts. U. hordei was placed as the earliest diverging
species among the analyzed smut fungi.

Surprisingly, however, was the phylogenetic positioning of
U. tritici (former Tilletia tritici (Bjerk.) G. Winter, 1874) acquired
from the CBS-KNAW culture collection under the accession
CBS 119.19 (Figure 1). The CBS-KNAW U. tritici strain was
placed close to Sporisorium species and clustered apart from
U. tritici and Tilletia species in the ITS-based tree using NCBI
accessions (Supplementary File S1), suggesting misclassification.
Henceforward, we will refer to this strain by its CBS accession
number to avoid misinterpretation.

U. hordei Strains Comparison
A total of 17,454,837 bp (70.83%) of the U. hordei genome from
oats aligned to the U. hordei strain from barley, not taking
into account the repetitive regions that represents 25.12% of its
genome. Within the aligned regions, 54,935 SNPs were detected
which are scattered throughout the genome, although in distinct
density (Figure 2).

Genomic Synteny
Pairwise dotplot sequence comparisons showed more evident
syntenic relationship among high quality assembled genomes,
since fragmented genomes result in many tiny syntenic blocks.
Interestingly, conservation of long-range synteny was observed
between more distantly related species, such as S. reilianum –
U. maydis – M. pennsylvanicum (Figure 3A). More extensive
chromosomal rearrangements were observed between closely
related species, such as S. reilianum – S. scitamineum –
CBS119.19, suggesting that these events occurred after the species
diverged from the last common ancestor. Translocations and
inversions also occurred at mating-type harboring scaffolds
(Supplementary File S2). Despite of the fragmented assemblies
and transposable elements-rich scaffolds, small syntenic regions
were also observed between U. hordei strains (Figure 3B).

Comparative and Functional Genomics
of Smut Fungi
Ustilago hordei species showed the largest genomes among the
smut fungi, which ranged from 18.38 Mb in S. reilianum to
24.63 Mb in U. hordei (oats) (Table 2 and Figure 1). The
larger genome size in U. hordei species was also accompanied
by an increase in the repetitive elements content. In particular,
the content in transposable elements ranged from 0.61% in
the genome of CBS119.19 strain to 23.93% in U. hordei
(oats). The predicted gene repertoire varied from 6,280
genes in M. pennsylvanicum to 7,892 in U. hordei (oats).
M. pennsylvanicum also encoded the smallest number of secreted
protein (291) and predicted effectors (55), while S. reilianum
had the largest secretome (443) and effector content (127). The
total number and the diversity of sub-categories of CAZyme,
protease, and lipase domains were similar among smut species
(Figure 4). U. hordei species were an exception, because there was
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FIGURE 1 | Maximum likelihood phylogenomic tree of Ustilagomycotina species based on 1,637 one-to-one orthologous genes, host information, and genomic
features of smut fungi. The scientific names were abbreviated according to Table 1. The colors assigned to each species distinguish plant pathogens (green), human
pathogens (blue), and species from distinct environmental niches (orange). Double bars at the tree root indicate out of scale.

FIGURE 2 | Distribution of SNPs in 10 Kb windows across the 10 largest Ustilago hordei (barley) scaffolds. Repeat-masked genomes were used in NUCmer
alignment. Repeat-masked or SNP-poor regions are shown in gray.

an expansion of the peptidase family A11A (Copia transposon
peptidase) compared to the other species (Supplementary
File S3). Around ten secondary metabolite biosynthesis clusters
were identified in all smut genomes (Table 2). All species have
at least one cluster encoding for putative terpene synthase (TS),
non-ribosomal peptide synthase (NRPS), and type 1 polyketide
synthases (t1PKS). Only U. trichophora presented a hybrid cluster
of NRPS-Indole-t1PKS.

We compared the predicted proteome of nine smut species
and found 7,187 orthologous clusters (orthogroups) using
OrthoMCL (Supplementary File S4). Out of those, 4,706 were

shared among all species, wherein 4,374 were one-to-one
orthologs. The average of protein identity varied from 72%
among orthologs of U. hordei and U. maydis to 98% among
orthologs of the two U. hordei strains (Supplementary File S4).
The closest species regarding protein sequence identity were
S. reilianum and S. scitamineum, as also observed by the
phylogenomic tree. The general content of functional categories
was very similar among smut species (Figure 5A).

Sporisorium reilianum had the smallest set of orphan genes
(201) and U. hordei (oats) the largest (1,186) (Figure 1). Most
of the species-specific encoded proteins were uncharacterized
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TABLE 2 | Genomic statistics of smut fungi.

Genomic statistics Srei Ssci CBS119.19 Umay Mpen Uesc Utcp UhoO UhoB

Assembly

Total assembly size (Mb) 18.38 19.95 18.63 19.64 19.23 20.19 20.68 24.63 21.15

Average base coverage 29× 500× 278× 10× 339× 139× na 487× 25×

Number of contigs (>=500 bp) 45 26 73 27 435 298 215 2200 713

N50 (bp) 772,363 875,830 610,801 884,984 121,670 403,507 179,640 39,442 307,727

Largest contig (bp) 2,448,206 2,009,762 1,118,949 2,476,501 690,500 1,882,320 637,988 171,399 542,606

GC-content (%) 59.87 55.16 57.08 54.03 50.90 54.42 53.06 51.60 52.16

Coding sequences

Number of genes 6,776 6,677 6,776 6,784 6,280 6,773 6,499 7,891 7,111

Single-copy genes 6,159 6,080 6,335 6,175 5,791 6,057 5,925 6,896 6,500

Co-orthologs groups 6,214 6,007 6,055 6,111 5,591 5,808 5,890 6,319 6,351

Genes into the groups 6,492 6,382 6,297 6,454 5,853 6,287 6,239 7,026 6,717

Paralogs 617 597 441 609 489 716 574 995 611

Unique groups 8 19 8 12 7 32 17 82 21

Singletons 183 295 479 330 427 486 260 865 394

Total of orphan genes 201 356 500 367 447 607 299 1186 447

Repeat sequences (%)

Simple/tandem repeats 2.04 1.76 1.75 1.68 1.59 2.12 2.06 1.59 1.60

Interspersed repeats/TEs 0.66 4.10 0.61 2.47 2.30 7.54 2.15 23.93 11.68

Total of bases masked 2.68 5.85 2.34 4.13 3.88 9.65 4.18 25.12 13.21

Secretome

Predicted secretome 443 371 397 441 291 314 394 343 373

Predicted effectors (EffectorP) 127 85 97 124 55 70 96 85 104

Predicted effectors (size/Cys) 47 33 42 58 20 29 42 50 63

Secondary metabolic clusters

Terpene 2 3 3 2 2 2 3 1 1

Nrps 2 3 2 3 1 2 2 2 2

T1pks 1 1 1 1 1 1 1 1 1

Nrps-Indole-T1pks 0 0 0 0 0 0 1 0 0

Other 5 6 6 7 5 5 5 5 5

Positively selected genes

Branch-sites model 60 76 90 67 286 41 128 131∗ 131∗

The species names were abbreviated according to Table 1. ∗Species branch selected (UhoOB); na = not available.

(lacking a conserved domain). Transposases and reverse
transcriptases were frequent among orphan proteins, mainly
in U. hordei proteomes. Some predicted effectors (ranging
from 7 in U. hordei (oats) to 32 in U. trichophora) were also
species-specific. Among the orphan proteins with a conserved
domain, we found enzymes acting in primary and secondary
metabolic pathways, proteins associated with transcriptional
regulation, signaling, cell cycle control, morphogenesis, and
stress response (Supplementary File S5). Functional enrichment
analysis using KOG terminology showed that terms related to
replication, recombination and repair were overrepresented in
U. esculenta and U. hordei; RNA processing and modification
was overrepresented in M. pennsylvanicum; energy production
and conversion was overrepresented in S. reilianum; chromatin
structure and dynamics was overrepresented in S. scitamineum;
secondary metabolites biosynthesis, transport, and catabolism
was overrepresented in U. trichophora (Figure 5B).

Effectors characterized in U. maydis, S. reilianum, and
U. hordei (found on barley) were screened for orthologs in
the other species. We identified some effectors that were

present in all proteomes, including Cmu1 (Chorismate mutase
1), Stp1 (Stop after penetration 1), ApB73 (Apathogenic in
B73), and members of the Eff1 family. Homology searches
by tblastn identified putative orthologs of some effectors
(Supplementary File S6). Therefore, orthologs of Pep1 (Protein
essential during penetration-1), See1 (Seedling efficient effector1),
and members of the Mig1 (Maize-induced gene 1) family
were also detected in all genomes. Additional effectors were
only found in a subset of species (Figure 6). The leaf-
specific effector candidates, um06223 and um12217, were
present only in U. maydis. The effector Sad1 (Suppressor
of apical dominance 1) was specific to S. reilianum using
the automated annotation procedure, but then recovered in
the genomes of S. scitamineum, CBS119.19, U. maydis, and
U. esculenta. The genomic region coding for Pit2 (Protein
involved in tumors 2) was also identified in U. trichophora.
Although the 14 highly conserved residues of Pit2 protein
sequence were detected in U. trichophora sequence, the signal
peptide is missing. It remains to be established whether Pit2 is
secreted using a non-conventional pathway and its functional

Frontiers in Microbiology | www.frontiersin.org 7 April 2018 | Volume 9 | Article 660

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-00660 April 3, 2018 Time: 15:54 # 8

Benevenuto et al. Genomics and Host Specialization of Smut Pathogens

FIGURE 3 | Synteny between smut genomes. (A) Pairwise dotplot showing the syntenic blocks between smut genomes. The scientific names were abbreviated
according to Table 1. Axes represent the concatenation of repeat-masked chromosomes or scaffolds of each species (Mb scale). Grid lines indicate the boundaries
between scaffolds. Dots in the upper diagonal correspond to regions of sequence similarity, where black color represents forward matches and red color represents
reverse-complement matches. Dots in the lower panel are color-coded by the alignment score, with green meaning higher score and blue/purple lower score.
(B) Circos-plot of U. hordei (oats) largest scaffold showing the syntenic region in U. hordei (barley) scaffold. Green lines connecting scaffolds correspond to blastn
searches using repeat-masked scaffolds. Repetitive regions are shown in blue.

FIGURE 4 | Heatmap of CAZymes, proteases and lipases classes. The
numbers of enzyme categories in each genome are shown. Classes and
modules of CAZymes include: GHs ,glycoside hydrolases; CEs, carbohydrate
esterases; CBMs, carbohydrate-binding modules; GTs, glycosyl transferases;
PLs, polysaccharide lyases; AAs, auxiliary activities). Proteases are classified
by the catalytic type of the proteolytic enzymes: A, aspartic; C, Cysteine; M,
metallo; N, asparagine; S, serine; T, threonine; and also inhibitors of
peptidases (I). Lipases are classified into three classes on the basis of the
oxyanion hole: GX, GGGX, and Y. The scientific names were abbreviated
according to Table 1.

role if any in U. trichophora. Phylogenetic trees and protein
identity matrices of effectors are provided in Supplementary
File S6.

We also checked the expression of mispredicted candidate
effector genes based on previously available transcriptomic data
(Zhang et al., 2013; Taniguti et al., 2015; Ye et al., 2017).
Candidate genes identified by tblastn encoding See1 and UhAvr1
were found expressed in S. scitamineum both in vitro and in
planta, and Sad1 only in planta. Genes encoding Pep1 and
Sad1 were expressed in U. esculenta also in in vitro and in
planta, and the gene encoding UhAvr1 in S. reilianum was
expressed in vitro (Supplementary File S6). The transcriptomic
data provided additional evidence for the presence of functional
orthologs.

Positively Selected Genes
Using site-specific models, we found significant evidence for
positive selection at individual sites in 31 genes (Supplementary
File S7). These genes were identified by both M2/M1 and M8/M7
model comparisons. Out of the 31 genes, three encoded proteins
of unknown function. Interesting conserved domains included
those associated with the regulation of transcription, such as
the bE mating-type-specific homeodomain; synthesis of lipids,
such as diacylglycerol acyltransferase domain; and response to
environmental stresses, such as cyclophilin domain.

Branch-site models were also used to identify sites evolving
under episodic selection. For U. hordei lineages analyzed
individually, only nine genes in each lineage were detected
to be under selection (Supplementary File S7). Therefore,
we considered the U. hordei species branch for comparison.
Positively selected sites exclusively found in one species varied
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FIGURE 5 | Diversity and distribution of KOG categories among smut protein-encoding gene sets. (A) KOG categories in the genomes of each smut lineage.
(B,C) Distribution of KOG categories in orphan and positively selected genes, respectively. Significant enriched categories by Fisher’s exact test are indicated by red
asterisks (∗p-value < 0.05, ∗∗p-adjusted < 0.05). The scientific names were abbreviated according to Table 1. UhoOB represents the U. hordei species branch
marked for positive selection analyses.

from 41 in U. esculenta to 286 in M. pennsylvanicum and
included genes encoding CAZymes and proteases. Among
those, M. pennsylvanicum showed the highest number, with five
CAZymes from esterases families and 15 protease genes under
positive selection (Figure 1). Among the positively selected
genes, there were also genes encoding enzymes acting on primary
and secondary metabolism, proteins associated with regulation
of cell cycle and morphogenesis, signaling, response to stress
(Supplementary File S7). Functional enrichment analysis showed
significant overrepresentation of distinct categories among
positively selected gene sets: “Lipid Transport and Metabolism”
and “Intracellular Trafficking, Secretion, and Vesicular
Transport” for M. pennsylvanicum; “Energy Production and
Conversion,” “Signal Transduction Mechanisms,” and “Nuclear

Structure” for S. reilianum; “Translation, Ribosomal Structure
and Biogenesis” and “Transcription” for S. scitamineum; “Cell
motility” and “Defense Mechanisms” for U. hordei species; and
“Coenzyme Transport and Metabolism” for CBS119.19 strain
(Figure 5C).

DISCUSSION

In this study, we extended the comparative genomic analyses
of Ustilaginaceae smut fungi by using seven genomes available.
In order to increase the host range survey, we additionally
sequenced and assembled two genomes: U. hordei (Uhor01
strain) and a new specimen also belonging to Ustilaginaceae
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FIGURE 6 | Presence (blue squares) and absence (yellow squares) of genes or gene families encoding known effectors in U. maydis, S. reilianum, and U. hordei
based on OrthoMCL groups. The OrthoMCL groups are indicated in the lower part of the figure. Crossed yellow squares indicate that a similar genic region is present
in the genome by tblastn search. The species are ordered according to their phylogenetic relationship. The scientific names were abbreviated according to Table 1.

isolated from wheat (CBS119.19 strain). The similarities in
cell biology and lifestyle among the nine smut species was
reflected in the fact that more than 65% of orthologs
groups were shared among species. Most of the orthologous
genes were detected as one-to-one orthologs. The species
shared also a similar content of KOG functional categories.
However, among those genes we found significant evidence
of episodic positive selection. Moreover, sets of orphan genes
were detected for each species. Hence, each genome offered
a particular repertoire of genes that can be related to host-
specialization. We are aware that it is difficult to distinguish
the genetic changes that directly contribute to the host
specialization from those that were a consequence of the
divergence after host specialization, but some insights are
discussed.

Complex Evolution of Smut Fungi:
Taxonomic and Gene Tree Discordances
The phylogenomic tree based on a distance super-matrix
approach showed that the genus Ustilago remained polyphyletic,
despite of many taxonomic revisions into to the Ustilaginaceae
family have been recently proposed (McTaggart et al., 2012, 2016;
Wang et al., 2015). Another discordance detected was regarding
the classification of the U. tritici strain used in this work. The
strain was placed close to Sporisorium species unlike other smut
phylogenies based on multiple genes (Stoll et al., 2003; Begerow
et al., 2006; McTaggart et al., 2012). The U. tritici taxonomic
designation for the CBS 119.19 strain was based on phenotypic
data from the time of accession at CBS-KNAW collection (Gerard
Verkleij, personal communication) and, therefore, requires
revision.

The decomposition of gene trees in quartets showed some
additional phylogenetic conflicts. Dutheil et al. (2016) argued
for incomplete lineage sorting as a source of phylogenetic

incongruence among smut species, but undetected paralogy,
recombination, natural selection and hybridization events could
also have caused the discordant gene tree topologies. Kellner
et al. (2011) detected a high potential for hybridization in some
extant smut species. Hybridization is recognized as a major
force in generate new host specificities (Stukenbrock et al., 2012;
Depotter et al., 2016; Menardo et al., 2016) and hybridizations
may well have occurred in the evolutionary history of smut fungi.
Determining the processes causing conflicting signals among
gene trees has the potential to better elucidate the evolutionary
history of smut fungi. A comparison between the divergence at
syntenic and rearranged regions will be also interesting to show
if rearrangements had protected from interspecific gene flow
by suppressing recombination (Rieseberg, 2001; Stukenbrock,
2013).

Expansion of Repetitive Elements in
U. hordei Isolates
The smut pathogens sequenced so far have compact genomes
depleted of paralogs and repetitive DNA. U. hordei is an exception
and clearly experienced a genome expansion by containing
more protein-coding genes and repetitive elements. Dutheil
et al. (2016) speculated that the activity of transposons in the
U. hordei genome is under less stringent control and that active
transposons have translocated some candidate effector genes.
The sequencing of a second U. hordei strain herein supports the
hypothesis of active transposable elements by showing an even
greater content of repetitive DNA than the previously sequenced
strain.

In many cases, the genomic plasticity and rapid evolution of
pathogens have been associated with the activity of transposons
(Wöstemeyer and Kreibich, 2002; Raffaele and Kamoun, 2012;
Castanera et al., 2016). An example of this activity was found
in U. hordei, where virulent and avirulent isolates on Hannchen
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barley cultivar differed for an insertion of a transposon-derived
sequences in the promoter region of the UhAvr1 effector
gene (Ali et al., 2014). The insertion modulated the gene
expression and likely the recognition by the host resistant protein
Ruh1. Both U. hordei scaffolds harboring the UhAvr1 gene are
enriched in repetitive elements. However, comparison between
the genomic context of UhAvr1 gene in the oats isolate was not
conclusive, since the gene is very close to the scaffold terminus
(Supplementary File S2).

In addition to the difference in the content of transposable
elements that can affect the genomic context of effectors and
cause chromosomal rearrangements, we also identified SNPs
in non-repetitive regions between the U. hordei strains. The
number of SNPs detected between U. hordei strains is almost
four times higher than between two S. scitamineum strains
infecting sugarcane detected by Taniguti et al. (2015) and
both species have bipolar mating system, which indicates that
selfing is the primary mode of reproduction. However, most of
the SNPs do not cause missense mutations, since the average
of protein sequence identity among U. hordei strains were
around 98%. All these genomic differences may be contributing
for the ability to infect different hosts and even for the
emergence of formae speciales. However, further experiments
to determine the specificity of these interactions, a better
genome assembly for detecting chromosomal rearrangements,
and population genomics studies encompassing more barley and
oat isolates can provide more evidences of their divergence and
detect the ongoing genome evolution via transposable elements
activity.

The Content of Plant Cell-Wall Degrading
Enzymes Seems to be Unrelated With
Host Specialization in Smut Pathogens
The distribution of CAZymes, proteases, and lipases categories
were similar among the nine smut pathogens analyzed
herein. The amount of CAZymes in smut species is in
agreement to what is reported for other biotrophic fungi
(Zhao et al., 2014). Biotrophic fungi tend to have fewer
CAZymes than hemibiotrophs and necrotrophs, causing
minimal damages to their hosts (Kim et al., 2016). As other
biotrophic pathogens, smut fungi also lack the glycoside
hydrolase family 6 (GH6) which has a well-known cellulase
activity for plant cell wall degradation (Zhao et al., 2014).
However, we detected other gene families encoding cellulose,
hemicellulose, pectin, and cutin degrading enzymes in smut
genomes.

We found no expansion in pectinase content in
M. pennsylvanicum in relation to Poaceae-smut pathogens. This
is in disagreement with the previous finding of a dicot-related
expansion by Zhao et al. (2014). However, M. pennsylvanicum
has species-specific and positively selected CAZymes and
proteases that may have contributed to the dicot-host adaptation.

The most discrepant pattern among the analyzed enzymes was
in the aspartic peptidase A11A family that was only expanded
in U. hordei genomes. The A11A family contains endopeptidases
encoded by retrotransposons that act on polyprotein processing,

adding to the evidence of genome expansion by transposons in
U. hordei genomes.

The Acquisition of an Optimal Effector
Gene Repertoire
Using a machine learning approach, we identified a variable
number of predicted effector genes among smut species. The
smallest secretome and effector repertoire of M. pennsylvanicum
were already identified by Sharma et al. (2014) who proposed
that gene losses were the hallmark of the host jump event to
a dicot host. The U. esculenta genome harbored the second
lowest secretome and effector gene repertoire among smut
species. We suggest that relaxed selection pressure may have led
to the reduced effector gene content in this species. Infected
Z. latifolia results in an edible smut gall and U. esculenta has
been propagated together with the host through asexual rhizome
by human activities (Chung and Tzeng, 2004). As U. esculenta
spends its entire life cycle in the host plant and has been
artificially maintained in planta over centuries, some effectors
may be no longer essential since there is no need to re-infect
the host. The long-standing effects of artificial selection in this
pathosystem was in-depthly explored by Ye et al. (2017), who
also reported the absence of genes coding for surface sensors and
amino acid biosynthesis pathways in U. esculenta genome.

Among the few functionally characterized effectors in smut
pathogens, some were shared among all smut species and
might constitute core virulence factors for the establishment
of the disease or enhancing pathogen fitness. Using the tblastn
search associated with the transcriptomic data available, we were
able to identify some missing effectors by the automatic gene
prediction. Hence, all smuts species analyzed have orthologs
of cmu1, stp1, apB73, pep1, see1, and members of the mig1
and eff1 family of effectors. Cmu1, Stp1, and Pep1 are known
as defense-suppressing virulence effectors (Djamei et al., 2011;
Hemetsberger et al., 2012; Liang, 2012) and overcoming the basal
host defense responses is likely needed for all smut species.

The effector See1 was characterized in U. maydis-maize
interaction and is required for tumor formation in leaf cells
(Redkar et al., 2015a). Despite the organ-specific role of See1 and
the fact that U. maydis is an exception among smut pathogen
by its ability to locally induce tumor formation in leaves, see1
orthologs were present in all other smut genomes. Nonetheless,
Redkar et al. (2015b) showed that the U. hordei see1 does not
functionally complement the deletion mutant of U. maydis.
Hence, see1 orthologs may have a distinct role in other smut
fungi, since transcriptomic data showed that the coding gene
is expressed during S. scitamineum and U. esculenta respective
interactions. However, besides see1, other leaf-induced candidate
effector genes (um06223 and um12217) (Schilling et al., 2014)
were specific of U. maydis genome, suggesting a role in host
adaptation and specific symptom development. Their functional
roles await further investigation.

Another interesting example is the effector gene SAD1
of S. reilianum, whose orthologs in the S. scitamineum and
U. esculenta genomes were identified in this work. The
S. reilianum SAD1 effector alters the inflorescence branching
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architecture of maize plants by inducing loss of apical dominance
(Ghareeb et al., 2015), which could also be responsible for the
tillering symptom reported for smutted sugarcane (Sundar et al.,
2012) and Z. latifolia (Yan et al., 2013). Using previously available
transcriptomic data (Taniguti et al., 2015; Ye et al., 2017), we
also showed that SAD1 is expressed during the respective host–
pathogen interactions.

Other characterized smut effectors showed distinct pattern
of presence/absence. Such effectors have been shown in other
studies to be related to particular symptoms of the pathosystem,
interact differently with host molecules, and/or have minor
effects on virulence (Basse et al., 2000, 2002; Khrunyk et al.,
2010; Ali et al., 2014; Schilling et al., 2014; Tanaka et al.,
2014; Ghareeb et al., 2015; Redkar et al., 2015a,b; Zhao, 2015;
Stirnberg and Djamei, 2016; Lanver et al., 2017). Moreover,
although some effectors have orthologs, in some cases their
protein sequences were poorly conserved and failures in cross-
species complementation assays were observed in other studies
(Redkar et al., 2015b; Stirnberg and Djamei, 2016). As effectors
are subject to strong selection pressure to evade coevolving plant
defenses, it is also likely that some effectors diverged to an extent
that they are no longer recognized as orthologs by our criteria.
Sets of lineage-specific candidate effectors were detected by our
comparative study and we suggest that these genes are good
candidates for further characterization in regards to their role in
virulence and host specificity.

Orphan and Positively Selected Genes:
Potential Metabolic Versatility, Life-Cycle
Orchestration, and Host Molecule
Recognition
By increasing the number of species in the comparative genomics
analyses, we found a smaller number of orphan genes than in
the comparison of four genomes performed by Sharma et al.
(2014) and Taniguti et al. (2015). This indicates that some
previously identified orphan genes were in fact shared among
closely related species. The majority of the orphan genes encoded
proteins without well-characterized domains. Otherwise, most
genes with signatures of positive selection encoded conserved
domains. We found that different KOG categories were enriched
among the positively selected gene sets, providing evidence for
lineage-specific functional diversification.

We found few gene clusters encoding enzymes for secondary
metabolite biosynthesis in smut genomes and, to our knowledge,
no phytotoxin production was so far reported for smut
fungi. However, U. trichophora genome presented a unique
NRPS-Indole-t1PKS hybrid cluster and secondary metabolism
pathways were overrepresented among its orphan genes.
Besides toxins, secondary metabolites can have several roles in
pathogenesis, such as effectors (manipulating gene expression
and host physiology), siderophores, protection against biotic and
abiotic factors (Pusztahelyi et al., 2015). Hence, the secondary
metabolism is an interesting target to further explore in the
U. trichophora–E. colona interaction.

Some orphan and positively selected genes were also
associated with primary metabolic pathways, potentially

generating metabolic versatility. For instance, orphans and
positively selected genes in S. reilianum were enriched in “energy
production and conversion” enzymes, such as reductases,
oxidases, and dehydrogenases. Such enzymes participate in the
oxidative phosphorylation pathway, but also in the oxidative
stress (Marcet-Houben et al., 2009). The oxidative stress can
have several roles during fungal-plant interactions (Breitenbach
et al., 2015). Interestingly, Ghareeb et al. (2011) showed that
S. reilianum-colonized inflorescences had a higher level of
reactive oxygen species than in healthy maize inflorescences,
which were specifically accumulated around fungal hyphae.
Hence, the differentiation of these enzymes in S. reilianum may
be related to the strong oxidative stress faced by the pathogen
or with the production of reactive oxygen species during the
symptom development.

M. pennsylvanicum, the dicot pathogen, had a much larger
number of genes under positive selection than monocot-infecting
species. Among the enriched classes were “Lipid transport
and metabolism” and “Intracellular trafficking, secretion, and
vesicular transport.” Differences in the lipid metabolism can be
associated with the capacity to utilize distinct carbon sources
from the dicot host or also with the production of signaling
molecules. Studies of lipid signaling networks in pathogenic
fungi have been shown roles in trigger and mediate cell cycle
and growth, as well as virulence factors to counteract host
defenses (Singh and Poeta, 2011). The intracellular trafficking in
filamentous fungi is required for polarity establishment, hyphal
growth, and/or virulence (Wang and Shen, 2011). The endocytic
process is involved in signal perception, nutrient uptake, and ion
homeostasis; while the secretory process delivers effectors and cell
wall-degrading enzymes into the plant apoplast.

For U. hordei and U. esculenta, the enriched class detected
among the orphan genes was “Replication, recombination, and
repair,” since these species have the highest content of repetitive
elements, particularly retrotransposons, that were considered
orphan genes.

Other potentially affected pathways by orphan and positively
selected genes were signaling, regulation of transcription, cell-
cycle control, and morphogenesis. These genes may orchestrate
the infection and development of the pathogens in their
respective host. Smut species present distinct sporulation time
and penetrate at distinct sites (Chung and Tzeng, 2004;
Brefort et al., 2009; Ghareeb et al., 2011; Schaker et al.,
2016; Marques et al., 2017). We speculate that some of the
encoded proteins may act on the perception of different
host molecules as a signal for penetration or induction of
fungal sporogenesis, as these stages are also related to cell
cycle control and morphogenesis. Other interesting proteins
among these sets are those with peptide signal. For example,
genes encoding copies of the potentially secreted RlpA-
like protein (fungal expansin-like proteins) are also within
the orphan list. Expansins are cell wall-loosening proteins
without enzymatic activity and also an adhesion facilitator for
fungal cells to plant cells by binding hydrophobic surfaces
(Nikolaidis et al., 2014). As each species has divergent versions
of this protein, it may be associated with specific host
interaction.
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Using site-specific models, positive selection acting on
specific codons were found in 31 genes. Among those, we
identified positive selection in the mating-type bE locus. In
smut fungi, the bE locus encodes for the component of the
heterodimeric bE/bW homeodomain transcription factor that
triggers filamentous growth and pathogenicity after compatible
yeast-like cell recognition and fusion (Bakkeren et al., 2008).
Positive selection at bE sites could promote reproductive isolation
among species by non-dimerization with bW. However, the
selection signature identified herein may also be due to biased
allele sampling among the sequenced genomes. Selection at
specific-sites was also identified in a gene encoding a putative
diacylglycerol acyltransferase enzyme that acts in the final step
of triacylglycerol (TG) synthesis. TG is a storage lipid which
serves as energy reservoir, source of signaling molecules, and
substrate for membrane biogenesis (Liu et al., 2012). The
TG biosynthesis pathway is conserved in all living organisms;
however, sequence motifs of diacylglycerol acyltransferase are
not conserved (Turchetto-Zolet et al., 2011). In S. scitamineum,
the gene encoding for this enzyme was upregulated during
sporogenesis (Taniguti et al., 2015), which may be related to
the accumulation of lipid droplets in teliospores that will serve
as a source of energy during germination (Marques et al.,
2017). This enzyme was also associated with pathogenicity in
the broad host range pathogen Colletotrichum gloeosporioides
(Sharma et al., 2016). The significance of the selected sites for
functional differences remains to be explored.

CONCLUSION

In summary, our comparative genomic study provided further
insights on smut host-specificity and symptoms development.
In addition to sequencing and characterize two new genomes
(from CBS 119.19 strain and U. hordei isolate from oats),
we also brought new knowledge to less studied smut species
(M. pennsylvanicum, U. trichophora, and U. esculenta). We
identified lineage-specific sets of orphans and positively selected
genes enriched for different functional categories, highlighting
genes that have a potential role in host–pathogen interaction.
The presence of distinct effector repertoires, with some being
detected exclusively in each genome, is emphasized as the most
likely important determinants of host specificity. Therefore,
we provided good candidate genes for further functional

characterization in different smut species. A comparative
transcriptomic profile will also achieve additional insights, since
differences in host specificity can also be due to distinct
expression pattern of orthologs. Moreover, the comparison
of U. hordei isolates herein showed the ongoing activity of
transposable elements, with variable amounts predicted between
the two strains. A population genomic study in U. hordei is also
promising to reveal the extent of the divergence among barley
and oat isolates.
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