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Marion P. G. Koopmans "2

" Emerging and Endemic Viruses, Centre for Infectious Disease Control, National Institute for Public Health and the
Environment (RIVM), Bilthoven, Netherlands,  Viroscience Laboratory, Erasmus University Medical Centre, Rotterdam,
Netherlands

Metagenomics poses opportunities for clinical and public health virology applications
by offering a way to assess complete taxonomic composition of a clinical sample in an
unbiased way. However, the techniques required are complicated and analysis standards
have yet to develop. This, together with the wealth of different tools and workflows
that have been proposed, poses a barrier for new users. We evaluated 49 published
computational classification workflows for virus metagenomics in a literature review. To
this end, we described the methods of existing workflows by breaking them up into five
general steps and assessed their ease-of-use and validation experiments. Performance
scores of previous benchmarks were summarized and correlations between methods
and performance were investigated. We indicate the potential suitability of the different
workflows for (1) time-constrained diagnostics, (2) surveillance and outbreak source
tracing, (3) detection of remote homologies (discovery), and (4) biodiversity studies.
We provide two decision trees for virologists to help select a workflow for medical
or biodiversity studies, as well as directions for future developments in clinical viral
metagenomics.

Keywords: pipeline, decision tree, software, use case, standardization, viral metagenomics

INTRODUCTION

Unbiased sequencing of nucleic acids from environmental samples has great potential for the
discovery and identification of diverse microorganisms (Tang and Chiu, 2010; Chiu, 2013;
Culligan et al., 2014; Pallen, 2014). We know this technique as metagenomics, or random,
agnostic or shotgun high-throughput sequencing. In theory, metagenomics techniques enable
the identification and genomic characterisation of all microorganisms present in a sample with
a generic lab procedure (Wooley and Ye, 2009). The approach has gained popularity with the
introduction of next-generation sequencing (NGS) methods that provide more data in less time
at a lower cost than previous sequencing techniques. While initially mainly applied to the analysis
of the bacterial diversity, modifications in sample preparation protocols allowed characterisation of
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viral genomes as well. The fields of virus discovery and
biodiversity characterisation have seized the opportunity to
expand their knowledge (Cardenas and Tiedje, 2008; Tang and
Chiu, 2010; Chiu, 2013; Pallen, 2014).

There is interest among virology researchers to explore the
use of metagenomics techniques, in particular as a catch-all for
viruses that cannot be cultured (Yozwiak et al., 2012; Smits and
Osterhaus, 2013; Byrd et al., 2014; Naccache et al., 2014; Pallen,
2014; Smits et al., 2015; Graf et al., 2016). Metagenomics can also
be used to benefit patients with uncommon disease etiologies
that otherwise require multiple targeted tests to resolve (Chiu,
2013; Pallen, 2014). However, implementation of metagenomics
in the routine clinical and public health research still faces
challenges, because clinical application requires standardized,
validated wet-lab procedures, meeting requirements compatible
with accreditation demands (Hall et al., 2015). Another barrier
is the requirement of appropriate bioinformatics analysis of the
datasets generated. Here, we review computational workflows for
data analysis from a user perspective.

Translating NGS outputs into clinically or biologically
relevant information requires robust classification of sequence
reads—the classical “what is there?” question of metagenomics.
With previous sequencing methods, sequences were typically
classified by NCBI BLAST (Altschul et al., 1990) against the NCBI
nt database (NCBI, 2017). With NGS, however, the analysis needs
to handle much larger quantities of short (up to 300 bp) reads
for which proper references are not always available and take
into account possible sequencing errors made by the machine.
Therefore, NGS needs specialized analysis methods. Many
bioinformaticians have developed computational workflows to
analyse viral metagenomes. Their publications describe a range
of computer tools for taxonomic classification. Although these
tools can be useful, selecting the appropriate workflow can be
difficult, especially for the computationally less-experienced user
(Posada-Cespedes et al., 2016; Rose et al., 2016).

A part of the metagenomics workflows has been tested and
described in review articles (Bazinet and Cummings, 2012;
Garcia-Etxebarria et al., 2014; Peabody et al., 2015; Sharma et al.,
2015; Lindgreen et al., 2016; Posada-Cespedes et al., 2016; Rose
et al,, 2016; Sangwan et al., 2016; Tangherlini et al., 2016) and
on websites of projects that collect, describe, compare and test
metagenomics analysis tools (Henry et al., 2014; CAMI, 2016;
ELIXIR, 2016). Some of these studies involve benchmark tests of
a selection of tools, while others provide brief descriptions. Also,
when a new pipeline is published the authors often compare it
to its main competitors. Such tests are invaluable to assessing
the performance and they help create insight into which tool is
applicable to which type of study.

We present an overview and critical appraisal of available
virus metagenomic classification tools and present guidelines for
virologists to select a workflow suitable for their studies by (1)
listing available methods, (2) describing how the methods work,
(3) assessing how well these methods perform by summarizing
previous benchmarks, and (4) listing for which purposes they
can be used. To this end, we reviewed publications describing
49 different virus classification tools and workflows—collectively
referred to as workflows—that have been published since 2010.

METHODS

We searched literature in PubMed and Google Scholar on
classification methods for virus metagenomics data, using the
terms “virus metagenomics® and “viral metagenomics.” The
results were limited to publications between January 2010 and
January 2017. We assessed the workflows with regard to technical
characteristics: algorithms used, reference databases, and search
strategy used; their user-friendliness: whether a graphical user
interface is provided, whether results are visualized, approximate
runtime, accepted data types, the type of computer that was
used to test the software and the operating system, availability
and licensing, and provision of a user manual. In addition,
we extracted information that supports the validity of the
workflow: tests by the developers, wet-lab experimental work and
computational benchmarks, benchmark tests by other groups,
whether and when the software had been updated as of 19
July 2017 and the number of citations in Google Scholar as
of 28 March 2017 (Data Sheet 1; https://compare.cbs.dtu.dk/
inventory#pipeline). We listed only benchmark results from
in silico tests using simulated viral sequence reads, and only
sensitivity, specificity and precision, because these were most
often reported (Data Sheet 2). Sensitivity is defined as reads
correctly annotated as viral—on the taxonomic level chosen in
that benchmark—by the pipeline as a fraction of the total number
of simulated viral reads (true positives / (true positives + false
negatives)). Specificity as reads correctly annotated as non-viral
by the pipeline as a fraction of the total number of simulated non-
viral reads (true negatives / (true negatives + false positives)).
And precision as the reads correctly annotated as viral by the
pipeline as a fraction of all reads annotated as viral (true positives
/ (true positives + false positives)). Different publications
have used different taxonomic levels for classification, from
kingdom to species. We used all benchmark scores for our
analyses (details are in Data Sheet 2). Correlations between
performance (sensitivity, specificity, precision and runtime) and
methodical factors (different analysis steps, search algorithms
and reference databases) were calculated and visualized with
R v3.3.2 (https://www.r-project.org/), using RStudio v1.0.136
(https://www.rstudio.com).

Next, based on our inventory, we grouped workflows by
compiling two decision trees to help readers select a workflow
applicable to their research. We defined “time-restrained
diagnostics” as being able to detect viruses and classify to genus
or species in under 5h per sample. “Surveillance and outbreak
tracing” refers to the ability of more specific identification to the
subspecies-level (e.g., genotype). “Discovery” refers to the ability
to detect remote homologs by using a reference database that
covers a wide range of viral taxa combined with a sensitive search
algorithm, i.e., amino acid (protein) alignment or composition
search. For “biodiversity studies” we qualified all workflows that
can classify different viruses (i.e., are not focused on a single
species).

Figures were made with Microsoft PowerPoint and Visio
2010 (v14.0.7181.5000, 32-bit; Redmond, Washington, U.S.A.), R
packages pheatmap v1.0.8 and ggplot2 v2.2.1, and GNU Image
Manipulation Program (GIMP; v2.8.22; https://www.gimp.org).
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RESULTS AND WORKFLOW
DESCRIPTIONS

Available Workflows

We found 56 publications describing the development and
testing of 49 classification workflows, of which three were
unavailable for download or online use and two were only
available upon request (Table 1). Among these were 24 virus-
specific workflows, while 25 were developed for broader use, such
as classification of bacteria and archaea. The information of the
unavailable workflows has been summarized, but they were not
included in the decision trees. An overview of all publications,
workflows and scoring criteria is available in Data Sheet 1 and on
https://compare.cbs.dtu.dk/inventory#pipeline.

Metagenomics Classification Methods

The selected metagenomics classification workflows consist of
up to five different steps: pre-process, filter, assembly, search
and post-process (Figure 1A). Only three workflows (SRSA,
Isakov et al., 2011, Exhaustive Iterative Assembly, Schiirch et al.,
2014, and VIP, Li et al., 2016) incorporated all of these steps.
All workflows minimally included a “search” step (Figure 1B,
Table 4), as this was an inclusion criterion. The order in which
the steps are performed varies between workflows and in some
workflows steps are performed multiple times. Workflows are
often combinations of existing (open source) software, while
sometimes, custom solutions are made.

Quality Control and Pre-processing

A major determinant for the success of a workflow is the quality
of the input reads. Thus, the first step is to assess the data
quality and exclude technical errors from further analysis. This
may consist of several processes, depending on the sequencing
method and demands such as sensitivity and time constraints.
The pre-processing may include: removing adapter sequences,
trimming low quality reads to a set quality score, removing low
quality reads—defined by a low mean or median Phred score
assigned by the sequencing machine—removing low complexity
reads (nucleotide repeats), removing short reads, deduplication,
matching paired-end reads (or removing unmated reads) and
removing reads that contain Ns (unresolved nucleotides). The
adapters, quality, paired-end reads and accuracy of repeats
depend on the sequencing technology. Quality cutoffs for
removal are chosen in a trade-off between sensitivity and time
constraints: removing reads may result in not finding rare viruses,
while having fewer reads to process will speed up the analysis.
Twenty-four workflows include a pre-processing step, applying
at least one of the components listed above (Figure 1B, Table 2).
Other workflows require input of reads pre-processed elsewhere.

Filtering Non-target Reads

The second step is filtering of non-target, in this case non-
viral, reads. Filtering theoretically speeds up subsequent database
searches by reducing the number of queries, it helps reduce false
positive results and prevents assembly of chimaeric virus-host
sequences. However, with lenient homology cutoffs, too many
reads may be identified as non-viral, resulting in loss of potential

viral target reads. Choice of filtering method depends on the
sample type and research goal. For example, with human clinical
samples a complete human reference genome is often used, as is
the case with SRSA (Isakov et al., 2011), RINS (Bhaduri et al.,
2012), VirusHunter (Zhao et al., 2013), MePIC (Takeuchi et al.,
2014), Ensemble Assembler (Deng et al., 2015), ViromeScan
(Rampelli et al, 2016), and MetaShot (Fosso et al, 2017).
Depending on the sample type and expected contaminants, this
can be extended to filtering rRNA, mtRNA, mRNA, bacterial or
fungal sequences or non-human host genomes. More thorough
filtering is displayed by PathSeq (Kostic et al., 2011), SURPI
(Naccache et al., 2014), Clinical PathoScope (Byrd et al., 2014),
Exhaustive Iterative Assembly (Schiirch et al., 2014), VIP (Li
et al., 2016), Taxonomer (Flygare et al., 2016), and VirusSeeker
(Zhao et al., 2017). PathSeq removes human reads in a series
of filtering steps in an attempt to concentrate pathogen-derived
data. Clinical PathoScope filters human genomic reads as well
as human rRNA reads. Exhaustive Iterative Assembly removes
reads from diverse animal species, depending on the sample, to
remove non-pathogen reads for different samples. SURPI uses 29
databases to remove different non-targets. VIP includes filtering
by first comparing to host and bacterial databases and then to
viruses. It only removes reads that are more similar to non-viral
references in an attempt to achieve high sensitivity for viruses and
potentially reducing false positive results by removing non-viral
reads. Taxonomer simultaneously matches reads against human,
bacterial, fungal and viral references and attempts to classify all.
This only works well on high-performance computing facilities
that can handle many concurrent search actions on large data
sets. VirusSeeker uses the complete NCBI nucleotide (nt) and
non-redundant protein (nr) databases to classify all reads and
then filter non-viral reads. Some workflows require a custom,
user-provided database for filtering, providing more flexibility
but requiring more user-input. This is seen in IMSA (Dimon
et al., 2013), VirusHunter (Zhao et al., 2013), VirFind (Ho and
Tzanetakis, 2014), and MetLab (Norling et al., 2016), although
other workflows may accept custom references as well. In total,
22 workflows filter non-virus reads prior to further analysis
(Figure 1B, Table 3). Popular filter tools are read mappers
such as Bowtie (Langmead, 2010; Langmead and Salzberg,
2012) and BWA (Li and Durbin, 2009), while specialized
software, such as Human Best Match Tagger (BMTagger, NCBI,
2011) or riboPicker (Schmieder, 2011), is less commonly used
(Table 2).

Short Read Assembly

Prior to classification, the short reads may be assembled into
longer contiguous sequences (contigs) and generate consensus
sequences by mapping individual reads to these contigs. This
helps filter out errors from individual reads, and reduce the
amount of data for further analysis. This can be done by
mapping reads to a reference, or through so-called de novo
assembly by linking together reads based on, for instance,
overlaps, frequencies and paired-end read information. In viral
metagenomics approaches, de novo assembly is often the method
of choice. Since viruses evolve so rapidly, suitable references
are not always available. Furthermore, the short viral genomes
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TABLE 1 | Classification workflows and their reference.

Name References URL

CaPSID Borozan et al., 2012 https://github.com/capsid/capsid

ClassyFlu Van der Auwera et al., 2014 http://bicinf.uni-greifswald.de/ClassyFlu/query/init

Clinical PathoScope Byrd et al., 2014 https://sourceforge.net/p/pathoscope/wiki/clinical_pathoscope/
DUDes Piro et al., 2016 http://sf.net/p/dudes

EnsembleAssembler Deng et al., 2015 https://github.com/xutaodeng/EnsembleAssembler

Exhaustive Iterative Assembly
(Virus Discovery Pipeline)
FACS

GenSeed-HMM

Giant Virus Finder
GOTTCHA

IMSA

IMSA+A

Kraken

LMAT

MEGAN 4

MEGAN Community Edition
MePIC

MetaShot

metaViC

Metavir

Metavir 2

MetlLab

NBC

PathSeq

ProVIiDE

QuasQ

READSCAN

Rega Typing Tool

RIEMS

RINS

SLIM

SMART

SRSA

SURPI
Taxonomer
Taxy-Pro
“Unknown pathogens from
mixed clinical samples”
vFam

VIP
ViralFusionSeq
Virana

VirFind
VIROME
ViromeScan
VirSorter
VirusFinder
VirusHunter
VirusSeeker
VirusSeq
VirVarSeq
VMGAP

Schurch et al., 2014

Stranneheim et al., 2010
Alves et al., 2016
Kerepesi and Grolmusz, 2016
Freitas et al., 2015
Dimon et al., 2013

Cox et al., 2017

Wood and Salzberg, 2014
Ames et al., 2013
Huson et al., 2011
Huson et al., 2016
Takeuchi et al., 2014
Fosso et al., 2017
Modha, 2016

Roux et al., 2011

Roux et al., 2014
Norling et al., 2016
Rosen et al., 2011
Kostic et al., 2011
Ghosh et al., 2011

Poh et al., 2013

Naeem et al., 2013
Kroneman et al., 2011;
Pineda-Pena et al., 2013
Scheuch et al., 2015
Bhaduri et al., 2012
Cotten et al., 2014
Leeetal., 2016

Isakov et al., 2011
Naccache et al., 2014
Flygare et al., 2016
Klingenberg et al., 2013
Gong et al., 2016

Skewes-Cox et al., 2014
Lietal., 2016

Lietal, 2013

Schelhorn et al., 2013
Ho and Tzanetakis, 2014
Wommack et al., 2012
Rampelli et al., 2016
Roux et al., 2015

Wang et al., 2013

Zhao et al., 2013

Zhao et al., 2017

Chen et al., 2013
Verbist et al., 2015
Lorenzi et al., 2011

https://github.com/SciLifeLab/facs
https://sourceforge.net/projects/genseedhmm/
http://pitgroup.org/giant-virus-finder
https://github.com/LANL-Bioinformatics/GOTTCHA
https://sourceforge.net/projects/arron-imsa/?source=directory
https://github.com/JeremyCoxBMI/IMSA-A
https://github.com/DerrickWood/kraken
https://sourceforge.net/projects/Imat/
http://ab.inf.uni-tuebingen.de/software/megan4/
http://ab.inf.uni-tuebingen.de/data/software/megan6/download/welcome.html
https://mepic.nih.go.jp/
https://github.com/bfosso/MetaShot
https://github.com/sejmodha/metaViC
http://metavir-meb.univ-bpclermont.fr/
http://metavir-meb.univ-bpclermont.fr/
https://github.com/norling/metlab
http://nbc.ece.drexel.edu/
https://www.broadinstitute.org/software/pathseq/
http://metagenomics.atc.tcs.com/binning/ProViDE/
http://www.statgen.nus.edu.sg/$\sim$software/quasa.html
http://cbrc.kaust.edu.sa/readscan/
http://regatools.med.kuleuven.be/typing/v3/hiv/typingtool/

https://www.fli.de/fileadmin/FLI/IVD/Microarray- Diagnostics/RIEMS..tar.gz
http://khavarilab.stanford.edu/tools- 1/#tools

“Available upon request”

https://bitbucket.org/ayl/smart

“Available upon request”

https://github.com/chiulab/surpi

https://www.taxonomer.com/

http://gobics.de/TaxyPro/

http://derisilab.ucsf.edu/software/vFam/
https://github.com/keylabivdc/VIP
https://sourceforge.net/projects/viralfusionseq/
https://github.com/schelhorn/virana

http://virfind.org/j/
http://virome.dbi.udel.edu/app/#view=home
https://sourceforge.net/projects/viromescan/
https://github.com/simroux/VirSorter
http://biocinfo.mc.vanderbilt.edu/VirusFinder/
https://www.ibridgenetwork.org/#!/profiles/9055559575893/innovations/103/
https://wupathlabs.wustl.edu/virusseeker/
http://odin.mdacc.tmc.edu/$\sim$xsul/VirusSeq.html
http://sourceforge.net/projects/virtools/?source=directory

-, No website could be found, the workflow was unavailable.
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FIGURE 1 | Generic pipeline scheme and breakdown of tools. (A) The process of classifying raw sequencing reads in 5 generic steps. (B) The steps that workflows
use (in gray). UPfMCS: “Unknown Pathogens from Mixed Clinical Samples”; MEGAN CE: MEGAN Community Edition.

IMSA+A

IMSA|

Clinical PathoScope
Metavir
GenSeed-HMM
LMAT

Kraken

Metavir 2
VirvarSeq

DUDes

MEGAN CE
FACS |

NBC

CaPSID
READSCAN
vFam |
Giant Virus Finder |
SMART

VirSorter
VirusFinder
Taxonomer
VirusSeq |
MEGAN4

VMGAP

REGA Typing Tool
ProVIDE

Taxy-Pro
ClassyFlu

generally result in high sequencing coverage, at least for high-
titre samples, facilitating de novo assembly. However, de novo
assembly is liable to generate erroneous contigs by linking
together reads containing technical errors, such as sequencing
(base calling) errors and remaining adapter sequences. Another
source of erroneous contigs may be when reads from different
organisms in the same sample are similar, resulting in the
formation of chimeras. Thus, de novo assembly of correct contigs
benefits from strict quality control and pre-processing, filtering
and taxonomic clustering—i.e., grouping reads according to
their respective taxa before assembly. Assembly improvement by
taxonomic clustering is exemplified in five workflows: Metavir
(Roux et al., 2011), RINS (Bhaduri et al., 2012), VirusFinder
(Wang et al., 2013), SURPI (in comprehensive mode) (Naccache
et al.,, 2014), and VIP (Li et al., 2016). Two of the discussed
workflows have multiple iterations of assembly and combine
algorithms to improve overall assembly: Exhaustive Iterative
Assembly (Schiirch et al., 2014) and Ensemble Assembler (Deng
et al.,, 2015). In total, 18 of the tools incorporate an assembly
step (Figure 1B, Table 4). Some of the more commonly used
assembly programs are Velvet (Zerbino and Birney, 2008),
Trinity (Grabherr et al., 2011), Newbler (454 Life Sciences), and
SPAdes (Bankevich et al., 2012) (Table 2).

Database Searching

In the search step, sequences (either reads or contigs) are
matched to a reference database. Twenty-six of the workflows
we found search with the well-known BLAST algorithms
BLASTn or BLASTx (Altschul et al., 1990; Table 2). Other often-
used programs are Bowtie (Langmead, 2010; Langmead and
Salzberg, 2012), BWA (Li and Durbin, 2009), and Diamond
(Buchfink et al., 2015). These programs rely on alignments to a
reference database and report matched sequences with alignment
scores. Bowtie and BWA, which are also popular programs
for the filtering step, align nucleotide sequences exclusively.

Diamond aligns amino acid sequences and BLAST can do
either nucleotides or amino acids. As analysis time can be
quite long for large datasets, algorithms have been developed
to reduce this time by using alternatives to classical alignment.
One approach is to match k-mers with a reference, as used in
FACS (Stranneheim et al., 2010), LMAT (Ames et al., 2013),
Kraken (Wood and Salzberg, 2014), Taxonomer (Flygare et al.,
2016), and MetLab (Norling et al., 2016). Exact k-mer matching
is generally faster than alignment, but requires a lot of computer
memory. Another approach is to use probabilistic models of
multiple sequence alignments, or profile hidden Markov models
(HMMs). For HMM methods, protein domains are used, which
allows the detection of more remote homology between query
and reference. A popular HMM search program is HMMER
(Mistry et al., 2013). ClassyFlu (Van der Auwera et al., 2014)
and vFam (Skewes-Cox et al., 2014) rely exclusively on HMM
searches, while VMGAP (Lorenzi et al., 2011), Metavir (Roux
et al., 2011), VirSorter (Roux et al., 2015), and MetLab can also
use HMMER.

All of these search methods are examples of similarity
search—homology or alignment-based methods. The other
search method is composition search, in which oligonucleotide
frequencies or k-mer counts are matched to references.
Composition search requires the program to be “trained” on
reference data and it is not used much in viral genomics. Only two
workflows discussed here use composition search: NBC (Rosen
et al,, 2011) and Metavir 2 (Roux et al., 2014), while Metavir 2
only uses it complementary to similarity search (Data Sheet 1).

All search methods rely on reference databases, such as NCBI
GenBank  (https://www.ncbi.nlm.nih.gov/genbank/), RefSeq
(https://www.ncbi.nlm.nih.gov/refseq/), or BLAST nucleotide
(nt) and non-redundant protein (nr) databases (ftp://ftp.ncbi.
nlm.nih.gov/blast/db/). Thirty-four workflows use GenBank for
their references, most of which select only reference sequences
from organisms of interest (Table 2). GenBank has the benefits
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GRCh37/hg19 + TCGA cancer-associated

viruses)
Custom

BWA, Q-cpileup, R, Fortran,

Perl

SS-pp

BWA

VirVarSeq

(NCBI-toolkit), SignalP,

HMMER, BLAST
TMHMM, PRIAM

SSSSS-pp

env_nr, NCBI

env_nt

GenBank CDDDB, UniProtDB,

NCBI BLAST nt,

BLAST, HMMER

VMGAP

OMNIOMEDB, Pfam, TIGRFAM, ACLAME,

pfam2gomappingsDB

A, assembly, F, filter; P, pre-process; Ph, phylogeny; pp, post-process; S, search. —: not used/specified.

of being a large, frequently updated database with many different
organisms and annotation depends largely on the data providers.
Other tools make use of virus-specific databases such as GIB-V
(Hirahata et al., 2007) or ViPR (Pickett et al., 2012), which have
the advantage of better annotation and curation at the expense of
the number of included sequences. Also, protein databases like
Pfam (Sonnhammer et al., 1998) and UniProt (UniProt, 2015)
are used, which provide a broad range of sequences. Search at
the protein level may allow for the detection of more remote
homology, which may improve detection of divergent viruses,
but non-translated genomic regions are left unused. A last group
of workflows requires the user to provide a reference database
file. This enables customization of the workflow to the user’s
research question and requires more effort.

Post-processing

Classifications of the sequencing reads can be made by setting
the parameters of the search algorithm beforehand to return
a single annotation per sequence (cut-offs). Another option is
to return multiple hits and then determine the relationship
between the query sequence and a cluster of similar reference
sequences. This process of finding the most likely or best
supported taxonomic assignment among a set of references
is called post-processing. Post-processing uses phylogenetic or
other computational methods such as the lowest common
ancestor (LCA) algorithm, as introduced by MEGAN (Huson
et al., 2007). Six workflows use phylogeny to place sequences
in a phylogenetic tree with homologous reference sequences
and thereby classify them. This is especially useful for outbreak
tracing to elucidate relationships between samples. Twelve
workflows use other computational methods such as the LCA
taxonomy-based algorithm to make more confident but less
specific classifications (Data Sheet 1). In total, 18 workflows
include post-processing (Figure 1B).

Usability and Validation

For broader acceptance and eventual application in a clinical
setting, workflows need to be user-friendly and need to be
validated. Usability of the workflows varied vastly. Some provide
web-services with a graphical user-interface that work fast on
any PC, whereas other workflows only work on one operating
system, from a command line interface with no user manual.
Processing time per sample ranges from minutes to several days
(Table 3). Although web-services with a graphical user-interface
are very easy to use, such a format requires uploading large GB-
sized short read files to a distant server. The speed of upload
and the constraint to work with one sample at a time may
limit its usability. Diagnostic centers may also have concerns
about the security of the data transferred, especially if patient-
identifying reads and confidential metadata are included in the
transfer. Validation of workflows ranged from high—i.e., tested
by several groups, validated by wet-lab experiments, receiving
frequent updates and used in many studies—to no evidence of
validation (Table 4). Number of citations varied from 0 to 752,
with six workflows having received more than 100 citations:
MEGAN 4 (752), Kraken, (334), PathSeq (158), SURPI (128),
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NBC (125), and Rega Typing Tool (377 from two highly cited
publications).

Classification Performance

Next, we summarized workflow performance by aggregating
benchmark results on simulated viral data from different
publications (Figure 2). Twenty-five workflows had been tested
for sensitivity, of which 19 more than once. For some workflows,
sensitivity varied between 0 and 100, while for others sensitivity
was less variable or only single values were available.

For 10 workflows specificities, or true negative rates, were
provided. Six workflows had only single scores, all above 75%.
The other four had variable specificities between 2 and 95%.

Precision, or positive predictive value was available for sixteen
workflows. Seven workflows had only one recorded precision
score. Overall, scores were high (>75%), except for IMSA+A
(9%), Kraken (34%), NBC (49%), and vFam (3-73%).

Runtimes had been determined or estimated for 36 workflows.
Comparison of these outcomes is difficult as different input data
were used (for instance varying file sizes, consisting of raw reads
or assembled contigs), as well as different computing systems.
Thus a crude categorisation was made dividing workflows
into three groups that either process a file in a timeframe of
minutes (12 workflows: CaPSID, Clinical PathoScope, DUDes,
EnsembleAssembler, FACS, Kraken, LMAT, Metavir, MetLab,
SMART, Taxonomer and Virana), or hours (19 workflows: Giant
Virus Finder, GOTTCHA, IMSA, MEGAN, MePIC, MetaShot,
Metavir 2, NBC, ProViDE, Readscan, Rega Typing Tool, RIEMS,
RINS, SLIM, SURPI, Taxy-Pro, “Unknown pathogens from
mixed clinical samples,” VIP and ViromeScan), or even days
(5 workflows: Exhaustive Iterative Assembly, ViralFusionSeq,
VirFind, VirusFinder and VirusSeq).

Correlations Between Methods, Runtime,

and Performance

For 17 workflows for which these data were available, we
looked for correlations by plotting performance scores against
the analysis steps included (Figure 3). Workflows that included
a pre-processing or assembly step scored higher in sensitivity,
specificity and precision. Contrastingly, workflows with post-
processing on average scored lower on all measures. Pipelines
that filter non-viral reads generally had a lower sensitivity and
specificity and precision remained high.

Next, we visualized correlations between the used
search algorithms and the runtime, and the performance
scores (Figure 4). Different search algorithms had different
performance scores on average. Similarity search methods
had lower sensitivity, but higher specificity and precision than
composition search. The use of nucleotide vs. amino acid search
also affected performance. Amino acid sequences generally led
to higher sensitivity and lower specificity and precision scores.
Combining nucleotide sequences and amino acid sequences in
the analysis seemed to provide the best results. Performance was
generally higher for workflows that used more time.

Finally, we inventoried the overall runtime of 17 workflows
(Table 5) and separated them based on the inclusion of analysis
steps that seemed to affect runtime. This indicated that workflows
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TABLE 4 | Validation features of classification workflows.

Workflow Tested by Validation methods Sensitivity Specificity Precision Updates (most Citations
(%, no. tests) (%, no. tests) (%, no. tests) recent update) (Google
Scholar)
Kraken MetaShot, IMSA+A, - 67 (21) 92 (6) 97 (2) Yes (3-3-2016) 334
Taxonomer, GOTTCHA,
RIEMS, MetlLab
RINS CaPSID, Virana, PCR + Sanger sequencing 49 (16) 100 (4) 100 (4) Yes (10-1-2012) 51
ReadScan, developers
CaPSID Virana, developers in vitro validation 66 (8) 100 (4) 100 (4) Yes (2-6-2012) 26
MEGAN 4 MetlLab, Bazinet and - X X X Yes (new version) 752
Cummings , 2012
VirSorter Developers Manual curation of 62 (6) - 90 (6) Yes (15-2-2017) 34
prophages
Virana Developers FISH, Southern blot 67 (4) - 78 (4) Yes (1-6-2014)
vFam Developers Compared to previous 33 (3 99 () 34 (3 Yes (9-2-2014) 19
studies
MEGAN Community IMSA+A - X X X Yes (12-7-2017) 22
Edition
NBC MetLab - 100 (1) 33 (5) 49 (1) Yes (28-7-2010) 125
SURPI Taxonomer - 61 (3) - - Yes (5-6-2015) 128
PathSeq Readscan, developers - 51 (10) - - Yes 168
(23-11-20164 m)
Metavir 2 ViromeScan - 82 (1) - - Yes (26-7-2016) 63
Clinical PathoScope RIEMS - 18 (13) - - Yes (21-6-2016) 21
ProViDE MetLab - 53 (1) 37 (5) 73 (1) No 19
VirusSeq - Serology, colorimetric in situ - - - Yes (9-8-2013) 50
hybridization,
immunohistochemistry
ViralFusionSeq - Sanger sequencing - - - Yes (19-2-2017) 31
VIP - "Independent confirmatory - - - Yes (21-2-2017) 5
testing results”
VirusHunter - EM, serology - - - Unknown 46
(hemagglutanation inhibition)
SLIM - RT-PCR - - - Yes? 27
"Unknown pathogens - PCR, ELISA - - - Unknown 1
from mixed clinical
samples”
RIEMS Developers - 91 (13) 100 (19) 100 (13) Yes (10-3-2015) 11
LMAT Developers - 50 (6) - 93 (6) Yes (17-11-2016) 64
GOTTCHA Developers - 71(1) - - Yes (26-6-2017) 31
IMSA Developers - 92 (4) - - Yes (17-4-2014) 10
READSCAN Developers - 62 (15) - - No (16-9-2012) 30
FACS Developers - 99 (2) 100 (2) - Yes (17-12-2015) 39
Taxonomer Developers - 95 (4) 91 (1) - Yes (3-7-2017) 16
QuasQ Developers - 96 (9) - 99 (9) Yes (10-7-2014) 5
ViromeScan Developers - 100 (1) - 100 (1) Yes (29-5-2017) 4
GenSeed-HMM Developers - 62 (4) - 82 (4) Yes (13-10-2016) 0
IMSA+A Developers - 97 (8) - 81 (8) Yes (18-7-2017) 0
MetaShot Developers - 98 (1) - 98 (1) Yes (22-6-2017) 0
SMART - - - - - Yes (19-5-2016) 4
MetLab - - - - - Yes (28-2-2017) 0
EnsembleAssembler - - - - - No (80-11-2014) 41
DUDes - - - - - Yes (22-11-2016) 3
(Continued)
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TABLE 4 | Continued

Workflow Tested by Validation methods Sensitivity Specificity Precision Updates (most Citations
(%, no. tests) (%, no. tests) (%, no. tests) recent update) (Google
Scholar)
VirusFinder - - - - - Yes (19-6-2014) 49
VirusSeeker - - - - - Yes (21-11-2016) 1
VirVarSeq - - - - - Yes (28-4-2015) 13
Taxy-Pro - - - - - Yes (16-1-2013) 14
VirFind - - - - - Yes (30-6-2017) 31
Metavir - - - - - Yes (new version) 88
metaViC - - - - - Yes (20-6-2017) NA
MePIC - - - - - Yes 15
ClassyFlu - - - - - Unknown 0
Rega Typing Tool v3 - - - - - Unknown 79 4 298
VIROME - - = - = Unknown 59
Giant Virus Finder - - - - - No (7-6-2015) 3
SRSA - - - - - Unknown 40
VMGAP - - - - - Unknown 25
Exhaustive lterative - - - - - Unknown 1

Assembly (Virus
Discovery Pipeline)

Workflow were ordered as: Tested by multiple other groups, benchmarked by developers and validated by other experiments, tested by one other group, validated by other experiments,
benchmarked by developers, no sign of benchmark tests with updates, no validation and no updates. Tested by: the groups that have tested the workflow. Validation methods: the
experiments conducted by the developers to validate the computational results. Sensitivity, specificity and precision: average performance scores of a number (between brackets) of
different benchmark tests. Updates: whether or not a pipeline has received updates after publication. Citations: numbers of citations in Google Scholar as of 28 March 2017.

x: MEGAN visualizes the output of BLAST or DIAMOND and calculates lowest common ancestors. See Figure 2 for different scores. &: From personal communication with the developer,

we know SLIM has been updated. —: absent/no information available.

that included pre-processing, filtering, and similarity search by
alignment were more time-consuming than workflows that did
not use these analysis steps.

Applications of Workflows

Based on the results of our inventory, decision trees were drafted
to address the question of which workflow a virologist could use
for medical and environmental studies (Figures 5, 6).

DISCUSSION

Based on available literature, 49 available virus metagenomics
classification workflows were evaluated for their analysis
methods and performance and guidelines are provided to select
the proper workflow for particular purposes (Figures 5, 6). Only
workflows that have been tested with viral data were included,
thus leaving out a number of metagenomics workflows that had
been tested only on bacterial data, which may be applicable to
virus classification as well. Also note that our inclusion criteria
leave out most phylogenetic analysis tools, which start from
contigs or classifications.

The variety in methods is striking. Although each workflow
is designed to provide taxonomic classification, the strategies
employed to achieve this differ from simple one-step tools to
analyses with five or more steps and creative combinations
of algorithms. Clearly, the field has not yet adopted a
standard method to facilitate comparison of classification
results. Usability varied from a few remarkably user-friendly

workflows with easy access online to many command-line
programs, which are generally more difficult to use. Comparison
of the results of the validation experiments is precarious.
Every test is different and if the reader has different study
goals than the writers, assessing classification performance is
complex.

Due to the variable benchmark tests with different workflows,
the data we looked at is inherently limited and heterogeneous.
This has left confounding factors in the data, such as test data,
references used, algorithms and computing platforms. These
factors are the result of the intended use of the workflow, e.g.,
Clinical PathoScope was developed for clinical use and was not
intended or validated for biodiversity studies. Also, benchmarks
usually only take one type of data to simulate a particular use case.
Therefore, not all benchmark scores are directly comparable and
it is impossible to significantly determine correlations and draw
firm conclusions.

We do highlight some general findings. For instance, when
high sensitivity is required filtering steps should be minimized,
as these might accidentally remove viral reads. Furthermore, the
choice of search algorithms has an impact on sensitivity. High
sensitivity may be required in characterization of environmental
biodiversity (Tangherlini et al., 2016) and virus discovery.
Additionally, for identification of novel variant viruses and virus
discovery de novo assembly of genomes is beneficial. Discoveries
typically are confirmed by secondary methods, thus reducing
the impact in case of lower specificity. For example, RIEMS
showed high sensitivity and applies de novo assembly. MetLab
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FIGURE 2 | Different benchmark scores of virus classification workflows. Twenty-seven different workflows (Left) have been subjected to benchmarks, by the
developers (Top) or by independent groups (Bottom), measuring sensitivity (Left column), specificity (Middle column) and precision (Right column) in different
numbers of tests. Numbers between brackets (n = a, b, c) indicate number of sensitivity, specificity, and precision tests, respectively.

combines de novo assembly with Kraken, which also displayed
high sensitivity. When higher specificity is required, in medical
settings for example, pre-processing and search methods with the
appropriate references are recommended. RIEMS and MetLab
are also examples of high-specificity workflows including pre-
processing. Studies that require high precision benefit from
pre-processing, filtering and assembly. High-precision methods
are essential in variant calling analyses for the characterization
of viral quasispecies diversity (Posada-Cespedes et al., 2016),
and in medical settings for preventing wrong diagnoses. RINS
performs pre-processing, filtering and assembly and scored high
in precision tests, while Kraken also scored well in precision and
with MetLab it can be combined with filtering and assembly as
needed.

Clinicians and public health policymakers would be served
by taxonomic output accompanied by reliability scores, as is
possible with HMM-based search methods and phylogeny with
bootstrapping, for example. Reliability scores could also be
based on similarity to known pathogens and contig coverage.
However, classification to a higher taxonomic rank (e.g.,
order) is more generally reliable, but less informative than
a classification at a lower rank (e.g., species) (Randle-Boggis
et al, 2016). Therefore, the use of reliability scores and
the associated trade-offs need to be properly addressed per
application.

Besides, medical applications may be better served by a
functional rather than a taxonomic annotation. For example,
a clinician would probably find more use in a report
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incorporated different analysis steps (in rows). Numbers at the bottom indicate (Lmdgr een et al., 2016).
number of benchmarks performed. Numerous challenges remain in analyzing viral metagenomes.

of known pathogenicity markers than a report of species
composition. Bacterial metagenomics analyses often include
this, but it is hardly applied to virus metagenomics. Although

First is the problem of sensitivity and false positive detections.
Some viruses that exist in a patient may not be detected by
sequencing, or viruses that are not present may be detected
because of homology to other viruses, wrong annotation in
databases or sample cross-contamination. These might both lead
to wrong diagnoses. Second, viruses are notorious for their
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TABLE 5 | Correlation between runtime and method.

Method Minutes Hours

Pre-process
No pre-process

Filter
No filter

Assembly
No assembly

Nt sequences
Aa sequences
Nt + aa sequences

Alignment

Alignment + phylogeny
Exact k-mer matching
k-mer matching

T TS AAIIN IM IA

Composition search

Seventeen workflows, for which runtimes had been reported, were compared to find
correlations between runtime and methods. Numbers indicate the number of workflows
that process samples in a timeframe of either minutes or hours that use the method listed
in the left column. Grayscales are proportional to the total number of scores per group,
i.e., like a heatmap lower numbers are lighter and high numbers dark.

recombination rate and horizontal gene transfer or reassortment
of genomic segments. These may be important for certain
analyses and may be handled by bioinformatics software. For
instance, Rega Typing Tool and QuasQ include methods for
detecting recombination. Since these events usually happen
within species and most classification workflows do not go
deeper into the taxonomy than the species level, this is
something that has to be addressed in further analysis. Therefore,
recombination should not affect the results of the reviewed
workflows much. Further information about the challenges of
analyzing metagenomes can be found in Edwards and Rohwer
(2005); Wommack et al. (2008); Wooley and Ye (2009); Tang and
Chiu (2010); Wooley et al. (2010); Fancello et al. (2012); Thomas
et al. (2012); Pallen (2014); Hall et al. (2015); Rose et al. (2016);
Mclntyre et al. (2017), and Nieuwenhuijse and Koopmans (2017).

An important step in the much awaited standardization in
viral metagenomics (Fancello et al., 2012; Posada-Cespedes et al.,
2016; Rose et al., 2016), necessary to bring metagenomics to the
clinic, is the possibility to compare and validate results between
labs. This requires standardized terminology and study aims
across publications, which enables medically oriented reviews
that assess suitability for diagnostics and outbreak source tracing.
Examples of such application-focused reviews can be found in the
environmental biodiversity studies (Oulas et al., 2015; Posada-
Cespedes et al., 2016; Tangherlini et al., 2016). Reviews then
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FIGURE 5 | Decision tree for selecting a virus metagenomics classification workflow for medical applications. Workflows are suitable for medical purposes when they
can detect pathogenic viruses by classifying sequences to a genus level or further (e.g., species, genotype), or when they detect integration sites. Forty workflows
matched these criteria. Workflows can be applied to surveillance or outbreak tracing studies when very specific classification are made, i.e., genotypes, strains or
lineages. A 1-day analysis corresponds to being able to analyse a sample within 5h. Detection of novel variants is made possible by sensitive search methods, amino
acid alignment or composition search, and a broad reference database of potential hits. Numbers indicate the number of workflows available on the corresponding
branch of the tree.
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FIGURE 6 | Decision tree for selecting a virus metagenomics classification workflow for biodiversity studies. Workflows for the characterisation of biodiversity of
viruses have to classify a range of different viruses, i.e., have multiple reference taxa in the database. Forty-three workflows fitted this requirement. Novel variants can
potentially be detected by using more sensitive search methods, amino acid alignment and composition search, and using diverse reference sequences. Finally,
workflows are grouped by the taxonomic groups they can classify. Numbers indicate the number of workflows available on the corresponding branch of the tree.

provide directions for establishing best practices by pointing out
which algorithms perform best in reproducible tests. For proper
comparison, metadata such as sample preparation method and
sequencing technology should always be included—and ideally
standardized. Besides, true and false positive and negative results
of synthetic tests have to be provided to compare between
benchmarks.

Optimal strategies for particular goals should then be
integrated in a user-friendly and flexible software framework
that enables easy analysis and continuous benchmarking to
evaluate current and new methods. The evaluation should
include complete workflow comparisons and comparisons of
individual analysis steps. For example, benchmarks should be
done to assess the addition of a de novo assembly step to the
workflow and measure the change in sensitivity, specificity, etc.
Additionally, it remains interesting to know which assembler
works best for specific use cases as has been tested by several
groups (Treangen et al., 2013; Scholz et al., 2014; Smits et al.,
2014; Vazquez-Castellanos et al., 2014; Deng et al,, 2015). The
flexible framework should then facilitate easy swapping of these
steps, so that users can always use the best possible workflow.
Finally, it is important to keep reference databases up-to-date

by sharing new classified sequences, for instance by uploading to
GenBank.

All these steps toward standardization benefit from
implementation of a common way to report results, or
minimum set of metadata, such as the MIxS by the genomic
standard consortium (Yilmaz al, 2011). Currently
several projects exist that aim to advance the field to wider
acceptance by validating methods and sharing information,
e.g, the CAMI challenge (http://cami-challenge.org/),
OMICtools (Henry et al, 2014), and COMPARE (http://
www.compare-europe.eu/). We anticipate steady development
and validation of genomics techniques to enable clinical
application and international collaborations in the near
future.
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