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Host’s physiology is significantly influenced by microbiota colonizing the epithelial
surfaces. Complex microbial communities contribute to proper mucosal barrier function,
immune response, and prevention of pathogen invasion and have many other crucial
functions. The oral cavity and large intestine are distant parts of the digestive tract,
both heavily colonized by commensal microbiota. Nevertheless, they feature different
proportions of major bacterial and fungal phyla, mostly due to distinct epithelial layers
organization and different oxygen levels. A few obligate anaerobic strains inhabiting
the oral cavity are involved in the pathogenesis of oral diseases. Interestingly, these
microbiota components are also enriched in gut inflammatory and tumor tissue. An
altered microbiota composition – dysbiosis – and formation of polymicrobial biofilms
seem to play important roles in the development of oral diseases and colorectal cancer.
In this review, we describe the differences in composition of commensal microbiota in
the oral cavity and large intestine and the mechanisms by which microbiota affect the
inflammatory and carcinogenic response of the host.
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INTRODUCTION

Both the upper and lower parts of the human digestive tract harbor a complex ecosystem of
bacteria, fungi, protozoa, and viruses, referred to as the microbiome. It begins to form even
before birth, in the uterus, developing for another 2–3 years after birth to become a stable, fully
functioning microbiome, until the physiological changes associated with senescence lead again to
substantial shifts in its composition (Adlerberth and Wold, 2009; Aagaard et al., 2014; Maffei et al.,
2017). The lower part of the digestive tract gets “inoculated” every day by about 1011 bacteria from
the oral cavity and microbial species detected in the oral and fecal microbiota overlap in about
45% of tested individuals (Socransky and Haffajee, 2002; Segata et al., 2012). Moreover, via the
blood stream, these oral bacteria can disseminate all over the body. Fungal microbiota can colonize
the gut perorally as well, with some strains detected in the gut likely to be contaminants from
the environment or food, rather than commensals (Trojanowska et al., 2010). The composition
and function of the microbiome change along the digestive tract, from the oral cavity to the
rectum. These differences have been previously described in detail (Arumugam et al., 2011; Human
Microbiome Project Consortium, 2012) and will be briefly outlined below.

Collectively, the genes encoded by the microbial genomes outnumber the genes in the human
genome about 100-fold and this variation enables the commensal microbiota to use substrates
indigestible by humans (Qin et al., 2010). Products of microbial metabolic activity include vitamins,
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short-chain fatty acids (SCFAs), and other compounds important
for host cell metabolism and survival. Moreover, the host’s
physical interaction with or sensing of the microbial components
is important for proper mucosal barrier function and mucosal
immune system development and homeostasis. On the other
hand, recent studies have shown that some commensal microbes
can under certain conditions become pathogenic – so called
pathobionts. Mechanisms include expression of virulence factors,
such as adhesion molecules or proteases, or formation of a
biofilm, and such activity can lead to disease initiation or
progression. One such example is Escherichia coli, a large and
diverse group of various bacterial serotypes. E. coli strains differ
in their activities and biological roles: some of them are gut
commensals and commercially available probiotics, others can
be pathogens causing gastrointestinal and urinary infections or
pathobionts associated with inflammatory bowel disease (IBD)
and colorectal cancer (CRC).

The jury is still out on what triggers this transformation
of commensals into pathobionts; it might be that a change
in the gut microenvironment simply allows the microbes to
interact with the host in an aberrant way. The gut microbiota
composition and function can be influenced by various factors
(Figure 1). For instance, many substances produced by the host
and secreted into gut lumen, such as antibacterial peptides,
secretory IgA, mucins, cytokines, or neuromediators, can shape
the microbial community. Their production depends on host
gene polymorphisms and their expression in host cells is often
driven by microbial stimulation, creating a positive feedback
loop. Mechanisms responsible for cancer development include
some of these factors but others are still under scientific
investigation.

Colorectal cancer is the most prevalent type of cancer
in developed and developing countries (Ferlay et al., 2015).

FIGURE 1 | Factors influencing microbiome composition. Microbiome
composition is influenced on several levels by factors from external
environment, factors resulting from the interaction of microbiota with the host
and mutual interaction of the microbiome components.

Only a small percentage of colorectal cancers is hereditary or
associated with certain predisposing conditions, such as chronic
intestinal inflammation in IBD patients. The majority of cases
thus represents sporadic cancers (85–95%) and can be, to some
extent, influenced by environmental factors. The composition
and metabolic activity of gut microbiota may be therefore a
crucial component of CRC pathogenesis (Arthur and Jobin,
2011).

Findings of significant colonization of cancer tissue by
microbes usually found in the oral cavity have sparked a
debate about a possible involvement of oral microbiota in CRC
development process. Many experimental studies have provided
evidence for a significant role of microbiota in carcinogenesis.
However, due to the complexity of microbial cooperation and
interaction with the host, all the underlying mechanisms are
yet to be elucidated. Here, we review the properties of bacterial
and fungal populations inhabiting the oral cavity and gut, with
emphasis on their association with CRC pathogenesis.

ORAL MICROBIOTA

The microorganisms found in the human oral cavity are referred
to as the human oral microbiome and play a crucial role in
maintenance of homeostasis in the mouth. Each individual’s oral
microbiome consists of a distinct set of microorganisms. The
mouth supports one of the most diverse microbial communities
compared with other body sites, such as the skin and vagina,
due to its heterogeneity and the interrelationships between
the different anatomic structures (Wade, 2013). The constantly
humid environment of the oral cavity is maintained at a relatively
stable temperature (34–36◦C), while the varying pH levels and
different types of diet contribute to the substantial microbiome
variability (Marcotte and Lavoie, 1998). Habitats of the oral cavity
are represented by both hard (teeth) and soft tissues (cheek,
tongue, lip, gingival sulcus, attached gingiva, hard and soft palate)
and their interface (subgingival and supragingival margins, and
gingival crevices around teeth). The contiguous extensions of the
oral cavity, including the tonsils, pharynx, esophagus, Eustachian
tube, middle ear, trachea, lungs, nasal passages, and sinuses,
are also colonized by the oral microbiome but the majority of
studies describing the oral microbiome composition include only
samples from the oral cavity (Mager et al., 2003; Aas et al., 2005).
Moreover, all these structures are constantly moistened by two
physiological fluids, saliva and the gingival crevicular fluid, which
help to maintain the oral microbiome homeostasis by providing
water, nutrients, antibodies, and antimicrobial and adherence
factors (Marcotte and Lavoie, 1998).

The National Institute of Health’s Human Microbiome
Project identified the most dominant phyla that account
for over 95% of the entire oral microbiome: Firmicutes,
with the Streptococcus as a dominant genus, Bacteroidetes,
strongly represented by Prevotella and Proteobacteria, with
highly abundant Haemophilus, Fusobacteria, and Actinobacteria
(Human Microbiome Project Consortium, 2012; Huse et al.,
2012; Zhou et al., 2013). The oral cavity displays greater alpha-
diversity (species richness) than either the skin or vagina,
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characterized by uniform abundance of the major species
(Huse et al., 2012). On the other hand, beta-diversity, i.e.,
differences in microbiome composition in oral sites among
various subjects, is the lowest compared to the other body
sites (Huse et al., 2012). Within the oral cavity, the highest
microbiota richness has been found in the gingival plaque
and in saliva, whereas the lowest richness has been described
in keratinized gingiva (Huse et al., 2012; Zhou et al., 2013).
It seems that saliva contributes unevenly to the microbial
composition of different sites in the oral cavity. Due to its
rapid turnover and low levels of nutrients, saliva itself does
not contain a stable indigenous biota and owes its high alpha-
diversity primarily to bacteria shed from other oral tissues
(Mager et al., 2003). In general, species like Streptococcus,
Gemmella, Granulicatella, Veillonella, and Fusobacterium can
be detected across almost all oral sites, while others are
represented only at one or two oral sites, e.g., Prevotella,
Bacteroides, Corynebacterium, Pasteurella, and Neisseria (Huse
et al., 2012). Bacterial species in the oral cavity find the most
stable environment at the supragingival or subgingival tooth
surfaces. These non-shedding surfaces are covered by persisting
biofilms composed mainly by Streptococcus and Actinomyces,
representing the earliest colonizers of teeth, and Veillonella
(Socransky and Haffajee, 2005; Teles et al., 2013). Taken together,
although most microbial species found in the oral cavity differ
in their abundance, their representation and activity is more
important.

ORAL MICROBIOME AND ORAL
DISEASES

A considerable number of oral conditions, including caries
and periodontal diseases, endodontic infections, alveolar
osteitis, and tonsillitis is connected to detrimental alteration in
microbiota composition – a dysbiosis (Costalonga and Herzberg,
2014; Proctor and Relman, 2017). For instance, periodontal
inflammation is directly induced by microbes colonizing
the biofilm in the gingival sulcus and, at later stages, in the
periodontal pockets. These oral biofilms contain 100s of different
bacterial species in one periodontal lesion, with composition
different from that in healthy periodontium (Socransky and
Haffajee, 2005; Teles et al., 2013). Initially, the plaque forms only
supragingivally but if it is not removed properly, after a few
days it spreads below the gingival margin and into the sulcus.
There, after the depletion of oxygen, a new environment is
established, where anaerobic bacteria can flourish. Three most
destructive anaerobic bacteria involved in severe periodontal
disease, the so called “red complex,” include Treponema denticola,
Tannerella forsythia and Porphyromonas gingivalis (Socransky
et al., 1998). Aggressive form of periodontitis is further
associated with Aggregatibacter actinomycetemcomitans (Slots,
1976). The immunopathological mechanisms in periodontal
disease development and course have been recently thoroughly
reviewed by Hajishengallis and Korostoff (2017). Recurrent
aphthous stomatitis is also connected to changes in microbiota
composition; decreased abundance of Streptococcus salivarius

and increased Acinetobacter johnsonii have been linked to the
disease incidence (Bankvall et al., 2014; Kim et al., 2016).

As mentioned previously, the human microbiome diversity
is not limited only to bacteria but also includes fungal
species. However, this oral mycobiome have been only recently
characterized and despite its potential great scientific importance,
we found only few studies where its composition was analyzed
using high throughput sequencing. Ghannoum et al. (2010)
reported that healthy oral mycobiota contained 74 culturable and
11 non-culturable fungal genera. They have revealed great inter-
individual variation and proposed that the presence of certain
fungal isolates (e.g., Candida, Aspergillus, Cryptococcus) probably
predisposes the host to opportunistic infections. Malassezia
species, previously described as commensals and pathogens of
the skin and lungs, have been recently found as predominant
commensals in saliva (Saunders et al., 2012; Dupuy et al., 2014).
Many other species are likely still waiting to be discovered
and were not detected earlier because of their special growth
requirements (Nagano et al., 2010). The first evidence of
interactions among members of the oral mycobiome community
and their association with specific disease came from a study
characterizing the oral mycobiome in HIV patients (Mukherjee
et al., 2014). The authors found that a decrease in abundance
of an indigenous fungus Pichia in uninfected individuals went
hand in hand with an increase in abundance of Candida,
suggesting an antagonistic relationship. Pichia inhibits Candida
by different mechanisms, including competition for nutrients
and secretion of factors that disrupt the latter’s ability to
adhere, germinate, and form biofilms. Moreover, they found
a negative correlation between Candida and Campylobacter in
HIV-infected subjects, whereas in healthy subjects, no correlation
between Candida and bacterial species was detected (Mukherjee
et al., 2014). Recently, Peters et al. (2017) published a pilot
study describing oral mycobiome in healthy subjects and those
with periodontal disease. In diseased subjects, they found a
slightly increased abundance of Candida genera which is in
agreement with previous culture-based studies (Urzúa et al.,
2008; Canabarro et al., 2013). Despite those first studies aiming
for a deeper understanding of the factors affecting the oral
mycobiota composition, information about their direct and
indirect effects on human health and the interactions between the
fungi and bacteria is still lacking.

The involvement of microbiota in the pathogenesis of oral
diseases has been documented using gnotobiotic rat and mouse
models of human diseases. Germ-free animals can be obtained by
delivering the young by sterile Cesarean section and raising them
aseptically in isolators for germ-free rearing. Such animals made
it possible to study the effects of commensal bacteria in the oral
cavity, including the effects on periodontal tissues. In germ-free
mice and rats, it was demonstrated that periodontal disease and
caries, similarly to other human inflammatory diseases, cannot be
experimentally induced in the absence of microbiota (Heijl et al.,
1980; Tlaskalova-Hogenova et al., 2004). Experimental animal
models (e.g., the gavage model of periodontal disease) and in vitro
studies revealed that certain components of oral microbiota,
mainly P. gingivalis, play a crucial role in the innate host defense
of periodontium and that dysregulation of the immune response
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in the presence of oral microbiota leads to inflammation and
alveolar bone loss (Ivanyi et al., 1991; Darveau et al., 2012;
Papadopoulos et al., 2013). The mechanisms by which microbiota
triggers the pathological changes are not yet fully understood,
however, new approaches promise to shed light on the role of oral
microbiota (Kinane et al., 2017; Pitts et al., 2017).

ORAL MICROBIOME AND EXTRA-ORAL
DISEASES

Dysbiosis of the oral microbiome is not only connected with the
incidence and maintenance of oral diseases, but has been also
implicated in the pathogenesis of autoimmune, inflammatory,
and neoplastic diseases (e.g., heart disease, respiratory illnesses,
psoriasis, psoriatic arthritis, and carcinogenesis at various sites)
(He et al., 2015; Roberts and Darveau, 2015; Egeberg et al.,
2017; Ungprasert et al., 2017). Moreover, oral microbiota seems
to affect the outcome of pathological pregnancy (preterm birth,
abortions, etc.); reviewed by Cobb et al. (2017). Periodontal
bacterial DNA has been found in atherosclerotic plaques of
patients suffering from ischemic heart disease and atherosclerosis
(Ford et al., 2005, 2006). Bacteria may initiate or exacerbate
atherosclerotic processes through activation of innate immunity,
direct involvement of mediators activated by dental plaque
antigens in atheroma processes, or involvement of cytokines and
heat shock proteins from dental plaque bacteria. There might
be also genetic predisposing factors influencing both diseases
(Bartova et al., 2014). Furthermore, patients with rheumatoid
arthritis have a higher prevalence of periodontal disease and
vice versa (Kasser et al., 1997; Greenwald and Kirkwood, 1999).
Bacterial DNA has been detected in the synovial fluid of
patients with rheumatoid arthritis or with failed prosthetic joints,
suggesting the possibility of infection translocating from the
periodontal tissue to the synovium (Temoin et al., 2012). The oral
microbiome is not confined to spreading to contiguous epithelial
surfaces, but can also be carried by the bloodstream to distant
body sites, such as the heart, skin, and joints. Oral microbiota
enters the bloodstream during routine daily activities like tooth
brushing or through inflamed tissue in the course of oral diseases
(Tomas et al., 2012). The mechanisms of dissemination of
potentially pathogenic microbes from the oral cavity through
bloodstream are still not clear. Potential connection with systemic
low-grade inflammation has been also discussed (Potgieter et al.,
2015).

In most conditions discussed so far, no particular microbe
or microbes have been described as a causative agent.
However, thanks to advances in molecular methods, presence
of Fusobacteria and other oral bacteria has been recently
demonstrated in various systemic pathological conditions,
including digestive diseases, such as appendicitis, IBD and
CRC. Moreover, a correlation of the presence of oral bacteria
P. gingivalis and A. actinomycetemcomitans with an increased
risk of developing pancreatic cancer has been observed in
a large group of subjects with incident primary pancreatic
adenocarcinoma (Fan et al., 2016). Several recent studies have
repeatedly confirmed the presence of oral bacteria in the

gut, especially in association with CRC mucosa. For instance,
Nakatsu et al. (2015) have shown that a substantial part of gut
microbiome associated with CRC is composed of oral bacteria
and Fusobacterium in particular. Momen-Heravi et al. (2017)
also proposed a role of oral bacteria in CRC development. They
conducted a retrospective study in a huge cohort of women and
discovered an association of periodontal disease and tooth loss
with CRC morbidity and found that women with less than 17
teeth may be at a greater risk of incident CRC (Momen-Heravi
et al., 2017).

ORAL MICROBIOTA AND COLORECTAL
CARCINOGENESIS

It is generally accepted that the gut microbiome plays a role
in CRC development. Experimental proof of gut microbiota
involvement in CRC development came from gnotobiotic animal
models (Reddy et al., 1975; Vannucci et al., 2008; Arthur
and Jobin, 2011; Klimesova et al., 2013; Tlaskalova-Hogenova
et al., 2014). Recent studies using next generation sequencing
and polymerase chain reaction have shown that Fusobacterium
nucleatum is frequently detected in stool and biopsy samples
from CRC patients (Castellarin et al., 2012; Kostic et al., 2012;
Flanagan et al., 2014). These adhesive, anaerobic Gram-negative
bacteria attract considerable attention in search for possible
mechanisms behind their inflammatory and tumorigenic activity.
Some of the features of F. nucleatum and the host responses
are already known: F. nucleatum modulates E-cadherin/β-catenin
signaling via its FadA adhesin/invasin – a key virulence factor,
and alters macrophage infiltration and methylation of the
CDKN2A promoter in CRC lesions (Rubinstein et al., 2013;
Park et al., 2017). It seems that Fap2 Gal-GalNAc lectin of
F. nucleatum could be responsible for its tendency to bind to
tumor cells displaying Gal-GalNAc moieties (Abed et al., 2016).
Moreover, several other virulence proteins that might participate
in inflammatory and neoplastic processes have been described in
F. nucleatum, using proteomic approaches (Zanzoni et al., 2017).
In the host, F. nucleatum activates numerous immune responses
including human β-defensin production, lymphocyte apoptosis,
and production of proinflammatory cytokines interleukin (IL)-6,
IL-8, and TNF-α (Han, 2015).

The fact that Fusobacterium is highly abundant in patients
with CRC led to various efforts to apply this finding for
clinical purposes. For instance, a highly sensitive DNA test for
F. nucleatum has been developed for screening and prognosis
of CRC in Japan (Yamaoka et al., 2017). Fusobacterium has
been recently shown to predict the aggressiveness and recurrence
of CRC and its resistance to chemotherapy. It seems to be
modifying the innate immune signaling and regulating specific
microRNAs that activate the autophagy pathway (Yu et al., 2017).
In connection with this finding, an argument has been made to
use anti-F. nucleatum therapy together with chemotherapy.

The dietary patterns leading to CRC development have
been studied for several decades. Recently, it was shown
that individuals consuming a western-type diet have a higher
incidence of Fusobacterium-associated CRC and that diets rich
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in whole grains and dietary fiber are associated with a lower risk
of F. nucleatum-positive CRC (Mehta et al., 2017).

Despite the clinical observation of increased abundance of
Fusobacterium in patients with CRC (especially in chemoresistant
forms of CRC), direct clinical evidence of a causal relationship is
still lacking. A recent study revealed that fusobacterial abundance
is not significantly increased in fecal samples of patients with
adenomas, implying that the relationship between Fusobacterium
and CRC might not be causal after all. Amitay et al. (2017)
hypothesize that Fusobacterium is more likely just a passenger
colonizing the favorable niche in a gut with CRC, rather than
the driver of cancer development. Experimental evidence of its
potential causal role is based on in vitro and animal models
of CRC. For instance, it has been shown that F. nucleatum
potentiates tumorigenesis in monoassociated Apcmin/+ mice
(Kostic et al., 2013).

While Fusobacterium is the most studied periodontal microbe
in connection to CRC, other components of the oral microbiome
may also be implicated in CRC pathogenesis and will be discussed
later (Table 1).

GUT MICROBIOME, METABOLIC
ACTIVITY, AND COLON
CARCINOGENESIS

Thanks to advances in high-throughput sequencing and
metabolomic approaches, we have a growing understanding
of the composition and metabolic activity of the microbiome
associated with colorectal carcinogenesis. Studies have shown
that gut microbiome differs between healthy individuals and
adenoma/carcinoma patients and that microbial diversity in
cancer is reduced (Peters et al., 2016). The adenoma-carcinoma
sequence in CRC development suggests an associated continuous
alteration of the resident microbiome, which is supported by
recent research. Analyses of fecal microbiome composition
in patients with adenoma have shown increased normalized
abundance of genera such as Actinomyces, Corynebacterium,
Porphyromonas, Mogibacterium, and Haemophilus when
compared with healthy individuals (Peters et al., 2016; Hale
et al., 2017). Cancer patients have shown further differences in
fecal microbiota composition, with a marked enrichment of
Ruminococcus, Oscillibacter, and Roseburia, and Porphyromonas,
Fusobacterium, and Peptostreptococcus, i.e., strains associated
with periodontal disease (Table 1) (Shen et al., 2010; Flemer
et al., 2017; Liang et al., 2017).

Moreover, fecal samples reflect the microbial colonization of
tissues, as biopsies from adenomas and carcinomas have been
similarly different from healthy mucosa (Flemer et al., 2017).
The findings that there is very little difference in microbiota
composition between diseased and adjacent unaffected tissue
suggest that the microbiome undergoes a systemic change,
affecting the whole community (Lu et al., 2016; Flemer et al.,
2017). Such results support the driver/passenger model, the
idea that certain strains disturb the microbial community and
the mucosal microenvironment (drivers) and such changes
lead to subsequent colonization by pathobionts and pathogens

TABLE 1 | Oral microbiota and its possible mechanisms related to tumorigenesis.

Microbial genera Activity Reference

Streptococcus Adhesion,
co-aggregation
Biofilm formation
Protease activity
Hemolytic activity

da Silva et al., 2014
Diaz et al., 2012
Kilian et al., 1988
Wong et al., 2016

Peptostreptococcus Biofilm formation
Antiapoptotic effect
Hydrogen sulfide
production

Tsoi et al., 2017
Persson et al., 1990

Parvimonas Biofilm formation
Hemolytic activity
Proinflammatory
stimulation
Hydrogen sulfide
production

Wong et al., 2016
Marchesan et al., 2016
Carlsson et al., 1993

Dialister Biofilm formation
Proinflammatory
stimulation

da Silva et al., 2014
Sousa et al., 2014

Mogibacterium Biofilm formation Casarin et al., 2012

Fusobacterium Adhesion
Proinflammatory
stimulation
Immune evasion
Hemolytic activity
Hydrogen sulfide
production

Kostic et al., 2013
Rubinstein et al., 2013
Wong et al., 2016
Claesson et al., 1990

Porphyromonas Biofilm formation
Immune evasion
Antiapoptotic effect
Protease activity
Hemolytic activity
Hydrogen sulfide
production
Proinflammatory
stimulation

Inaba et al., 2013
Mao et al., 2007
Potempa et al., 2003
Wong et al., 2016
Persson et al., 1990
Sousa et al., 2014

Campylobacter Hemolytic activity
Proinflammatory
stimulation

Wong et al., 2016
Marchesan et al., 2016

Candida Adhesion
Biofilm formation
Protease activity
Hemolytic activity

Diaz et al., 2012
Gomes et al., 2017

(passengers) (Tjalsma et al., 2012). Both the drivers and
the passengers modulate the local microenvironment through
different means, such as virulence factors or metabolic activity.
Drivers thus promote cancer initiation at the very beginning
by their involvement in DNA damage, cell cycle regulation,
apoptosis and epithelium proliferation, whereas passengers
more likely promote tumorigenesis via chronic proinflammatory
stimulation and direct tissue damage.

Drivers often include microbes that produce genotoxic
substances, which damage DNA, or cyclomodulins, which
can modulate the epithelial cell cycle – recently thoroughly
reviewed by Gagniere et al. (2016) and El-Aouar et al. (2017).
Bacteroides fragilis and Enterococcus faecalis have the potential
to damage epithelial cells and initiate cancer formation by
producing the enterotoxin fragilysin and reactive oxygen species,
such as superoxide, respectively (Huycke et al., 2002; Toprak
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et al., 2006). Several studies confirmed that E. coli strains
encoding the genotoxic polyketide synthase (pks) island are
associated with inflamed gut mucosa and CRC (Swidsinski
et al., 1998; Nougayrede et al., 2006; Arthur et al., 2012;
Raisch et al., 2014). Interestingly, members of the family
Enterobacteriaceae, including E. coli, can produce several types
of genotoxins or cyclomodulins. Cytotoxic necrotizing factors
and cycle-inhibiting factor modulate the cell cycle and can lead
to uncontrolled proliferation or cell cycle arrest, respectively
(Taieb et al., 2006; Miraglia et al., 2007). Cytolethal distending
toxins, similarly to pks, induce DNA double-strand breaks
and apoptosis, but can also promote proinflammatory cytokine
production in the host (Blazkova et al., 2010). In summary,
the interplay of these factors with gut epithelium and immune
cells can promote low-grade inflammation and cancer initiation.
Moreover, we can assume that these molecules represent just the
tip of the iceberg of as yet unknown microbial products of gut
commensals with the potential to harm the gut epithelium.

Mycobiome, i.e., the fungal microbiome, forms an integral
part of the gut microbial community, although it is much
less investigated then the bacterial part. The most common
genera residing in a healthy gut are Candida, Saccharomyces,
and Cladosporium (Hoffmann et al., 2013). However, some
non-commensal transient fungi, acquired with food or from
the environment, can be also found in fecal samples and may
comprise potentially pathogenic species. Trojanowska et al.
(2010) have shown that the gut is colonized also by the
oral mycobiome, as they found a genetically identical Candida
albicans strain in the mouth and colon of patients with IBD.
Unfortunately, data about fungal colonization of the digestive
tract in relation to neoplastic diseases are still sparse. A disruption
of the bacterial and fungal community – dysbiosis, has been
observed in individuals with IBD (Sokol et al., 2017), who are
known to be at increased risk of CRC development. Interestingly,
reduced richness and diversity has been detected not only
in bacterial, but also in fungal microbiome (Chehoud et al.,
2015; Liguori et al., 2016; Sokol et al., 2017). For instance,
the Cystofilobasidiaceae family, Dioszegia genus and Candida
glabrata have been found to be enriched in Crohn’s disease
compared with healthy mucosa (Liguori et al., 2016). The
only published study on fungal microbiota in CRC deals with
comparison of adenomas and adjacent tissues. Luan et al. (2015)
have observed an increased abundance of Phoma and Candida
genera and Candida tropicalis in adenomas. As pathobionts,
these genera may be involved in cancer initiation, but further
studies are needed to investigate whether they work as drivers or
passengers.

Microbiome in the colon makes use of various catabolic
and anabolic pathways, which enable it to utilize a broad
spectrum of substrates that are not absorbed in the small
intestine. These pathways interact with the metabolism of
xenobiotics and influence micronutrient bioavailability, lead
to the production of essential vitamins and degradation of
fibers, and regulate the secretion of various molecules (Arthur
and Jobin, 2011). Different dietary components can shift
the microbiome composition. For instance, a diet high in
resistant starch increases the abundance of bacteria metabolizing

non-digestible polysaccharides (Walker et al., 2011). Indeed,
increased abundance of Prevotella and Bacteroides has been
observed in individuals preferring high sugar and high protein
diet, respectively (Wu et al., 2011). Our digestion pathways lack
the enzymes for the degradation of resistant starch and dietary
fiber but the distal gut microbiome encodes about 81 different
families of glycoside hydrolases (bacterial polysaccharidases,
glycosidases), which are not present in the human genome (Gill
et al., 2006). The microbiome thus significantly contributes to
the utilization of starch, primary fiber, host-derived secretions
(mucus glycans), sucrose, and monosaccharides.

Subsequent fermentation of depolymerized molecules leads
to the production of SCFAs, mainly acetate, propionate, and
butyrate. Compared with other microbiomes in gene libraries,
the human gut microbiome is enriched with genes involved
in the pathways generating SCFAs (Gill et al., 2006). Main
producers of butyrate within the human gut microbiome are
Faecalibacterium prausnitzii and Eubacterium rectale/Roseburia
group (Louis et al., 2010). SCFAs provide one of the most
important sources of energy, not only for intestinal epithelial cells
but also for muscles, kidneys, heart, and brain. Their physiologic
production impacts the metabolism and transport through the
epithelium, as well as epithelial cell renewal and differentiation.
Moreover, SCFAs greatly influence the immune system, colonic
functions, and carcinogenesis. Butyrate production, for example,
improves gut barrier integrity and reduces local oxidative stress
and inflammation (Macfarlane and Macfarlane, 2012). Recently,
Kaiko et al. (2016) came with an interesting finding that butyrate
levels are much lower at the intestinal crypt base than in the
lumen. Differentiated enterocytes use butyrate as an energy
source and thus reduce its concentration along the way to the
lamina propria, where a low concentration of butyrate keeps
the epithelial progenitors proliferating and stimulates tolerogenic
immune response (Kaiko et al., 2016). The role of SCFAs in
cancerogenesis is not fully understood but their concentration
could be an important factor.

On the other hand, degradation and fermentation of dietary
proteins, peptides, and amino acids by bacteria generates by-
products, such as phenols, indoles, ammonia, amines, and
hydrogen sulfite, all of which are to some extent harmful to
the host, being co-carcinogens, mutagens, and cellular toxins
(Macfarlane and Macfarlane, 2012). Moreover, hydrogen released
as the end-product of fermentation is processed by methanogenic
species of Archaea (e.g., Methanobrevibacter) to methane, which
changes local conditions (redox potential and pH) and thus
regulates biochemical pathways (Gill et al., 2006).

Fungal metabolic activity includes the digestion of
polysaccharides and fat residuals from the diet and host
residuals, leading to the synthesis of a variety of secondary
metabolites, which can substantially influence the surrounding
prokaryotic and eukaryotic cells. An investigation of the
relationship between fungal diversity and diet revealed a positive
correlation of Candida with diet rich in saccharides and a
negative correlation of Aspergillus with SCFAs (Hoffmann
et al., 2013). Thus, close relationships between bacterial and
fungal metabolic requirements can help structure the microbial
community in the gut. For instance, antimicrobial treatment
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can significantly disrupt the ecological balance of microbiota
throughout the digestive tract. Antibiotics eradicate some
sensitive bacteria and their niche can be subsequently invaded
by other bacteria or fungi (Huffnagle and Noverr, 2013).
Interestingly, a nested case-control study has shown that
bacterial or fungal outgrowth after multiple penicillin treatments
slightly increases the risk of CRC development (Boursi et al.,
2015). And, last but not least, consumption of food-associated
mycotoxins – secondary metabolites of fungi, has been linked
to carcinogenesis throughout the digestive tract (De Ruyck
et al., 2015). Several in vitro studies have shown that exposure
to mycotoxins affects apoptosis, intestinal barrier integrity
and mucus production and causes DNA damage, suggesting a
possible role of mycotoxins in CRC development; reviewed by
Maresca and Fantini (2010).

HOST–MICROBIOME INTERACTION AND
DISEASE DEVELOPMENT

Host derived proteoglycans, forming the mucus layer, are an
important part of the mucosal immune system. They protect
the epithelium from an extensive contact with the microbiome
and reduce the risk of microbial invasion. The oral cavity
and esophagus harbor several layers of tight and largely inert
squamous epithelium, whereas the remaining parts of the
digestive tract are covered with a single layer of intensely active
cells (Johansson et al., 2013). The structure of the mucus layers
and types of mucin (MUC) vary widely along the digestive
tract. The salivary glands in the oral cavity produce mainly
MUC5B and MUC7, glands in the stomach and duodenum
secrete gel-forming mucins MUC5AC and MUC6, and goblet
cells in the gut specialize in MUC2 production (Khan et al.,
1998; Wickstrom et al., 1998; Nordman et al., 2002). While
in the small intestine, MUC2 forms a loose unattached mucus
layer, in the colon it has two parts with different functions, an
inner, attached layer and an outer, unattached one (Johansson
et al., 2013). The inner layer, which is about 50–100 µm
thick, is dense and impenetrable to most microbes, while
the outer layer flows with the gut content. Mucus contains
distinct products of epithelial cells, such as antimicrobial
peptides and secretory IgA, which play an important role in
the protection of gut mucosa against pathogen invasion or
excessive inflammatory response to commensals (Johansson
et al., 2011).

Interestingly, some members of the oral and gut microbiome
can form a multilayer structure, composed of microbes and
a polymeric matrix, termed a biofilm. Biofilm formation is
one example of the mechanisms microorganisms use to evade
antimicrobial defenses in the hostile environment of the
host. Most biofilms are of polymicrobial nature and members
of the biofilm community are distinct from the planktonic
microbiota colonizing the mucosal surfaces throughout the
body. Polymeric matrix formation and subsequent microbial
colonization is the consequence of adhesion processes mediated
by a wide spectrum of glycoproteins. Caries and periodontal
disease are associated with biofilm formation by well-known

periodontopathic bacteria. Biofilm in dental caries contains
mainly streptococci, L. acidophilus, and Actinomyces and is
secondarily colonized by anaerobic species, such as F. nucleatum
and P. gingivalis (Chenicheri et al., 2017). In periodontal
disease, early biofilm colonizers are mainly represented by
streptococci and Actinomyces. Later on, more pathogenic bacteria
such as F. nucleatum, P. gingivalis, T. forsythia, T. denticola,
and A. actinomycetemcomitans appear (Socransky and Haffajee,
2005; Teles et al., 2013). The tendency of some microscopic
fungi to form biofilms is also well-established in the literature.
Recently, cooperation between Candida and oral commensal
streptococci has been described as a significant factor in biofilm
formation. Such cohabitation supports Candida growth and
survival by providing it with an adhesive surface and the ability
to invade tissue by promoting hyphae formation (Diaz et al.,
2012).

Current research has confirmed the presence of polymicrobial
biofilms on gut mucosa of CRC patients, suggesting their possible
role in CRC pathogenesis. Even in healthy mucosa, biofilm
formation is associated with oncogenic potential and might be
used to predict susceptibility to cancer development (Dejea et al.,
2014). These biofilms consist of periodontopathic bacteria –
F. nucleatum and P. gingivalis, as well as oral commensals,
such as Peptostreptococcus, Prevotella, and Parvimonas, and their
metabolic products, which may contribute to CRC progression
(Li et al., 2017). Microbial biofilms disrupt mucus layers,
enabling potentially harmful microbes to attach to or even
invade the mucosa and directly affect the epithelial cells by
cytotoxic or genotoxic metabolites. Indeed, a recent study
by Johnson et al. (2015) has provided evidence that the
presence of biofilm increases polyamine metabolites in cancer
tissues. Interestingly, fungal genera Phoma and Candida have
been detected in higher quantities in adenoma biopsies (Luan
et al., 2015). However, to date, the connection of these
mixed-species biofilms with CRC has not been thoroughly
studied.

When passing from the upper to the lower digestive
tract, some previously mentioned bacteria change their oxygen
requirements from facultative anaerobic to strict anaerobic,
thereby switching to asaccharolytic and proteolytic metabolism
(Eley and Cox, 2003). Microbial proteolytic enzymes break down
the host’s extracellular matrix and soluble factors to get nutrients
and invade the tissue. Periodontopathic bacteria produce a
wide spectrum of enzymes, including collagenases, elastases,
peptidases, etc. For instance, gingipains are cysteine proteases
secreted by P. gingivalis, classified as either arginine (Rgp) or
lysine (Kgp) specific (Potempa et al., 2003). They play a key
role in biofilm formation, consequent host tissue destruction
and vascular permeability induction (Kadowaki et al., 2000; Eley
and Cox, 2003). Some of the P. gingivalis proteases can degrade
immunologically active molecules, such as immunoglobulins,
cytokines and components of the complement, and thus
modulate the antibacterial immune response. Similarly, oral
streptococci produce proteases which have been shown to cleave
IgA1 (Kilian et al., 1988). Interestingly, 88% of the streptococci
that initiate plaque formation on dental enamel possess IgA1
protease activity. Moreover, oral streptococci attack human
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FIGURE 2 | Oral microbiota moves to the gut and alter local microenvironment. In oral cavity, periodontal pathogens use several mechanisms, such as adhesion,
biofilm formation and protease activity (see Table 1), to disrupt the barrier and trigger the inflammatory changes in periodontium. In the gut, healthy stable
microbiome can undergo temporary dynamic perturbations promoting growth of bacterial or fungal part of the microbiome (A). These shifts are mostly reversible, do
not disrupt mucosal barrier function, nor induce proinflammatory immune response. Nevertheless, microbes associated with periodontal disease can further
disseminate into the gut becoming a part of altered gut microbiome with pathogenic potential. They can use similar mechanisms as in oral cavity and produce
virulence and growth-promoting factors or substitute missing beneficial commensals. This can affect the stability of resident microbiome and promote their selective
outgrowth leading to a dysbiosis (B). Subsequent adhesion and biofilm formation, proteolytic activity or accumulation of harmful metabolites and soluble
components can damage the integrity of gut barrier. These pathogenic mechanisms, together with dysregulated host immune response, can lead to inflammation
and/or colorectal cancer initiation.

immunoglobulin IgA1 not only by protease production but
also by glycosidases (neuraminidase and beta-galactosidase).
Oral streptococci thus cleave the alpha chains and also the
carbohydrate moiety of IgA1. This finding suggests that the
ability of streptococci to evade secretory immune mechanisms
is one of the factors that enable them to colonize the oral cavity
(Kilian et al., 1989).

Another important feature of the microbiota that protects
the host against pathogens is resistance to outsider invasion.
Microbiota presents a competitive barrier to pathogenic microbes
by active struggle for existence, fighting for nutrients and
niche occupation. Moreover, commensals express antimicrobial
effector molecules (bacteriocins) that serve as an effective
tool for community shaping by endogenous microbiota. The
third mechanism is indirect through constitutive stimulation
of the mucosal immune system by commensal microbes,
which strengthens the mucosal barrier, thus reducing pathogen
translocation (Robinson et al., 2010; Stecher and Hardt, 2011;
Backhed et al., 2012).

Mucosal surface of the gut is in continuous contact with
foreign compounds derived from diet as well as from commensal
or pathogenic microorganisms. Therefore, maintaining balance
between the inner and outer milieu is the hallmark of the
whole mucosal immune system. Many different cell types

and their products are involved in this complex dialog,
including epithelial and immune cells, cells of supporting tissues,
antimicrobial peptides, growth factors, cytokines, and other
mediators. Various components of microbiota can differentially
trigger cellular pathways that shape local as well as systemic
immune response and physiological functions. Recognition
of these microbe-associated molecular patterns (MAMPs) is
one of the most important features of the mucosal immune
system. Receptors facilitating this are known as pattern-
recognition receptors and can be divided into several families,
such as retinoic acid inducible gene I-like receptors, nod-
like receptors, toll-like receptors (TLR), and lectin receptors.
Proinflammatory processes that are mediated by MAMPs, such
as lipopolysaccharide, polysaccharides, peptidoglycan, flagella,
and microbial DNA/RNA, activate pattern-recognition receptors
on various host cells. These cells elicit local pro-inflammatory
response and/or drive the differentiation of adaptive immune
response (Sartor, 2008; Underhill and Iliev, 2014). Therefore,
a persistent inflammatory reaction of the host, constantly
challenging the mucosal immune system, can lead to disease
initiation (Tlaskalova-Hogenova et al., 2004). Appropriate
immune response requires that recognition of commensals
on the apical side of the epithelium induces tolerance, while
recognition of pathogens on the basolateral membrane or inside
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the cell induces inflammation. Moreover, TLRs are important for
stimulation of gut epithelium growth and barrier integrity as well
as production of mucus, secretory IgA, antimicrobial peptides,
and chemokines (Abreu, 2010). Generally, the expression of TLRs
in the epithelium is low in the steady state but increases during
inflammation. Indeed, recent studies suggested the association of
TLR polymorphisms with the progression of IBD into CRC, as
TLRs expression is changed during gut inflammation (Bank et al.,
2015).

Chronic inflammation leads to massive accumulation of
activated immune cells and their mediators (cytokines and
chemokines), residues of damaged cells, and large amounts of
oxygen and nitrogen reactive species. Isolated dysplastic cells
are further modified by the local microenvironment, as pro-
inflammatory cells and cytokines promote the progression of
dysplasia into carcinoma. During chronic inflammation, innate
immune cells produce excessive quantities of reactive oxygen
and nitrogen species that cause DNA and cellular damage.
Pattern-recognition receptors signalization in the milieu of
chronic inflammation activates MyD88-dependent pathways that
promote pro-inflammatory cytokine release and subsequent
tumor progression (Tlaskalova-Hogenova et al., 2014).

CONCLUSION

There are two fundamental links between microbes and
diseases. The first involves the host’s recognition and immune
response mechanisms and the second involves the microbiota
itself, its presence and metabolic activity. Impaired barrier
function, inadequate activation of the innate immune system
and dysregulation of the appropriate mucosal immune response
to gut microbiota (tolerance) are the primary elements of
disease development. Low microbiome diversity seems to be
a common feature in the pathogenesis of diseases of the

digestive tract, suggesting that high microbial richness, both
bacterial and fungal, is crucial for physiological homeostasis.
Normally, a dynamic balance is maintained, where reduction
of the bacterial community leads to outgrowth of the
fungal one and vice versa. Disruption of this balance is
associated with outgrowth of certain pathobionts at the
expense of a complex community and may lead to disease
initiation (Figure 2). Established dysbiosis is supported by
local proinflammatory and tumor microenvironment which
creates distinct nutritional conditions. A growing body of
literature dealing with microbiome metabolic activities gradually
unravels the complex host–microbe interactions. Nevertheless,
collecting data about these interactions at the time of disease
development is especially challenging in humans. In this
respect, we still have to rely on retrospective clinical studies
and animal models to generate helpful insights. Elucidation of
the underlying mechanisms involving the interactions of the
immune system with the microbiome, pathogens, or pathobionts
can lead to the development of early screening and preventive
interventions and, ultimately, reduce the risk of severe colon
cancer.
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