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Comparing metagenomic samples is crucial for understanding microbial communities.
For different groups of microbial communities, such as human gut metagenomic
samples from patients with a certain disease and healthy controls, identifying group-
specific sequences offers essential information for potential biomarker discovery.
A sequence that is present, or rich, in one group, but absent, or scarce, in another group
is considered “group-specific” in our study. Our main purpose is to discover group-
specific sequence regions between control and case groups as disease-associated
markers. We developed a long k-mer (k > 30 bps)-based computational pipeline to
detect group-specific sequences at strain resolution free from reference sequences,
sequence alignments, and metagenome-wide de novo assembly. We called our method
MetaGO: Group-specific oligonucleotide analysis for metagenomic samples. An open-
source pipeline on Apache Spark was developed with parallel computing. We applied
MetaGO to one simulated and three real metagenomic datasets to evaluate the
discriminative capability of identified group-specific markers. In the simulated dataset,
99.11% of group-specific logical 40-mers covered 98.89% disease-specific regions
from the disease-associated strain. In addition, 97.90% of group-specific numerical
40-mers covered 99.61 and 96.39% of differentially abundant genome and regions
between two groups, respectively. For a large-scale metagenomic liver cirrhosis (LC)-
associated dataset, we identified 37,647 group-specific 40-mer features. Any one of
the features can predict disease status of the training samples with the average of
sensitivity and specificity higher than 0.8. The random forests classification using the
top 10 group-specific features yielded a higher AUC (from ~0.8 to ~0.9) than that
of previous studies. All group-specific 40-mers were present in LC patients, but not
healthy controls. All the assembled 11 LC-specific sequences can be mapped to two
strains of Veillonella parvula: UTDB1-3 and DSM2008. The experiments on the other
two real datasets related to Inflammatory Bowel Disease and Type 2 Diabetes in Women
consistently demonstrated that MetaGO achieved better prediction accuracy with fewer
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features compared to previous studies. The experiments showed that MetaGO is a
powerful tool for identifying group-specific k-mers, which would be clinically applicable
for disease prediction. MetaGO is available at https://github.com/VVsmileyx/MetaGO.

Keywords: long k-mer, classification, group-specific sequence, metagenomics, microbial community, disease

prediction

INTRODUCTION

High-throughput sequencing technologies have ushered in new
views of ubiquity and diversity of microbial communities
(Yatsunenko et al., 2012). Metagenomic sequencing data permit
comprehensive profiling of microbial communities at single-
nucleotide resolution. The ability to compare two groups of
metagenomic samples is crucial for understanding microbial
communities and their effects on hosts. Typically, for two
groups of individuals, patients with a certain disease and
healthy individuals, group-specific markers offer significant
support in understanding and predicting disease. Here, “group-
specific markers” can be genes, species, or sequences present,
or rich, in one group, but absent, or scarce, in another
group. “Group-specific’ focuses on the highest discriminative
power, rather than the statistically significant difference (White
et al, 2009; Segata et al, 2011), to classify, or predict,
case and control groups. Accordingly, prediction performance
evaluates the discriminative capability of identified group-specific
features.

Some studies characterized microbiomes by aligning reads to
reference genomes or 16S rRNA marker genes (Costello et al.,
2009; Quast et al., 2012; Lozupone et al., 2013; Jiang, 2015).
It was realized that the alignment-based methods were limited
by incomplete or inaccurate reference sequences (Kunin et al.,
2008). For example, only about 31.0-48.8% of the shotgun
reads from human gut could be aligned to 194 public human
gut bacterial genomes, and 7.6-21.2% to the bacterial genomes
deposited in GenBank (Qin et al., 2010). Recently, more studies
adopted reference-free strategies to analyze the compositional
differences of metagenomes between control and case groups
at the microbial gene, gene set, or species levels. Generally,
contigs were produced through the metagenome-wide de novo
assembly, and a gene catalog was established through open-
reading frame (ORF) prediction. The above processing was
first applied to human microbiome of inflammatory bowel
disease (IBD) (Qin et al., 2010). Follow-up investigations were
conducted based on the constructed gene sets: approximately
60,000 associated gene markers were identified to predict Type
2 Diabetes (T2D), and the concept of a metagenomic linkage
group was proposed, which is a group of genes that co-exist
among samples and has a consistent abundance level and
taxonomic assignments (Qin et al., 2012). The metagenomic
gene clusters based on high abundance correlations were
further applied to predict T2D in European women using
gut metagenomic samples (Karlsson et al, 2013). The gene
clusters containing a large number of genes (such as >700)
assist de novo genome assembly to discover microbial species
associated with liver cirrhosis (LC) (Qin et al., 2014) and IBD

(Nielsen et al., 2014). Pasolli et al. (2016, 2017) conducted
prediction tasks on 2424 metagenomic samples from eight
large-scale projects using species-level relative abundances and
the presence of strain-specific markers as features. Wen et al.
(2017) compared the predicting performances of three types
of biomarkers: sequenced reference genomes, genes and gene
clusters, for ankylosing spondylitis based on gut metagenomic
samples. They found that gene markers performed better than
reference genome markers and clustered gene markers, and
the clustered gene markers might be limited by the unknown
taxonomic organisms in clusters. Almost all the above studies
followed the analysis pipeline of de novo contig assembly, gene
prediction, and gene clustering. Previous studies concluded that
metagenome-assembly performs well for microbial communities
that have high coverage of phylogenetically distinct, and low
taxonomic diversity (Papudeshi et al., 2017), but the presence
of closely related strains in one community would substantially
have negative effect on the assembly performance (Sangwan
et al., 2016; Sczyrba et al., 2017). Moreover, high co-abundance
among species would result in multiple species in one cluster
(Nielsen et al., 2014). Therefore, components with closely
related genome sequences or abundance would diminish the
performance of assembly and clustering in microbial community
studies.

Besides genes or species, assembled contigs have also been
used as features to predict disease. Several contig binning tools,
such as CONCOCT (Alneberg et al., 2014), MaxBin2.0 (Wu
et al, 2016), COCACOLA (Lu et al, 2017), and MetaGen
(Xing et al., 2017), were developed for binning contigs assuming
that contigs with similar coverage/relative abundances over
different samples come from the same genomes. In particular,
although the main purpose of MetaGen (Xing et al., 2017) is to
identify microbial species in the community through binning,
the study not only designed comprehensive experiments to
analyze the effect of sequencing depth, sample size, number
of species and sequence similarity, but also used the relative
abundance of each bin to predict IBD/T2D/obesity disease
on metagenomic datasets to evaluate the binned microbial
composition. Similarly, Ren et al. (2017) developed a novel
pipeline to predict the disease status of LC using the abundance
of viral contig bins. Both studies made novel attempts to
identify markers through assembling de novo reads into
contigs and then binning contigs, which achieved excellent
predicting results. The basic idea is to discover species markers
that are differentially abundant between case and control
groups. However, current assembly tools are hard to handle
large-scale datasets: reads assembly involves the construction
of De Bruijn graph, error correction, and path resolution;
contig binning requires mapping reads to the assembled
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contigs; both would require extremely large memory and
are very time-consuming. Also, if the main purpose is to
discover group-specific markers, it is not necessary to assemble
contigs for the genomes that are not associated with the
disease.

The k-mer frequencies (i.e., the number of occurrences
of k-mers within the whole sequencing data) are another
representative alignment-free feature to characterize a microbial
community. The frequency distributions of 2-10-mers were used
to compare metagenomic and meta-transcriptomic communities
(Jiang et al., 2012; Wang et al., 2014; Liao et al, 2016) or to
improve contig binning within a community (Wang et al., 2017).
Also, Cui and Zhang (2013) classified clinical metagenomic
samples using the frequencies of 2-10-mers.

However, 2-10-mers are too short to capture specific
details inside the microbial community, such as sequences
present, or rich, in one group, but absent, or scarce in another
group. Intuitively, longer k-mers contain richer biological
information in the nucleotide sequences. The long k-mers had
been mainly utilized as seed index in sequence assembly and
alignment (Li et al., 2010; Grabherr et al., 2011). Recently, long
k-mers (>20 bp) began to be utilized to more applications:
our previous study explored the effect of k-mer length on
an unsupervised comparison between metagenomic samples
and verified the promising performance of long k-mers to
depict the specific characteristics of microbial communities
(Wang et al,, 2015). Han et al. (2017) detected differentially
abundant 2I-mers in metagenomic samples from T2D and
healthy individuals, assembled the reads containing those
21-mers into contigs, and then predicted genes based on the
contigs. Finally, they used the gene abundances to predict
T2D status. Our study differs from Han et al. (2017) in the
sense that we do not predict genes based on the contigs
assembled from reads containing statistically differentially
abundant k-mers. Instead, we identified group-specific k-mers
using discriminative power to separate two groups and
predicted disease status with k-mers as features. Moreover,
group-specific k-mers were assembled to contigs directly.
Rahman et al. (unpublished) found significant differentially
abundant 3I-mers between two groups of 1000 genomes
data and discovered SNPs between different populations,
which is highly different from the objectives of this study.
The frequency vector of long k-mers (~30 bp) was also
applied to calculate the dissimilarity between metagenomic
samples using 16 standard ecological distances (Benoit
et al, 2016). The long k-mers began to present attractive
potentials to characterize high-throughput sequencing
data.

Since sufficiently long k-mers are usually specific to a
genome (Fofanov et al., 2004), therefore, we proposed a
computational framework to identify group-specific sequences
between two groups of metagenomic samples with long
(>30 bp) k-mers in this study. We call our method MetaGO:
Group-specific  oligonucleotide analysis for metagenomic
samples. The main purpose of MetaGO is to discover group-
specific sequence regions between control and case groups
as disease-associated markers. Instead of using statistically

significant difference as index, we considered the discriminant
power to separate two groups of single k-mer. A k-mer is
considered group-specific if (1) the average of sensitivity
and specificity (ASS) is higher than a preset threshold when
using the presence/absence of the k-mer on the sequencing
data to predict disease status, or (2) the k-mer’s frequencies
are significantly different between two groups of samples
(Wilcoxon rank-sum test, p-value < 0.01) and the ASS is
higher than a preset threshold using logistic regression. The
group-specific k-mers are identified based on the training
set. In our study, k-mer length is set between 30 and
40 given the tradeoff among sensitivity, specificity, and
computational cost. To reduce the computational burden
from long k-mers, we developed an open-source, parallel-
computing pipeline on Apache Spark. Once the group-specific
k-mers are identified, we assembled them into group-specific
sequences. The assembly on the markedly reduced number
of long k-mers will be more computationally efficient and
accurate.

MetaGO was tested on one simulated and three real
metagenomic datasets. In the simulated dataset, for the two
strains sharing 87% common sequences where one is disease
specific and the other one is present in both groups, we
identified group-specific logical 40-mers that covered 98.89%
(recall) of the disease-specific sequence regions from the
disease-associated strain with 98.91% precision. In addition,
98.83% of the group-specific numerical 40-mers covered 99.01
and 97.30% of the differential-abundant genome and regions,
respectively. For the metagenomic LC-associated dataset
(Qin et al,, 2014), it is composed of human fecal samples
from 98 LC patients and 83 healthy controls, as well as an
additional independent dataset containing 25 patients and
31 controls. The k-mer length was set as 40 because of the
large sample size (number of samples). In our experiment,
two-thirds of the 98 patients and 83 control samples were
randomly selected as the training set, leaving one-third as
the validation set and the extra 25 patients and 31 controls
as the independent testing set. In total, 37,647 group-specific
40-mers were identified on the training set, and 35,652 and
12,944 of the group-specific 40-mers yielded ASS > 0.8 on the
validation and testing sets, respectively. The single-logical-feature
predictor with the highest ASS score 0.87 on the training set
predicted the disease status in the validation and testing sets
with ASS score as 0.88 and 0.83, respectively. Using the top 10
group-specific 40-mers, the random forests classifier achieved
the area under the receiver operating characteristic (AUC) as
0.963, 0.969, and 0.942 on training, validation, and testing sets,
respectively. It is interesting to note that all 37,647 40-mers
were present in LC patients but absent from healthy controls.
The LC-specific 40-mers were assembled into 11 sequences with
a length between 210 and 350 bp, and they demonstrated the
distinguishing coverages between two groups. All the identified
LC-specific sequences could be matched to two strains of
Veillonella parvula, UTDBI1-3 and DSM2008 with 97-100%
identity. And 83.2 and 79.6% of the 37,647 group-specific
40-mers could be matched to strain UTDB1-3 and DSM2008,
respectively.
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We also identified group-specific k-mers based on two more
metagenomic disease-associated datasets: IBD associated (Qin
et al., 2010) and WT2D (T2D in women) associated (Karlsson
et al., 2013). Based on the identified group-specific k-mers, our
pipeline achieved substantially better prediction performance
using relatively fewer features compared with previous studies
having identical or relaxed experimental settings. All experiments
demonstrated long k-mers to be more efficient in capturing
the specific information of sequencing data and discriminating
gut microbiome communities between control and case groups.
It should be noted that group-specific sequences are identified
free from reference sequences, metagenome-wide assembly,
and sequence alignments. MetaGO greatly facilitates the
identification of clinically meaningful biomarkers.

MATERIALS AND METHODS

Description of Terms
A group-specific feature is a k-mer present, or rich, in the
metagenomic sequencing data of one group, but absent, or sparse,
in the sequencing data of another group. A k-mer is a word
composed of k oligonucleotides, and the total number of all
possible k-mers is 4.

We defined k-mer features in the following two ways:

Numerical features are the normalized frequencies of k-mers.
The numerical feature of a k-mer i in sample j is denoted as
fi(j) and is defined in Equation (1), where f°(j) is the number
of occurrences of k-mer i in sample j, and # is the total number
of k-mers, that is 4%. So the normalization is the number of
occurrences of the k-mer over the total number of occurrences
for all k-mers in one sample. Each k-mer has the same length £,
so length is not considered during the normalization.

26
P VAN

Logical features are the logicalization of numerical features. They
use 1 and 0 to represent k-mers as present or absent in one
sample, as shown in Equation (2),

O |1 if fi(j) > 0
Ji (’)_[o iffi() =0"

where fi(l) (j) is the logical value of k-mer i in sample j, and the
superscript “I” indicates logical feature.

A single-logical-feature predictor, as represented in Equations
(3) and (4), is used to predict disease status based on whether a
k-mer i is present in the sequencing data of sample j or not.

i=1,2,...,n (1)

fi() =

2

1 then sample j € Group +

O
. = 3
Y [ 0 then sample j € Group — 3)
or
a,. 1 then sample j € Group —
. = 4
Y [ 0 then sample j € Group + “

A single-numerical-feature logistic regression predicts the case and
control status based on one single numerical feature, and it is used

as the independent variable in a logistic regression. An example
of each term above is given in Supplementary File S1.

The Computational Framework to

Identify Group-Specific Sequences

As shown in Figure 1, the computational framework of MetaGO
consists of three modules. (1) Creating a feature vector for
each sample. The feature vector is composed of the number of
occurrences for each k-mer through all reads in one sample.
(2) Feature preprocessing. After removing k-mers occurring only
once and normalizing k-mer frequencies, the feature matrix is
integrated on the feature vectors across all training samples.
The k-mers that are absent in most training samples are
filtered out. (3) Identifying group-specific features. The logical
and numerical features with high discriminant power are
selected.

MetaGO was developed on Apache Spark to reduce
computational costs through parallel running on HDFS of
Hadoop or a stand-alone multi-core server. The open-source
pipeline is available at https://github.com/VVsmileyx/MetaGO.

Module 1: Creating Feature Vectors

A feature vector consists of elements that account for the number
of occurrences (i.e., frequency) for each k-mer through all the
reads in one metagenomic sample. Existing tools, such as DSK
(Rizk et al., 2013) or JELLYFISH (Marcais and Kingsford, 2011),
are available for counting k-mer frequency. In our study, we used
DSK to count k-mers. The reverse complements of reads were
taken into consideration. A k-mer and its reverse complement
were considered as the same object, so the theoretical dimension

) k ok
of a feature vector for one sample is shrunk to % for even

k
k and 47 for odd k. Furthermore, only the k-mers that occur
in a sample are stored in the feature vector to reduce storage
space.

Module 2: Feature Preprocessing

Discard k-mer Features Occurring Only Once

With the increase of k-mer length, k-mer frequency decreases
exponentially, and the k-mer vector is highly sparse. A k-mer
occurring only once might be caused by low abundance or
sequencing errors. To achieve reproducible and stable prediction
models, k-mers occurring once were removed from the frequency
vector, and this step was implemented by DSK during k-mer
counting in our study.

Normalize k-mer Frequencies

Owing to different sequencing depths in samples, the frequency
of a k-mer is normalized using Equation (1) by the total number
of occurrences of all k-mers.

Build Feature Matrix Across Training Samples

Feature vectors across all training samples are integrated as a
matrix. This step is extremely time- and memory-consuming as
a result of the large sample size and the long k-mer length. Just
storing non-zero k-mers in each feature vector, the integration
process requires huge amounts of sorting and matching of
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Feature Vector of training samples Feature Preprocessings
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and the features with high discriminant power are identified to be group-specific.
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: TICT..TT  2)) : Feature Matrix Spark |
I e e e g e e e e e e e e e g e e e s e s o |
: ) ATGA.GG 3,
| ATGA.TT 1
| il R . I Identify group-specific features
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Group-specific features |
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. |
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|
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| sequences ; |
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| Group-specific features Pl 1 ) 585 :
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|
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|

FIGURE 1 | The MetaGO framework to identify group-specific sequences with long k-mer features. The framework is composed of three modules. (1) The feature
vector of each metagenomic sample is composed of the frequencies of all k-mers. (2) The k-mers are preprocessed by discarding features occurring only once,
normalization, integrating the matrix and removing the k-mers absent from most training samples. (3) The features are represented as logical and numerical forms,

k-mers. When k = 40, approximately 10° 40-mer features occur
more than once. The feature matrix F is denoted as Equation (5),
where k-mery, k-mery, ... , k-mer,, are the m k-mer features, and
S1, 82, ... , Sy are the N training samples from case and control
groups.

s, S, . Sy
k—mer; [fi(1) fi(2) H(N)
F=k-mer; | £(1) £(2) f(N) (5)
k—mery, \ fin(1)  fin(2) Sfm(N)

Remove Highly-Sparse Features

The “highly-sparse” feature means that a k-mer is absent in
most training samples, i.e., the frequencies of k-mers are 0 in
most training cases and controls. Such features have limited
contributions to classification. In our study, if a k-mer is absent
in more than 80% of control samples and 80% of case samples,
the feature is removed. The stringent threshold of 80% offers high
confidence in filtering out less useful features.

Module 3: Identifying Group-Specific
Features

After preprocessing, about 10° features still remain for 40-mers.
Simple feature-ranking filtering is more suitable than Wrapper
feature selection. Wrapper methods consider the selection of a set
of features as a search problem in which different combinations
are prepared, evaluated, and compared to other combinations.
The dimension of combination space is extremely high for a large
number of features in our study. The filtering of k-mers is only
based on the training data without touching the validation and
testing data.

Identify Group-Specific Logical Features Based on a
Single-Logical-Feature Predictor

As shown in Figure 2, numerical features were transformed
to logical features using Equation (2), and the single-logical-
feature predictors were created according to Equations (3) or
(4). The performance of a predictor was evaluated by ASS,
an average of sensitivity and specificity. If a single-logical-
feature predictor achieves ASS > 61, the corresponding k-mer
is identified to be group specific. The group-specific logical
features are present in one group but absent in another
group.
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Single-logical-feature Group™| TP | FN SRR = P TP+FEN
redictor ) _ 5 N N
B Group~| FP | TN specificity = —=————
N IN+FP
FIGURE 2 | The single-logical-feature predictor. The numerical feature is transformed into the logical feature. Based on the logical value of the feature, the
single-logical-feature predictor is designed, and the corresponding ASS is calculated.

In our study, 6; was set as 0.80, which means that each
group-specific k-mer alone can separate two groups of training
samples with ASS > 0.8 solely. Some researchers would prefer
a statistical test, such as Chi-squared test, to rank the features.
To accommodate this preference, we calculated p-values of Chi-
squared test for the same feature set. Among the two feature lists
with the 400 largest ASS values and the 400 smallest p-values, 392
features were present in both lists in the same order. Therefore,
both ASS and Chi-squared test provide consistent ranks of the
features. In our pipeline, users have the option to choose either
ASS or Chi-squared test as evaluation metrics.

Identify Group-Specific Numerical Features Based on
a Single-Numerical-Feature Logistic-Regression
Predictor

First, Wilcoxon rank-sum test is applied to the numerical features
to select k-mers with differential abundance (p-value < 6,)
between two groups. However, our main goal is to identify
features with the most discriminant power. Therefore, we fit
logistic regression for each numerical k-mer feature that passed
the Wilcoxon rank-sum test over all the training samples,
and we term this as single-numerical-feature logistic-regression
predictor. We used ASS > 03 as a metric to identify group-specific
numerical k-mers. In our study, we used 6, = 0.01 and 63 = 0.8

Random Forests Prediction of Disease Status With
the Combination of Multiple Features

The single-logical-feature predictor and single-numerical logistic-
regression predictor are the classifiers based on a single k-mer
feature. Because of the complicated association between human
microbiome and disease, classifiers using multiple features are
expected to be more efficient than those with single features.
Therefore, we used random forests to design a classifier with
multiple group-specific features. To remove redundant features,
we calculated the Pearson correlation coeflicients (PCC) between
the feature vectors of every pair of k-mers. If a pair of k-mers
has a PCC value higher than a preset threshold, such as 0.75,

one k-mer feature was randomly discarded. The remaining
features were ranked according to the variable importance
measures of Breiman’s random forests method (Breiman, 2001),
and the top features were adopted to design a random forests
classifier.

Assembly of Group-Specific Sequences

Using CAP3 (Huang and Madan, 1999), the identified group-
specific k-mers based on logical and numerical features were,
respectively, assembled to longer sequences. For quality control,
the assembled sequences longer than a certain threshold (200 bp
in our study) are considered as group-specific sequences.

Parallel Computing Workflow on Apache
Spark

The running time and memory required to integrate feature
matrix and filter out less useful features expand dramatically with
the increase of k-mer length and sample size. Fortunately, these
processing steps are suitable for parallel computing. Therefore,
we developed MetaGO workflow on Apache Spark (Zaharia
et al., 2010) to implement parallel computing. Spark can run
in local mode or cluster mode. Thus, MetaGO can run on a
local stand-alone multi-core server or a distributed cluster on
HDFS. The detailed description of the workflow is given in
Supplementary File S1. The workflow is available on https://
github.com/VVsmileyx/MetaGO.

Experimental Design

The Setting of k-mer Length

A previous study showed that sufficiently long k-mers are
usually specific to a genome (Fofanov et al., 2004). According
to an observation based on 100 pairs of bacterial genomes,
the average ratio of common k-mers between the genomes
is <1.02% when k > 30 (Le et al., 2015). Therefore, k-mers
longer than 30 bp would possess sufficiently high sensitivity to
capture the discriminate characteristics to separate two groups;
thus, theoretically, longer k-mers are better suited to this task.
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At the same time, however, k-mer length is limited by four
factors: sample size (the number of samples), sequencing depth,
computational cost, and read length. First, the dimension of
feature space grows exponentially with k. Owing to the curse
of dimensionality, a limited number of samples would lead
to a high false-positive rate. Therefore, a large sample size is
required to obtain high specificity. Second, when sequencing
depth is not deep enough to cover all the metagenomic regions,
the frequencies of long k-mers would not be accurate. Third,
with the increase of k-mer length, the huge number of k-mers
leads to the explosion of memory and storage. Fourth, when
the k-mer length is close to read length, the frequencies of
k-mers are contaminated by the truncated sites under limited
sequencing depth. Therefore, we set the k-mer length to be 30-
40 as the reasonable tradeoff among sensitivity, specificity, and
computational cost.

Simulated Metagenomic Dataset

Based on the relative abundances of frequent microbial genomes
within human gut analyzed by Qin et al. (2010) (Figure 3 of
their paper), we selected the top 10 most frequent genomes as
the basis components of the simulation. The relative abundances
in the control group were approximated from the medians of
Figure 3 of that study (Qin et al., 2010), which were converted
into the cell proportions of the 10 genomes in all the cells
within the community. In addition, we added another strain
Bacteroides thetaiotaomicron VPI-5482 to the patient group,
and this strain shares about 87% common sequences with
the existing B. thetaiotaomicron 7330. Meanwhile, we assigned
Genome Bacteroides caccae ATCC 43185 threefold abundance
in the control group than in the patient group. The remaining
nine genomes have identical abundance distributions between
the healthy individual and the patient groups. The detail setting
is shown in Table 1. We used MetaSim (Richter et al., 2008) to
generate 15 metagenomic samples for case and control groups,
respectively. For each group, the absolute values of Gaussian
noises of mean zero and standard derivation equal to each
central relative abundance were added to the center relative
abundance vector. Each sample contains ~10,000,000 reads. In
the evaluations, the proportion of identified group-specific k-
mers that can be aligned to disease-specific sequence regions is
called “precision,” and the proportion of disease-specific sequence
regions that can be covered by group-specific 40-mers is called
“recall.”

Metagenomic Liver Cirrhosis-Associated Dataset

In recent studies, alterations in human gut microbiota have been
linked to LC (Qin et al., 2014; Wiest et al., 2014). We analyzed
the human fecal metagenomic samples (Qin et al., 2014) from
98 LC patients and 83 healthy controls, as well as an extra
dataset composed of 25 independent patients and 31 controls.
The data were sequenced with Illumina HiSeq 2000. In the
experiment, two-thirds of the 98 patients and 83 control samples
were randomly selected as the training set to identify group-
specific k-mers, and the remaining one-third as the validation set.
Finally, the extra 25 patients and 31 controls were applied to test
the group-specific k-mers independently.

Metagenomic IBD-Associated and WT2D-Associated
Datasets

The IBD dataset is composed of the human fecal metagenomic
samples from 25 IBD patients and 97 controls (Qin et al,
2010). These samples were sequenced on Illumina GAIIx from
the MetaHIT project (Human Microbiome Project Consortium,
2012). The WT2D dataset is composed of samples from 53
T2D patients and 43 healthy controls from European women
(Karlsson etal., 2013). These samples were sequenced on Illumina
HiSeq 2000. Both datasets had been predicted using various
types of features (Cui and Zhang, 2013; Karlsson et al., 2013;
Pasolli et al., 2016). In our study, we adopted the experimental
setting of a previous study (Pasolli et al, 2016), in which
20 independent runs of 10-fold cross-validation were used to
evaluate the classification.

RESULTS

The Simulated Metagenomic Dataset

For logical features, there were 1,646,128 group-specific 40-mers
using ASS > 0.8 as a threshold. And 99.999% of the 40-mers
were patient specific, which means almost all the logical group-
specific 40-mers exist only in the patient group and are absent
in the healthy control group. Among the logical patient-specific
40-mers, 99.11% of them (precision) were exactly aligned to
strain B. thetaiotaomicron VPI-5482 (the strain present in the
patient group only) and covered 98.89% (recall) of the regions
that are not in the genome of the other strain B. thetaiotaomicron
7330. None of the group-specific 40-mers were aligned to
B. thetaiotaomicron 7330, which has the same abundance on
both groups. The logical group-specific 40-mers mainly indicate
genomes present in one group but not in another group.

The remaining features were represented as numerical 40-
mers, and there were 7,891,412 group-specific 40-mers using
p < 0.05 and ASS > 0.8 as the thresholds. And 4,452,553
(56.42%) of them were exactly matched to B. caccae ATCC
43185 and covered 99.61% (recall) of the whole genome,
which is differentially abundant between the healthy control
and the case groups. Among the remaining 40-mers, 3,257,251
(41.3%) of them were aligned to the common regions between
B. thetaiotaomicron VPI-5482 and B. thetaiotaomicron 7330,
and covered 96.39% (recall) of the common sequences. Because
for the patient group, the abundance of common sequences
includes VPI-5482 and B. thetaiotaomicron 7330, but the
control group only includes B. thetaiotaomicron 7330, the
common sequences are differentially abundant. In total, 97.72%
(precision) of the identified group-specific numerical 40-mers
were aligned to the differentially abundant regions between the
two groups.

The identified patient-specific and control-specific 40-mers
from logical and numerical features were assembled into contigs,
respectively. For the assembled patient-specific contigs, there were
20 of them with length >10,000 bp and all these contigs were
matched to the patient-specific strain B. thetaiotaomicron VPI-
5482 with 99.79-100% identity and 100% coverage. The coverage
rate here means the proportion of contig sequence mapped
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FIGURE 3 | (A) The distribution of ASS values of the 37,302 single-logical-feature predictors and 345 single-numerical logistic-regression predictors on the identified
group-specific features for training, validation, and testing sets. These predictors achieved better performance in the validation set compared to the training set.
A total of 35,652 group-specific features achieved ASS > 0.8 for the validation set, and 12,944 of them achieved ASS > 0.8 for the testing set. (B) ROC curves of
the random forests classifier with the top 10 features on validation and testing sets. Using the top 10 group-specific 40-mers, the random forests classifier achieved
AUC of 0.968, 0.969, and 0.942 on training, validation, and testing sets, respectively.
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TABLE 1 | The relative abundance profile of different genomes in control and patient groups for the simulated dataset.

Genomes NCBI Accession ID

Relative_Abundance_H* Relative_Abundance_P*

Bacteroides thetaiotaomicron 7330 NZ_CP012937.1
NC_004663.1
NZ_JH724268.1
MNQHO01000001.1
CZAG01000002.1
NZ_CZAY01000001.1
FP929051.1
NZ_CP022412.2
NZ_DS547029.1
NZ_LT907978.1
FP929055.1

Bacteroides thetaiotaomicron VPI-5482
Bacteroides uniformis CLO3T12C37

Alistipes putredinis isolate CAG
Parabacteroides merdae 2789STDY5834848
Dorea longicatena 2789STDY5834914
Ruminococcus bromii L2-63

Bacteroides caccae ATCC 43185
Clostridium sp. SS2/1

Eubacterium hallii isolate EH1

Ruminococcus torques L2-14

18%
0 6%

7%
16%
10%
10%
10%

9% 3%

8%

6%

6%

The relative abundances were the proportions of the number of copies of 11 genomes within the community. Bacteroides thetaiotaomicron VPI-5482 is present only in
the patient group, and it is another strain of B. thetaiotaomicron. Bacteroides caccae ATCC 43185 has threefold abundance in the control group of that in the patient

group. *H, healthy control; B patient.

to the strain. In contrast, these contigs cannot be matched to
B. thetaiotaomicron 7330, and the maximum common sequences
between contigs and B. thetaiotaomicron 7330 genome were no
longer than 47 bp. For assembled control-specific contigs, there
were 24 of them with length >5000 bp and all of them were
mapped to the differentially abundant genome B. caccae with
100% identity and 100% coverage using BLAST (Altschul et al.,
1997).

To evaluate the effect of k-mer length, we ran MetaGO on 10-
mer, 20-mer, 30-mer, 50-mer, and 60-mer, and the corresponding
precision and recall are shown in Table 2. For the simulated
dataset, When k = 10, no group-specific logical k-mers were
identified. The recall rates for the identified numerical k-mers
were only 25.34% for B. caccae ATCC 43185 and 22.45% for
the common regions between B. thetaiotaomicron VPI-5482 and
B. thetaiotaomicron 7330. When k > 20, the effects of the k-mer
length on the performance of our methods were small. The
precision increased slightly with the k-mer length from 99.03
to 99.35% for logical k-mers and from 96.81 to 98.58% for
numerical k-mers, consistent with the intuition that long k-mers
can capture more specific information of each group. On the
other hand, though almost all the recall rates were all above 90%,
the recall first increased with k-mer length until k = 40 and then
decreased, which might be caused by insufficient coverage for
long k-mers.

The experimental results demonstrate that the identification
of group-specific 40-mers can not only capture genomes with
different abundance but also identify group-specific markers
under the strain-level resolution. Even though the two strains
B. thetaiotaomicron VP1-5482 and B. thetaiotaomicron 7330 share
87% common sequences, our method still captured the group-
specific sequences.

The LC-Associated Metagenomic

Dataset

MetaGO was applied to the large-scale metagenomic LC-
associated dataset (Qin et al., 2014). With sufficient training
samples and long read length, the k-mer length was set as k = 40.
A total of ~10° non-zero 40-mers were found in the feature

matrix of training samples. After removing the highly sparse
40-mer features, ~10° features were left.

Identify Group-Specific Features

Using ASS > 0.8 as the threshold, 37,302 logical features were
identified as group-specific 40-mers. That is, any one of these
40-mers could achieve ASS > 0.8 using its corresponding single-
logical-feature predictor on training samples. We then used each
of these 37,302 single-logical-feature predictors to predict LC in
the validation and testing sets. As shown in the histogram of
Figure 3A, ASS values of validation and testing were centered
at 0.85 and 0.78, respectively. Among the 37,302 single-logical-
feature predictors, 35,404 (95%) group-specific 40-mers achieved
ASS > 0.8 on the validation set, and 12,750 (36%) achieved
ASS > 0.8 on the testing set. Furthermore, 345 numerical features
were identified as group-specific 40-mers with ASS > 0.8, where
248 and 194, respectively, achieved ASS > 0.8 on validation and
testing sets using corresponding single-numerical-feature logistic
regression predictors. All 37,302 logical and 345 numerical 40-
mers were LC-specific in that they were all present only in the
fecal samples of LC patients, but not in the samples from healthy
controls. The identified group-specific 40-mers for the LC dataset
are available in Supplementary File S2.

We also implemented a controlled trial by shuffling the labels
of the training samples randomly. Using the same pipeline and
settings, only 247 40-mers achieved ASS > 0.7, and the highest
value was 0.73. This control trial indicates that most of the
identified group-specific 40-mers for LC were more likely to be
true rather than due to false positives.

Classification With the Group-Specific 40-mer(s)

We used classification performance to evaluate the discriminative
capability of the identified group-specific 40-mers. First, we
classified the healthy and LC groups with single features.
The single-logical-feature predictor that obtained the highest
ASS = 0.87 on the training set achieved ASS = 0.885
(sensitivity = 0.81 and specificity = 0.96) on the validation set and
0.87 (sensitivity = 0.84 and specificity = 0.90) on the independent
testing set. Second, we built a classifier using a set of features.
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TABLE 2 | The precision and recall of MetaGO for the simulated dataset using different k-mer lengths.

k-mer length 10 (%) 20 (%) 30 (%) 40 (%) 50 (%) 60 (%)
Logicalized k-mers Precision —* 99.03 99.05 99.11 99.45 99.35
Recall —* 89.79 92.16 98.89 97.01 95.23
Numercial k-mers Precision 99.63 96.81 96.07 97.72 98.22 98.58
Averaged recall 23.89 95.70 97.93 98.00 96.82 94.76

The “averaged recall” in numerical k-mers is the average of the recall of B. caccae ATCC 43185 genome and the recall of the common regions between strain

B. thetaiotaomicron 7330 and B. thetaiotaomicron VPI-5482. *When k = 10, there is no logicalized k-mer identified, so it is marked witl

w“»

TABLE 3 | Comparison of the prediction performance of different methods based on the LC dataset.

Feature 40-mer 40-mer Gene markers't Species abundance’ Presence of strain-
specific markers’
Experiment Training (66P+56H) 20 runs of 10-fold
Validation (32P+27H) cross-validation (114P+118H)
Testing (25P+31H)
Number of feature 1 10 15 542 120553
Classifier Single Random Support Random Support
logical forests vector forests vector
feature machine machine
predictor
AUC  Training ASS* = 0.87 0.963 0.918 0.946 + 0.035 0.963 + 0.027
validation ASS = 0.885 0.969 0.838
testing ASS =0.87 0.942 0.836

Using much fewer features, MetaGO achieved better results compared to other methods. The results of MetaGO were in bold. T (Pasolli et al., 2016); TT(Qin et al., 2014);

*average of sensitivity and specificity.

Using the top 10 group-specific 40-mers, a random forests
classifier achieved AUCs of 0.963 on training, 0.969 on validation,
and 0.942 on testing sets, respectively. The corresponding ROC
curves are shown in Figure 3B. As shown in Table 3, Qin et al.
(2014) obtained AUC = 0.918, 0.838, and 0.836 on training,
validation, and testing sets with SVM using 15 marker genes
as features. Pasolli et al. (2016) obtained AUC = 0.946 4+ 0.036
with random forests using 542 species-abundance features and
0.963 + 0.027 with SVM using 91,756 strain-specific markers
features over 20 independent runs of 10-fold cross-validations,
where cross-validations gave much more optimistic results, and
many more features were adopted. The experiments show that
group-specific 40-mers achieved better classification performance
with fewer features.

Group-Specific Sequences

The identified group-specific 40-mers were assembled into group-
specific sequences using CAP3 (Huang and Madan, 1999), in
which 11 assembled sequences were longer than 200 bp, with
length from 210 to 350 bp (available in Supplementary File S2).
They were aligned by the sequencing reads from the training and
validation sets and the independent testing sets. The coverage
distributions over the 11 sequences across all samples were
represented as heatmaps in Figure 4. A noticeable difference
appears between the two groups. In the group of healthy
individuals, the reads of most samples cannot be aligned to the
11 sequences. In the patient group, the 11 sequences were aligned
successively by the reads from most patients. The de novo and
reference-free assembly produces longer group-specific sequences,
which enables the discovery of biomarkers.

Taxonomic Information of the Group-Specific
Markers

We aligned the 11 LC-specific sequences to genomes with
“Nucleotide Blast” in NCBI, and all of the sequences were aligned
to two strains of V. parvula, UTDB1-3, and DSM2008, with 100%
query coverage and 97-100% identity. In a previous analysis
based on the alignments from reads to reference genomes (Qin
et al., 2014), V. parvula demonstrated a significant difference in
abundance between the two groups of LC patients and healthy
individuals.

All 37,302 group-specific logical features and 345 group-specific
numerical features were also blasted to reference genomes in
NCBI, 31,067 of logical and 268 of numerical 40-mers could
be matched to V. parvula strain UTDBI1-3, and 29,712 of
logical and 262 of numerical 40-mers could be matched to
V. parvula strain DSM2008. Using V. parvula strain UTDBI-
3 as an example, Figure 5A shows the coverage of the whole
genome (2.17 Mbp) by the LC-specific 40-mers. The horizontal
axis is the whole genome. The 40-mers covered most parts of
the genome. Figures 5B-D are the zoomed-in alignments and
coverages of the genome: 108,308-122,356, 2,037,894-2,038,165,
and 2,038,052-2,038,119, marked as “zooml,” “zoom2; and
“zoom3”, respectively, in the figure. It is clear that many regions
are highly and consecutively covered by k-mers. As shown
in Figure 5E, region 1,423,893-1,423,993 of V. parvula strain
DSM2008 corresponds to “Zoom3” region of V. parvula strain
UTDBI1-3. Comparing the regions in these two strains, the
consensus mismatch against UTDBI1 is absent on DSM2008,
while DSM2008 presents another consensus mismatch against
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FIGURE 4 | Heatmaps of coverage distribution over the 11 assembled sequences by the metagenomic reads from the training, validation, and testing samples.
(A) Heatmap of the reads coverage of the 11 assembled sequences across the training and validation samples (83 healthy individuals and 98 LC patients).
(B) Heatmap of the reads coverage of the 11 assembled sequences across the testing samples (30 healthy individuals and 25 LC patients). The coverage is the
read-alignment depth in each nucleotide normalized by the number of million reads. To avoid the effect of large span, we use the logarithm of (coverage+1) as the
numerical value of the heatmaps. The horizontal axis is composed of each nucleotide of the 11 sequences, and the vertical axis is composed of healthy individuals
and patients. The upper part of each heatmap is the healthy group, and the lower part is the patient group.

DSM2008: 1,423,924. The consistent mismatches against strains The IBD-Associated and WT2D-

UTDBI1 and DSM2008 in V. parvula indicate the possible Agsociated Metagenomic Datasets
existence of an unknown strain of V. parvula, which would exist  The additional two disease-associated metagenomic datasets
in the gut of LC patients but be absent in the gut of healthy were analyzed with 20 independent runs of 10-fold cross-
controls. validation to evaluate the classification performance for easy
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FIGURE 5 | The alignments of the identified group-specific 40-mers to the genome sequence of V. parvula strain UTDB1-3. (A) The alignment distribution over the
whole genome. (B) The alignments and coverages of region 108,308-122,356 (Zoom1). The red and blue bars denote the 40-mers matched to reference genome
sequence forward and backward, respectively. (C) The alignments and coverages of region 2,037,894-2,038,165 (Zoom?2). (D) The alignments and coverages of
region 2,038,053-2,038,119 (Zoom3) with consensus mismatches on 2,038,082. (E) The alignments and coverages of region 1,423,893-1,423,993 of V. parvula
strain DSM2008. This region corresponds to the Zooma3 region of V. parvula strain UTDB1-3. Comparing the two regions in the two strains, the consensus mismatch
(in green color in D) on UTDB1 is absent on DSM2008, but DSM2008 presents another consensus mismatch (in green color in E) on DSM2008: 1,423,924,

Frontiers in Microbiology | www.frontiersin.org 12 May 2018 | Volume 9 | Article 872


https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Wang et al.

Group-Specific Sequences for Microbiome

comparison with previous studies. We emphasized that feature
preprocessing and selection were done using only the training
set, thereby avoiding biased and overly optimistic performance
(Zhang et al., 2006; Pasolli et al., 2016).

The IBD-Associated Dataset

For each fold test of 10-fold cross-validation, about 7000 group-
specific logical features with ASS > 0.8, but no group-specific
numerical features, were identified. The numbers of group-
specific features varied with different fold tests. Because of the
relatively small sample size, 30-mers were set as features. For
each group-specific 30-mer, its single-logical-feature predictor
yielded an ASS score on validation. For each round of cross-
validation, ~7000x10 (~7000 single-logical-feature predictors
and 10-folds) ASS values were obtained on validations. The
boxplots in Figure 6A present the distribution of the ~70,000
ASS values in 20 rounds of 10-fold cross-validation. The values
are between 0.78 and 0.89, and they centered at 0.81-0.82,
indicating that individual binary features can achieve ASS > 0.78
solely on validation. The average ASS score is 0.875 + 0.004
(95% confidence interval). The top 15 ranked features were
combined to design a random forests classifier. Figure 6B
presents the ROC curves of 20 independent runs, which were
averaged over the 10-folds of cross-validation. The mean AUC
of 20 runs is 0.990 + 0.005 (95% confidence interval), which
is much higher than the results reported in previous studies.
As shown in Table 4, using the same dataset, Pasolli et al.
(2016) designed two classifiers. The random forests classifier
based on 443 species-abundance features achieved an averaged
AUC = 0.893 =+ 0.080 under the same experimental setting.
The SVM classifier based on the presence of 91,756 strain-
specific markers achieved AUC = 0.914 £ 0.084. Xing et al.
(2017) obtained AUC = 0.967 with a logistic regression model
with LASSO penalty in leave-one-out cross-validation (LOOCV),
which used the relative abundances of bins as features. In
another study, Cui and Zhang (2013) obtained accuracy = 88%,
sensitivity = 92%, and specificity = 84% with 200 7-mer features
at LOOCYV on 25 healthy subjects and 25 patients, where the
samples were the subset of our experiment and LOOCV was more
relaxed than 10-fold cross-validation.

The WT2D-Associated Dataset

For each fold test of 10-fold cross-validation, ~700 40-mers with
ASS > 0.75 were identified, and the best ASS score was 0.78. The
classifier designed with random forests using 10 top group-specific
40-mer features obtained an average AUC = 0.939 & 0.011 on
the 20 independent runs of 10-fold cross-validation, as shown
in Figure 6C. In previous studies under the same experimental
setting, the average AUCs were 0.834 using 50 metagenomic
clusters as features (Karlsson et al., 2013) and 0.785 £ 0.104
using the presence of 83,456 strain-specific markers as features
(Pasolli et al., 2016). For further comparison, we implemented
metagenome-wide de novo assembly with MegaHIT (Li et al,
2015) and then binned the contigs with MetaGen (Xing et al,,
2017). The relative abundances of bins were used as features to
separate the patient and control groups. The total of 96 samples
were too large for read assembly, which required >256 GB

memory for 80 samples, and the alignments of reads to the
contigs were time-consuming. Therefore, 20 patients and 20
healthy individuals were randomly selected as the training set.
The remaining 56 samples were used for independent testing.
The relative abundances of bins generated by MetaGen were
used as features and the random forests classifier was designed
on the training set. The definition of relative abundance in
MetaGen includes the parameters that should be determined
for each species (they assumed each bin is each species) and
each sample through the algorithm of MetaGen. When the
classifier was tested on the independent set, these parameters for
independent samples are also required to be determined. Personal
communications with MetaGen’s developers, we revised the code
of MetaGen and calculated the feature values of the relative
abundances of selected bins for each testing sample. With random
forests, MetaGen achieved AUC = 0.685 using 3 features of bins
and AUC = 0.735 using 15 features of bins on testing data. With
the same training samples, our pipeline obtained AUC = 0.782
with 3 features of k-mers and AUC = 0.794 using 15 features
of k-mers with random forests on testing data. Although both
methods are reference free, the group-specific k-mers show greater
discriminative power than the contig bins for predicting the
disease status. Besides, the de novo assembly and contig binning
are time-consuming. For example, it took 120 h to finish the
running from read assembly to contig binning on this training
set.

From the experiments, IBD is more predictable than T2D. The
experiments on the two disease-associated datasets demonstrate
that group-specific k-mers achieved much better classification
performance with fewer features than previous studies that
used the features of short k-mer frequencies, species abundance,
and strain marker presence. The experiments confirm the
effectiveness of long k-mer features and the strategy of identifying
group-specific features.

Running the Computational Pipeline on

Apache Spark

For the LC dataset, it took 65 h to identify the group-specific 40-
mers from 56 healthy and 66 LC training samples (252 GB fasta.gz
files), including the calculation of 40-mer frequency vector, the
integration of feature matrix, and the identification of the group-
specific 40-mers. The peak storage space is about 1.5 TB. The
above result was run on a local mode of a server with 128 G-
memory and Intel(R) Xeon(R) CPU E5-2620 v4 with 8 CPU cores
at 2.10 GHz.

DISCUSSION

Different diseases have different levels of association-complexity
with human microbiome. If one disease is significantly associated
with a specific microbial strain/species/gene, then the disease is
highly predictable using a single-feature predictor. That is, the
disease can be diagnosed with a single microbial biomarker.
However, many human diseases are complex in the sense that
multiple group-specific markers are required to characterize the
relevance of disease and microbiome. For these diseases, we have
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FIGURE 6 | (A) The IBD-associated dataset: the boxplots of ASS by single-logical-feature predictors on each one of the identified ~7000 group-specific features in
the 20 independent runs of 10-fold cross-validation on the IBD dataset. Each boxplot is composed of ~70,000 ASS values on each round of cross-validation. The
ASS values are between 0.78 and 0.89 and centered on 0.81-0.82. The “+” symbol denotes outliers. (B) The ROC curves of the IBD-associated dataset: The top 15
ranked 30-mers were combined to design the random forests classifier. The 20 ROC curves are from the 20 independent runs, and each one is the average over the
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shown that combining several group-specific features can improve
prediction accuracy.

In MetaGO, features were selected based on three preset
thresholds, including ASS of single-logical-feature predictor (0;),
p-value of Wilcoxon rank-sum test for numerical features (6,),
and single-numerical logistic-regression predictor (63). For the
IBD-associated and LC-associated datasets, we set 0; 0.8,

02 = 0.01, and 03 = 0.8, respectively. However, for diseases
having more complex associations with microbiome, such as
T2D (Pasolli et al., 2016), 67 was relaxed to 0.75, 6, = 0.05
and 03 0.75. Therefore, the three thresholds were, in
effect, set according to the expected discriminant power of
features and the complexity of association between disease and
microbiome.
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MetaGO was designed and implemented for two-group case
and control datasets. For some studies, there may exist multiple
subgroups for the disease, or a pre-disease group. An example
of subgroups for disease is the AR-type (marked akinesia and
rigidity) and T-type (predominant resting tremor) in Parkinson’s
disease (Paulus and Jellinger, 1991). Two examples of pre-disease
state are impaired glucose tolerance state between T2D and
normal glucose tolerance (Karlsson et al., 2013) and colorectal
adenoma state between carcinoma and healthy state (Feng
et al., 2015). For the multiple-groups scenario, the way to use
MetaGO depends on the research purpose. If the purpose is
to identify some microbial organisms that are associated with
all sub-groups of the disease, we can combine all individuals
belonging to any disease groups and treat them as one disease
group. MetaGO can be used to the disease and control groups
to identify the common microbial organisms associated with
all groups of diseases. On the other hand, if the purpose
is to identify certain microbial organisms that are specific
to a particular group, we can combine all other individuals
into one group and then use MetaGO to identify group-
specific-associated microbial organisms. Extending MetaGO
for a joint analysis of group-specific organisms in all the
control and different disease groups is a topic of further
study.

CONCLUSION

In this study, we developed a computational framework,
MetaGO, that is free from reference sequences, metagenome-
wide de novo assembly, and sequence alignment, to identify
group-specific sequences between two groups of microbial
communities using long k-mer features. The k-mer length was
set between 30 and 40 based on the tradeoff among sensitivity,
specificity, and computational cost. The identified group-specific
k-mers present improved discriminant power for diagnosing
diseases using human gut metagenomics data compared with
previous studies.

To overcome the computational challenge of long k-mer
features, an open-source, parallel-computing pipeline was
developed on Apache Spark to save computational resources
and reduce running time. In this study, we applied MetaGO to
analyze metagenomic disease-associated datasets. It should be
noted that the pipeline is also suitable for identifying group-
specific k-mers for all types of high-throughput sequencing
data where samples are collected from different groups,
such as disease-associated human genome sequencing data or
other phenotype-associated metagenomic datasets from different
environments.

Our experiments validated improvements made by the
identified group-specific k-mer features compared to previous
studies using other types of features. The group-specific sequences
offer deep and detailed insights required to understand the
differences between groups because the method essentially
identifies a sequence that is present, or rich, in one group, but
absent, or scarce, in another group, the fundamental working
principle of group-specific sequences. We found that biological

explorations based on group-specific sequences are consistent
with those from previous biological experiments, but additionally
offered the potential for new discoveries. Therefore, using
long k-mer sequence signatures is an effective way to discover
biological features, paving the way for a new paradigm of
biomarker discovery in the context of host phenotypes. MetaGO
enables the detection of group-specific features and development
of prediction models using a single feature, or a combination of a
few features, which helps to reduce the complexity of the model,
while increasing the potential feasibility of follow-up discovery of
discriminative microbial biomarker(s) for the easy diagnosis of
human diseases.
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