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The body of work relating to the gut microbiota of fish is dwarfed by that on humans
and mammals. However, it is a field that has had historical interest and has grown
significantly along with the expansion of the aquaculture industry and developments in
microbiome research. Research is now moving quickly in this field. Much recent focus
has been on nutritional manipulation and modification of the gut microbiota to meet
the needs of fish farming, while trying to maintain host health and welfare. However, the
diversity amongst fish means that baseline data from wild fish and a clear understanding
of the role that specific gut microbiota play is still lacking. We review here the factors
shaping marine fish gut microbiota and highlight gaps in the research.

Keywords: intestinal bacteria, microbial ecology, metagenomics, dietary intervention, salmon, trophic levels,
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A HISTORICAL OVERVIEW

Fish and other marine animals have a unique and intimate interaction with their surrounding
environment and, in turn, with the microorganisms that co-exist there. The world’s oceans are
teeming with microorganisms. It is estimated that 3.6 × 1030 microbial cells account for more than
90% of the total oceanic biomass, while the number of viral particles may be one hundred fold
greater (International Council for the Exploration of the Sea [ICES], 2011). The relationship that
fish have with surrounding microorganisms can be mutualistic or pathogenic. Like humans and
other mammals, fishes’ associated symbiotic gut microbiota play a role in nutritional provisioning,
metabolic homeostasis and immune defence (Gómez and Balcázar, 2008; Sullam et al., 2012).

Fish originated over 600 million years ago and include nearly half of all extant vertebrates
(Nelson, 2006; Sullam et al., 2012). Over three billion people around the world depend on fish
for at least 20% of their protein intake and approximately 20 kg of fish is consumed per capita
per annum (Food and Agriculture Organisation of the United Nations [FAO], 2016). Wild-caught
fisheries can no longer support the world’s seafood consumption thus, unsurprisingly, aquaculture
is reported to have contributed 43.1% of global fish production in 2013 (Food and Agriculture
Organisation of the United Nations [FAO], 2015). The vast diversity that fish contribute to the
sub-phylum chordata, our reliance on fish as a food source and the environmental changes that are
being inflicted on them highlight the need to consider them in the growing field of host microbial
research.

Research into the gut microbiota of fish dates back to the early half of the 20th century but more
recently interest in this area has grown at a significant rate coinciding with the expansion of the
aquaculture industry. Indeed, the first works on this topic were published in the late 1920’s and
1930’s (Reed and Spence, 1929; Gibbons, 1933) and investigated the intestinal and “slime flora”
of fish. There were some further exploratory studies during the 1950’s and 60’s; Margolis (1953)
investigated the effect of fasting on the intestinal flora, Colwell (1962) examined the intestinal flora
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of Puget Sound fish and Simidu and Hasuo (1968) examined the
salt dependency of fish flora. In the following decade, the studies
became more applied, with interest in how the gut microbiota
changed with diet (Sera and Ishida, 1972a), how the microbiota
changed in farmed fish (Gilmour et al., 1976) and how animals
succumbed to infection (Boulanger et al., 1977; Olivier et al.,
1981).

In the early 1990’s the first reviews on this topic were published
(Cahill, 1990; Ringø et al., 1995). They provided a comprehensive
overview of the studies to date; however, they consequentially
reported that bacterial levels in the gut of fish were low and
appeared to be derived from the surrounding environment or
diet (Cahill, 1990; Ringø et al., 1995). These conclusions were
made based on research using culture-dependent methods but
we now know that no more than 10% of microorganisms could
be isolated and cultured under such laboratory conditions as
were used then (Amann et al., 1995). Analytical techniques
have evolved significantly since then and it is now reported
that cultivable microorganisms represent < 0.1% of the total
microbial community in the gastrointestinal (GI) tract of some
species of fish (Zhou et al., 2014). Despite this, many recent
studies continue to report results obtained through culture-
based approaches, inferring microbiota function from data
derived from bacterial growth studies performed under artificial
environmental conditions (Clements et al., 2014). Today a
wide variety of culture-independent techniques are available for
analysing fish microbiota. These have been discussed in detail
in some recent reviews (Zhou et al., 2014; Tarnecki et al., 2017)
Briefly, they include quantitative real-time PCR (qPCR), used
for quantitative analysis of taxa; clone libraries for identification
of microbiota composition; finger-printing methods such as
temporal temperature gradient electrophoresis (TTGE) and
denaturing gradient gel electrophoresis (DGGE), and fluorescent
in situ hybridization (FISH) used to determine the abundance
of particular taxa, total microbial levels and assess bacterial–host
interactions at the mucosal brush border (Zhou et al., 2014; Wang
et al., 2017). Next-generation sequencing is the latest method of
molecular analysis. It is beginning to be used more frequently
in studies on fish and Ghanbari et al. (2015) have discussed
its potential in this field, including the opportunity for rapid
and cost-effective acquisition of in-depth and accurate sequence
data that provide greater information on even low abundance
microbiota as well as the genetic and metabolic potential of the
species present.

With the development of these new molecular techniques
and the exponential growth of aquaculture, the research of fish
gut microbiota has expanded dramatically over the previous
decades. In this review, we focus on the gut microbiota of
marine species. We have included anadromous salmonids in our
discussions but do not focus on them or the novel changes that
these fish experience in their gut microbiota as they develop and
move across habitats. This is an area which has thus far been
poorly understood but is receiving new interest in some recently
published articles; Llewellyn et al. (2016), Dehler et al. (2017),
and Rudi et al. (2018). Even when looking specifically at saltwater
fish, the diversity is enormous. In this review, we discuss the
trends and supporting findings in the current literature, but also

highlight the contradictory studies that are inevitable within such
a diverse group. Overall, the purpose of this review is to provide
an overview of the fish alimentary canal, the gut microbiota
within it and how the diversity of these communities develops
with life stage and is affected by factors including trophic level,
season and captive-state. Finally, we review the latest research
that investigates the dietary manipulation of gut microbiota in
aquaculture species and discuss future perspectives.

THE FISH ALIMENTARY CANAL

There is no single blue print for the alimentary canal of a fish;
fish biology varies greatly with differing life histories, ecology and
environmental factors. Philtre feeders, parasites and predators
as well as herbivorous and carnivorous fish exist and each
has an appropriately adapted digestive system. Regardless of
diet, the gut of some fish consists simply of a short tubular
intestine, e.g., parrotfish, Scarus radicans (Horn et al., 2006).
However, the majority of fish alimentary canals are divided
into topographical regions with unique roles. All fish alimentary
canals begin with the buccal and pharyngeal cavities of the head-
gut. From here, the gut can be loosely divided into the fore-,
mid- and hind-gut which include various digestive organs that
particular fish either possess or lack. The foregut, beginning at
the posterior edge of the gills, often consists of the oesophagus,
stomach and pylorus. However, it is estimated that 20% of
fish species lack a true stomach (Wilson and Castro, 2010).
Species that have evolved such simple digestive tracts include
fish in the Gobiidae and Blennidae families (Figure 1). This
lack of stomach in some species may be counteracted by other
adaptations such as well-developed pharyngeal teeth, pharyngeal
pockets, secretory glands in the oesophagus or a muscular gizzard
(James, 1988; Kapoor and Khawna, 1993; Stevens and Hume,
2004). When the stomach is present it is usually one of three
shapes; straight, U-shaped, or Y-shaped with a gastric cecum
(Figure 1). Straight stomachs are relatively rare but can be
found in some freshwater species as well as marine fish such
as mullet, Mugil, anchovy, Engraulis, and menhaden, Brevoortia.
The U-shaped stomach is more frequently seen and is common
in omnivores and carnivores such as seabass, Dicentrarchus,
and salmonids. The Y-shaped stomach is proposed to be an
adaptation of macrophagous predatory fish for storage of large
pieces of food and is found in eels, Anguilla (Stevens and Hume,
2004).

Generally no definitive distinction exists between the mid- and
hind-gut. However, the former is the longest portion of the gut,
which includes the pyloric ceca when present. The mid-gut is
where the majority of digestion occurs and the pyloric ceca are
thought to be organs acquired to produce a greater surface area
for absorption. Although not always obvious, this section often
ends with an increase in tube diameter, indicating the beginning
of the hindgut (distal intestine and anus). Fish intestines vary
dramatically in length. When longer than the visceral cavity,
the intestines are coiled in a loop unique to each species. Gut
length is loosely associated with diet and as a guide is three times
longer than body length in herbivorous fish, one to three times
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FIGURE 1 | Diagrammatic representation of the different types of digestive
systems that can be found in marine fish, including digestive organs that may
or may not be present.

in omnivores and approximately equal in carnivores (Bone et al.,
1995; Karachle and Stergiou, 2010).

DEVELOPMENT OF THE GUT
MICROBIOTA IN FISH

Microbial colonisation of fish larvae originates from the eggs,
the surrounding water and the first feed. Some initial studies
investigating bacteria associated with fish eggs suggested that
the dominating species at this point included Cytophaga,
Flavobacterium, and Pseudomonas (Bell et al., 1971; Yoshimizu
et al., 1980; Austin, 1982). While some recent studies provide
correlating results (Kubilay et al., 2009), others differ completely
(Romero and Navarrete, 2006; McIntosh et al., 2008). Even
some early studies recognised that inter-species variation existed.
For example, Hansen and Olafsen (1989) observed differences
in the bacterial colonisation of cod, Gadus morhua L., and
halibut, Hippoglossus hippoglossus, eggs. The initial colonising
bacteria are now accepted as species-specific, with differences
controlled by variation in binding glycoproteins on the egg
surface (Larsen, 2014). In addition, the microbiota of the
surrounding water dictates what bacteria encounter the eggs and
consequently have the opportunity to colonise. Upon hatching,
sterile larvae take in the chorion-associated bacteria, which

become the first colonisers of the developing gastrointestinal
tract (GIT). Subsequent inhabiting bacteria are acquired when
the fish larvae begin to drink water to control osmoregulation
and the microbiota then becomes further diversified through
feeding (Hansen and Olafsen, 1999). To begin, the GIT of newly
hatched larvae tend to contain few bacteria (Ringø et al., 1991).
Numerous studies have shown that diet is influential in shaping
the gut microbial community and from first feeding substantial
diversification occurs (Blanch et al., 1997; Korsnes et al., 2006;
Reid et al., 2009; Lauzon et al., 2010). Interestingly, like in humans
(Yatsunenko et al., 2012), it appears the diversity of bacteria
increases as fish develop. In Ringø and Birkbeck’s (1999) review
of the Intestinal microflora of fish larvae and fry, they summarised
24 studies that reported the bacterial genera in the intestinal tract
of freshwater and marine fish at the larval and fry stages. In the 11
marine species, the bacteria most frequently reported were Vibrio
(15 times), Pseudomonas (9), Cytophaga (8), Flavobacterium (7)
and the family Enterobacteriaceae (7). On average, the studies
reported three to four genera/families (Table 1). A comparison
of the gut microbiota of 12 (adult) bony fish found bacteria
representing 17 phyla, with most species having between 7 and
15 phyla, a far higher average than in the review of egg and larvae
microbiota. While the microbial community changes with life
stage and habitat, a relatively stable gut microbiota is established
within the first 50 days of life for many species (McIntosh et al.,
2008; Larsen, 2014). A decisive study with zebrafish, Danio rerio,
demonstrated this, reporting that a core microbial community is
supported through host system selective pressures regardless of
environmental parameters (Roeselers et al., 2011).

STRUCTURE OF THE FISH GUT
MICROBIOTA

The fish microbiome can be diverse, including protoctista,
fungi, yeasts, viruses, and members of the Bacteria and Archaea
(Merrifield and Rodiles, 2015). Bacteria are the dominant
microbiota of the fish intestine (Rombout et al., 2011) however,
and have been almost the sole focus of research in this field
thus far. Recent research has shown that fish hindgut microbial
communities closely resemble those of mammals much more so
than their surrounding environmental microbial communities
(Ktari et al., 2012). Despite this, in mammals the dominant
gut microbiota are anaerobes from the phyla Bacteroidetes and
Firmicutes (Lozupone et al., 2012) whereas Proteobacteria are
the prominent microbial phyla found in the fish GIT (Rombout
et al., 2011). Proteobacteria, in addition to Bacteroidetes and
Firmicutes, comprise 90% of the fish intestinal microbiota of the
different species studied thus far (Ghanbari et al., 2015).

The density, composition and function of the microbiota
change in the different sections of the fish GIT (Clements
et al., 2014). Furthermore, there is a distinction between
the allochthonous and autochthonous communities (Nayak,
2010; Banerjee and Ray, 2017). Allochthonous are the free-
living, transient microbiota associated with the digesta, whereas,
autochthonous microbiota colonise the mucosal surface of
the digestive tract and make up the core community. The
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TABLE 1 | Bacterial species isolated from the intestinal tracts of marine fish species at larval and fry life stages.

Fish species Bacterial genera Reference

Atlantic cod, Gadus morhua Vibrio/Aeromonas
Aeromonas, Pseudomonas, Cytophaga/Flexibacter, Lactobacillus

Strøm and Olafsen, 1990
Strøm and Ringø, 1993

Atlantic halibut, Hippoglossus
hippoglossus

Cylophaga/Flexibacter/Flavobacterium,
Vibrio/Aeromonas Vibrio/Aeromonas

Bergh et al., 1994
Bergh, 1995

Dover sole, Solea solea Pseudomonas/Alcaligenes, Vibrio/anaergenic Aeromonas, Moraxella,
Enterobacteriaceae, Flavobacterium/Cytophaga, Moraxella, coryneforms

Campbell and Buswell, 1983

Turbot, Scophthalmus maximus Vibrionaceae Nicolas et al., 1989

Vibrio alginolyticus, Aeromonas
Vibrio pelagius
Vibrio alginolyticus, V. natrigenes, V. anguillarum, V. fluvilis, V. pelagius,
Aeromonas caviae, Acinetobacter

Gatesoupe, 1990
Blanch et al., 1997
Munro et al., 1993

Vibrio alginolyticus, V. anguillarum, V. campelii, V. fluvialis, V. furnissi, V. harveyii,
V. natrigenes, V. nereis, V. ordali, V. pelagius, V. splendidus, Vibrio, Aeromonas,
Pseudomonas/Alcaligenes, Flavobacterium/Cytophaga, Enterobacteriaceae,
Acinetobacter, Photobacterium, Moraxella

Munro et al., 1994

Aeromonas, Vibrio, Enterobacteriaceae, Cytophaga, Micrococcus,
Staphylococcus, coryneforms

Ringø et al., 1996

Oxidative Gram-negative rods, V. natriegens, V. eplagius, V. sophalmis, V.
splendidus, V. mediterranei, V. anguillarum, V. alginolyticus

Blanch et al., 1997

Acinetobacter, Moraxella, Vibrio Gatesoupe et al., 1997

Herring, Clupea harengus Pseudomonas/Alteromonas, Flavobacterium Hansen et al., 1992

Rockfish, Sebastes schlegeli Vibrio, V. anguillarum, V. alginolyticus, Pseudomonas, Acinetobacter,
Flavobacterium/Cytophaga

Tanasomwang and Muroga, 1989

Red seabream, Pagrus major Aeromonas, Vibrio, Pseudomonas, Enterobacteriaceae, Cytophaga Muroga et al., 1987

Black seabream,
Acanthopagrus schlegeli

Aeromonas, Vibrio, Pseudomonas, Enterobacteriaceae, Cytophaga Muroga et al., 1987

Milkfish, Chanos chanos Pseudomonas, Vibrio, Enterobacteriaceae Fernandez et al., 1996

Seabass, Dicentrarchus labrax Vibrio, Acinetobacter, Moraxella, Enterobacteriaceae Gatesoupe et al., 1997

Wolffish, Anarhichas lupus Carnobacterium divergens Ringø and Johnsen, unpublished data

Taken from Ringø and Birkbeck, 1999.

density of viable aerobic and anaerobic bacteria usually range
from 104–109 colony forming units (CFU) g−1 of intestinal
content, respectively (Skrodenytė-ArbaČIauskiene, 2007). This
is notably lower than that of warm-blooded animals which are
generally orders of magnitude higher (Nayak, 2010). Similar
to higher vertebrates, the densest population of microbes in
teleost fish is located in the GIT. Previous studies have found
increasing population sizes running distally along the GIT.
Aerobic heterotrophs in the GIT of yellowtail (Seriola sp.)
increased from 2 × 104 bacteria g−1 in the pyloric caeca and
2.5 × 105 bacteria g−1 in the stomach, finally, to 6.5 × 104

to 5.9 × 106 bacteria g−1 in the intestine (Sakata et al., 1978).
This trend was also observed in herring, Clupea harengus, larvae
(Hansen et al., 1992) and juvenile Dover sole, Solea solea, though
not adults (MacDonald et al., 1986). The results of an analysis
of the occurrence and distribution of enzyme-producing bacteria
in the proximal, middle, and distal segments of the GIT of
four brackish water teleosts (Scatophagus argus, Terapon jarbua,
Mystus gulio, and Etroplus suratensis) showed that the density
generally increased along the GIT (Das et al., 2014). Other studies
also found similar trends (Fidopiastis et al., 2006; Ringø et al.,
2006; Bakke-McKellep et al., 2007; Hovda et al., 2007; de Paula
Silva et al., 2011). Zhou et al. (2007) used 16S rDNA PCR-DGGE
fingerprinting to study the autochthonous bacteria of Lutjanus
sebae and Ephippus sebae. In this study, they found that the

average number of different bacteria detected in each section
increased along the digestive tract. In contrast, the opposite was
found by Zhou et al. (2009a) in yellow grouper, Mycteroperca
venenosa, and no obvious trend was observed in juvenile Atlantic
salmon, Salmo salar (Navarrete et al., 2009). Numerous factors
may have caused the deviating results of these studies; diet, which
may be a significant one, will be discussed later in this review.

The community composition between sections of the fish
GIT can also vary (Llewellyn et al., 2014). It has been suggested
that the autochthonous microbiota can differ in particular,
considering the variation in physiological environments between
the different parts of the digestive tract (Clements et al.,
2014). The stomach is often omitted from gut microbial
composition analyses. However, a number of studies have
included it in the past using culture-dependent techniques
(Sera and Ishida, 1972a,b; Austin and Al-Zahrani, 1988; Ringø,
1993; Ringø et al., 1998; Zhou et al., 2008, 2009b). There
are also some more recent studies using culture-independent
techniques to compare the microbial community in different
gut segments, including the stomach. The dominant phyla in
the stomach of gilthead seabream, Sparus aurata, were reported
as Firmicutes, Proteobacteria and Bacteroidetes (de Paula Silva
et al., 2011). However, a later study reported the dominant
phyla to be Firmicutes, Proteobacteria, and Actinobacteria
(Estruch et al., 2015). Both studies found Vibrionaceae to
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be a dominant family, reporting the genus Photobacterium.
Aside from this, Estruch et al. (2015) also reported the family
Enterobacteriaceae, the genera Streptococcus and Clostridium of
Firmicutes and the genus Corynebacterium of Actinobacteria,
whereas de Paula Silva et al. (2011) found bacteria relating to the
genus Vibrio along with species from the family Bacillales of
Firmicutes and the genus Flavobacteriaceae of Bacteroidetes.
Results on stomach microbiota should be treated with caution.
These two studies used stomach contents for analysis which is
likely to be influenced by transient food. Another study that
included analysis of the adherent stomach microbiota found
greater diversity of bacteria in the stomach of yellow grouper
compared to other sections of the gut (Zhou et al., 2009a). The
genera Proteobacterium, Pantoea, and Clostridium were found in
all sections of the yellow grouper gut, whereas the less commonly
reported phyla Deinococcus-Thermus and Planctomycete were
found only in the stomach along with uncultured Streptococcus
sp. and Enterobacter amnigenus. Interestingly, not all studies
have found significant differences between sections. Although
included in analysis, no significant differences in adherent
community composition in the stomach and intestine were
reported for red emperor snapper, Lutjanus sebae (Zhou et al.,
2009b).

When a dietary intervention trial was undertaken on Atlantic
cod, Gadus morhua, differences in gut microbiota were seen
between the different diets, but interestingly, within each diet
there was variation in dominant species found in the fore-
and midgut, and the hindgut (Ringø et al., 2006). Indeed, in
fish fed a fishmeal diet, Psychrobacter and Brochothrix were
dominant in the fore- and midgut, while Carnobacteriaceae
was dominant in the hindgut microbiota. Interestingly, fish fed
the soybean meal and the bioprocessed soybean meal diets
had Psychrobacter dominating throughout the gut. Variation
in dominant species in the fore- mid- and hind-gut were
also observed in farmed Atlantic salmon (Hovda et al., 2007).
The fore-gut was dominated by Proteobacteria in the genera
Janthinobacterium, Pseudomonas, Acinetobacter, and Vibrio; the
mid-gut by the Proteobacteria Photobacterium phosphoreum
and the genus Pseudomonas; while in the hind-gut it was
Vibrio and P. phosphoreum which were present in higher
numbers. The differences presented from analyses of different
gut segments and gut contents or gut mucus highlights the
importance for all studies to report the details of their sample
preparation.

Studies investigating the gut microbiota of fish are varied
at many levels, including species studied and methods of
sample collection and analysis. This can create difficulties when
comparing results and extrapolating the true level of diversity.
Despite these limitations, results from a comparison which
non-uniformly spans a diversity of fish species from over 30
studies revealed the following genera to be the most frequently
reported as dominant: Vibrio (11 times), Photobacterium (10)
and Clostridium (5) (Table 2). In support of these results, a
meta-analysis of the gut communities of marine fish revealed
that Vibrionales bacteria (which includes the genera Vibrio and
Photobacterium) accounted for 70% of sequence reads (Sullam
et al., 2012).

Vibrio, a diverse genus of the phylum Proteobacteria, is
one of the most important bacterial genera in aquaculture,
with both pathogenic and probiotic (health-promoting) species
(Vandenberghe et al., 2003). V. anguillarum, V. salmonicida,
and V. vulnificus are among the main bacterial pathogens of
marine fish and invertebrate species (Austin and Austin, 1999).
Pathogenic Vibrios commonly infect larvae and can cause sudden
and significant mortalities. However, it has been hypothesised
that many Vibrio species are not true pathogens, but in fact
opportunistic pathogens whose virulence is accentuated under
intensive aquaculture conditions (Thompson et al., 2004). Vibrio
alginolyticus, although sometimes pathogenic (Samad et al., 2014;
Chen et al., 2015), has been shown in vivo to work well as
a probiotic for Atlantic salmon, protecting against Aeromonas
salmonicida, Vibrio anguillarum and Vibrio ordalii (Austin et al.,
1995). An in vitro study found that Vibrio sp. Strain NM 10 had
an inhibitory effect against the fish pathogen Pasteurella piscicida
(Sugita et al., 1997). Many Vibrio species produce hydrolytic
enzymes and in this way they can act as symbionts assisting in
the breakdown of dietary components. Strains have been found
to produce amylase (Hamid et al., 1979; Gatesoupe et al., 1997),
lipase (Gatesoupe et al., 1997; Henderson and Millar, 1998),
cellulose (Itoi et al., 2006; Sugita and Ito, 2006) and chitinase
(MacDonald et al., 1986) among others (Ray et al., 2012).

Photobacterium is also a genus of the phylum Proteobacteria
and family Vibrionaceae. This luminous bacteria is commonly
found on the surface of healthy fish and was originally associated
with light-emitting organs, e.g., Photobacterium angustum,
P. leiognathi and P. phosphoreum (Cahill, 1990). Initially, it
was recognised that surface tubules release these bacteria into
the digestive tract of the host (Haygood and Distel, 1993).
However, since then numerous strains of Photobacterium have
been found in the GIT of fish species lacking bioluminescent
organs (Makemson and Hermosa, 1998; Ward et al., 2009;
Smriga et al., 2010). There are also non-luminescent members
of the Photobacterium genus, such as P. iliopiscarium which
has been isolated from the intestines of several species of cold-
water fish (Onarheim et al., 1994; Urakawa et al., 1999). Many
Photobacterium act as mutualistic bacteria in the host gut aiding
with chitin digestion (MacDonald et al., 1986; Ramesh and
Venugopalan, 1989; Itoi et al., 2006). However, some also produce
harmful enzymes such as neuraminidases (Sugita et al., 2000).
Photobacterium damselae is a neuraminidases producer and is
a common pathogen for wild and captive fish (Romalde, 2002).
There are two sub-species of P. damselae; P. damselae ssp.
damselae and P. damselae ssp. piscicida. The former is associated
with skin ulcers, while the latter is the infectious agent of
pasteurellosis in fish (Urbanczyk et al., 2011).

Clostridium is a very common genus within the phylum
Firmicutes. It is a Gram-positive obligatory anaerobe with many
pathogenic species. Clostridium difficile is a commonly known
species of this genus as it is associated with diarrheal disease
in humans and animals (Metcalf et al., 2011). However, it has
not been widely associated with marine fish, though studies
investigating C. difficile in fish are limited. One study that did
investigate its presence found no C. difficile in 107 assorted
marine and freshwater fish gut contents (Al Saif and Brazier,
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TABLE 2 | Dominant bacterial species isolated from the intestinal tracts of marine fish species at different trophic levels.

Trophic level Fish species Dominant bacteria genera Reference

Herbivores

Butterfish, Odax pullus Clostridium Clements et al., 2007

Marblefish, Aplodactylus arctidens Clostridium, Eubacterium desmolans, Papillibacter
cinnaminovorans

Clements et al., 2007

Parrotfish, Chlorurus sordidus Vibrio, Photobacterium Smriga et al., 2010

Silver drummer, Kyphosus sydneyanus Clostridium Moran et al., 2005

Surgeonfish, Acanthurus nigricans Bacteroidetes, non-vibrio Proteobacteria, Firmicutes Smriga et al., 2010

Surgeonfish, Acanthurus sp. Epulopiscium Miyake et al., 2015

Zebraperch, Hermosilla azurea Enterovibrio, Bacteroides, Faecalibacterium, Desulfovibrio Fidopiastis et al., 2006

Omnivores

Pinfish, Lagodon rhomboides Clostridium, Mycoplasma Ransom, 2008

Photobacterium, Propionibacterium, Staphylococcus,
Pseudomonas, Corynebacterium

Givens et al., 2015

Long-jawed mudsucker, Gillichthys mirabilis Mycoplasma Bano et al., 2007

Carnivores

Atlantic cod, Gadus morhua Clostridium perfringens Aschfalk and Müller, 2002

Vibrio Star et al., 2013

Atlantic halibut, Hippoglossus hippoglossus Vibrionaceae (larvae, juveniles), Photobacterium
phosphoreum (adults)

Verner-Jeffreys et al., 2003

Atlantic salmon, Salmo salar Acinetobacter junii, Mycoplasma Holben et al., 2002

Lactobacillus, P. phosphoreum, Lactococcus, Bacillus Hovda et al., 2007

Blackfin icefish, Chaenocephalus aceratus Photobacterium Ward et al., 2009

Black rockcod, Notothenia coriiceps Photobacterium, Vibrio Ward et al., 2009

Bluefish, Pomatomus saltatrix Vibrio, Pseudomonas, Enterobacteraceae Newman et al., 1972

Gilthead sea bream, Sparus aurata Pseudomonas Floris et al., 2013

Grass puffer, Fugu niphobles Vibrio, Pseudomonas, Flavobacterium Sugita et al., 1989

Grouper, Epinephelus coioides Bacillus, Vibrio, Delftia, Psychroacter, Acinetobacter,
Pseudomonas

Sun et al., 2009

Red drum, Sciaenops ocellatus Mycoplasmataceae Ransom, 2008

Photobacterium, Cetobacterium, Clostridiaceae, Vibrio Givens et al., 2015

Sea trout, Salmo trutta trutta Aeromonas sobria, Pseudomonas Skrodenytė-ArbaČIauskiene et al.,
2008

Siberian sturgeon, Acipenser baerii Cetobacterium somerae Geraylou et al., 2013

Snapper, Lutjanusn bohar Vibrio, Photobacterium Smriga et al., 2010

Southern flounder, Paralichthys lethostigma Clostridium Ramirez and Dixon, 2003

Clostridium Ransom, 2008

Photobacterium, Clostridiaceae, Clostridium Givens et al., 2015

Speckled trout, Cynoscion nebulosus Escherichia coli Ransom, 2008

Striped bass, Morone saxatilis Aeromonas, Pseudomonas, Vibrio MacFarlane et al., 1986

Zooplanktivores

Cardinalfish, Apogonidae Vibrionaceae and Pasteurellaceae, Vibrio harveyi,
Shewanella sp., Endozoicomonas sp.

Parris et al., 2016

Damselfish, Pomacentridae Vibrionaceae and Pasteurellaceae, Vibrio harveyi,
Shewanella sp., Endozoicomonas sp.

Parris et al., 2016

Herring, Clupea harengis Pseudomonas, Alteromonas Hansen et al., 1992

Pseudomonas, Psychrobacter Curson et al., 2010

Pipefish, Syngnathus scovelli Proteobacteria Ransom, 2008

Sardines, Sardinella longiceps Achromobacter, Vibrio, Pseudomonas Karthiayani and Mahadeva Iyer,
1967

Atlantic mackerel, Scomber scombrus Psychrobacter, Vibrio, Shewanella Svanevik and Lunestad, 2011

1996). It has previously been isolated from freshwater African
cichlids, Nimbochromis venustus, with the condition known as
“Malawi bloat,” suggesting that if present it is pathogenic in fish
(Dixon et al., 1997).

Clostridium botulinum is a pathogenic species more frequently
associated with marine fish. There are six different type strains
(A-F). Fish are susceptible to type E and occasionally B (Mazuet
et al., 2016; Uzal et al., 2016). When 117 intestinal samples
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from rainbow trout, Oncorhynchus mykiss, were analysed for
C. botulinum type E in Finland, 15% were found positive (Hyytiä
et al., 1998). Similarly, in a study performed in northern France,
the prevalence of C. botulinum in marine fish was recorded at
16.6% (Fach et al., 2002). Huss and Pedersen (1979) reported
that C. botulinum was more common for demersal rather than
pelagic marine fish and suggested this was as a result of greater
interaction with the sediment. It has been noted that fish are not
always affected by C. botulinum and can be healthy carriers of the
spores (Uzal et al., 2016).

Clostridium species often work as mutualistic symbionts with
marine hosts, especially herbivorous fish (Clements et al., 2007,
2009). They have been shown to contribute to the host’s nutrition,
especially by supplying fatty acids and vitamins (Balcázar
et al., 2006). In southern flounder, Paralichthys lethostigma,
Clostridium along with other Gram-negative genera displayed
enzyme activities of acid and alkaline phosphatases, C4 and C8
esterases, C14 lipases, arylamidases and glycosidases (Ramirez
and Dixon, 2003). Beyond this natural symbiosis, some species
of Clostridium, such as C. butyricum have been used successfully
as a probiotic in aquaculture, enhancing resistance of rainbow
trout to vibriosis (Sakai et al., 1995) and stimulating the
immune response and improving survival in Japanese flounder,
Paralichthys olivaceus, (Taoka et al., 2006).

DIVERSITY OF FISH GUT MICROBIOTA

Studies on the gut microbiota of fish have found substantial intra-
and inter-species diversity. Factors which influence this diversity
include life stage (Hansen and Olafsen, 1999), trophic level
(Clements et al., 2007), diet (Cordero et al., 2015), season (Hovda
et al., 2012), habitat (Bano et al., 2007), captive-state (Dhanasiri
et al., 2011), sex (Dhanasiri et al., 2011), and phylogeny (Miyake
et al., 2015). A recent meta-analysis investigating the factors
affecting the gut microbiota composition of fish reported that
trophic level, habitat and possibly host phylogeny are the most
likely influencers (Sullam et al., 2012). In the following sections,
we review the literature thus far relating to the effects of trophic
level, season and captive state on the gut microbiota of fish.

Trophic Level
The influence of diet on gut microbiota is a logical link and has
been reported numerous times for an array of species (Claesson
et al., 2012; Serino et al., 2012; Miyake et al., 2015; Li et al.,
2017). Trophic position relates natural diet with evolutionary
development and marine fish fill many of these levels. In terms of
investigating the relationship of gut microbial composition with
trophic level, early studies included flatfish (Liston, 1956) and
salmon (Yoshimizu and Kimura, 1976), however, there was also
significant interest in herbivores.

The seminal studies of Fishelson et al. (1985) on surgeonfish
(Acanthurus species) and Rimmer and Wiebe (1987) on sea
chub (genus Kyphosus) showed for the first time that marine
herbivorous fish possessed distinct symbiotic gut microbiota
that aided fermentative digestion. Since then, anaerobic bacterial
species, frequently of the phylum Firmicutes and class Clostridia,

have been repeatedly identified in the digestive tracts of
herbivorous fish (Mouchet et al., 2012). Within the body of
evidence, there has been some replication of species studied, with
surgeonfish and sea chub repeatedly investigated (Clements et al.,
1989; Clements and Choat, 1997; Mountfort et al., 2002; Moran
et al., 2005). However, more recently corroborating research
found that the microbiota of herbivores was distinct from that
of fish with other diets and strains of Firmicutes dominated the
gastrointestinal microbial communities of these fish. Published
studies that supported these findings worked with a range
of different species including brown-spotted spinefoot, Siganus
stellatus, butterfish, Odax pullus, daisy parrotfish, Chlorurus
sordidus, dusky parrotfish, Scarus niger, marblefish, Aplodactylus
arctidens, and zebraperch, Hermosilla azurea (Mountfort et al.,
2002; Fidopiastis et al., 2006; Clements et al., 2007; Miyake et al.,
2015). Clements and associates have driven research within this
field and have provided critical reviews of knowledge gained in
this area thus far (Clements et al., 2009, 2014).

Gut microbial communities of fish in other trophic levels have
less characteristic dominance when compared to herbivores.
However, one study comparing phylogenetically similar
benthivore and planktivore freshwater species showed they
contained different unique intestinal bacterial communities
(Uchii et al., 2006). In general, within the marine environment,
Proteobacteria, rather than Firmicutes, is often the dominant
phylum at the non-herbivorous trophic levels (Miyake
et al., 2015). Vibrionaceae, Aeromonas and Pseudomonas
are all frequently reported in carnivores, omnivores and
(zoo-) planktivores. The gut microbiota of temperate pelagic
planktivores such as mackerel, Scomber scombrus, and herring as
well as tropical planktivores such as pipefish, Syngnathus scovelli,
sardines, Sardinella longiceps, damselfish, Pomacentridae, and
cardinalfish, Apogonidae, have all been studied (Karthiayani
and Mahadeva Iyer, 1967; Hansen et al., 1992; Ransom, 2008;
Svanevik and Lunestad, 2011; Parris et al., 2016). The dominant
species reported were Gram-negative bacteria such as Vibrio,
Pseudomonas, Psychrobacter, Achromobacter, Shewanella,
Alteromonas, Endozoicomonas, Vibrionaceae and Pasteurellaceae
(Table 2). Two studies that looked at omnivore species; long-
jawed mudsucker, Gillichthys mirabilis, and pinfish, Lagodon
rhomboids, reported Mycoplasma spp. as the dominant bacteria
(Table 2; Bano et al., 2007; Ransom, 2008).

We compared 17 different published studies, which provided
data on dominant gut bacteria in 16 carnivorous species and
found Vibrio (9 times) and Photobacterium (7) were the most
frequently reported. Pseudomonas was reported six different
times while Clostridium was found in three species by five
different studies. Finally, Aeromonas, Cetobacterium, Bacillus,
Mycoplasma and Acinetobacter were reported twice (Table 2).
Of these Aeromonas, Photobacterium, Pseudomonas and Vibrio
have all been identified as fish gut microbiota that might aid
digestion (Ray et al., 2012). Vibrio spp., Enterobacter spp.,
Pseudomonas spp. and Aeromonas spp. isolated from marine
fish GIT have been found to produce proteases while these
bacteria along with Photobacterium spp. have also been reported
to produce chitinases (Hamid et al., 1979; MacDonald et al., 1986;
Gatesoupe et al., 1997; Hoshino et al., 1997; Itoi et al., 2006).
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Knowledge of the principle composition of fishes gut microbiota
and understanding the role they play in digestion and whole body
function is critical. This is especially important as new species
continue to enter the aquaculture sector and diet manipulation
becomes common practise as a means to improve health and
performance. The use of shotgun sequencing and transcriptome
analysis in future studies will be imperative to meet this goal
but it will be essential that such studies distinguish between the
residential species and those which have been ingested.

Season
Several reviews have highlighted seasonal variation and
temperature changes as a defining parameter for fish gut
microbial composition (Nayak, 2010; Sullam et al., 2012; Ringø
et al., 2016). However, the majority of studies reporting this have
been conducted on freshwater fish (Sugita et al., 1983, 1987;
Macmillan and Santucci, 1990; Spanggaard et al., 2000; Al-Harbi
and Uddin, 2004; Hagi et al., 2004; Naviner et al., 2006). Changes
in total bacterial abundance have been reported, with peaks in
summer and autumn months (Macmillan and Santucci, 1990;
Al-Harbi and Uddin, 2004) as well as variations in dominant
species (Hagi et al., 2004).

Historically, seasonal trends were reported in total bacterial
counts recorded from gut samples from skate, Raja sp., and
lemon sole, Pleuronectes mimocephalus, plated on seawater agar
(Liston, 1956). This study suggested that changes in plankton
availability influenced the gut bacterial composition in fish. To
the best of our knowledge, the first study to directly investigate
seasonal variation in gut microbiota in marine fish was by Hovda
et al. (2012). The gut microbiota of adult Atlantic salmon was
analysed between August and June the following year, using 16S
rRNA DNA sequencing. The water temperature varied between
5.5 and 18.8◦C during the experimental period. Although some
bacterial species were only recorded at some of the sample
time points, overall the variation reported was not statistically
significant. Contrarily, a more recent study on salmon did find
a relationship between seasonal water temperature changes and
shifts in gut microbial composition (Neuman et al., 2016). In this
study, increasing temperatures (up to 21◦C) were associated with
a disappearance of lactic acid bacteria (LAB) and Acinetobacter
spp. and an increase in Vibrio spp. The loss of protective LAB
and an increase in potentially virulent Vibrio spp. could have a
negative impact on host health and has the potential to become
an important issue with sea temperatures rising and stocks of wild
salmon decreasing. Further research is required to determine the
effects of seasonal variation and temperature changes on the gut
microbiota of marine fish.

Wild vs. Captured
Captive breeding and rearing of fish commonly involve the
manipulation of multiple factors, including environment, social
interaction and diets. Unnatural stocking densities and increased
stress levels can lead to spread of disease, a major problem for the
aquaculture industry (Verschuere et al., 2000). Within the sector,
antibiotics have been used liberally to clear bacterial infections
and even prophylactically to compensate for shortfalls in sub-
standard rearing conditions (Cabello, 2006). The result of this is

resistance development in aquaculture pathogens (Defoirdt et al.,
2011), and reduction of microbial gut diversity in aquaculture
species (Navarrete et al., 2008). Today, as regulations on the use of
antibiotics in aquaculture are becoming more stringent in many
countries, research into alternative methods of disease control are
being prioritised. However, the aquaculture industry continues
to expand and such regulations are still lax in many areas on
a global scale. Assessment of the level of use and the impacts
of antibiotics on aquaculture and wild fish is crucial. This is an
important topic that is worthy of a full review in its own right.
See the following reviews for more in depth discussion; Romero
et al. (2012), Henriksson et al. (2017), and Lozano et al. (2018).

Artificial diets and increased food intake levels, often with
concomitant increases in stress, can cause alterations in the
microbiota in fish GIT (Clements et al., 2014). A frequently cited
study that clearly depicts this relationship reports the changes
in the gut microbiota of wild Atlantic cod after captive rearing
(Dhanasiri et al., 2011). In this study, total counts of bacteria
did not vary significantly but the diversity of bacterial species
reduced notably after 6 weeks of artificial feeding. However, the
study omits information on specific bacteria that are associated
with the wild and subsequent captive states. Contrarily, when
the gut microbiota of wild and pen-reared Atlantic salmon were
compared, farmed fish had a greater microbial diversity (Holben
et al., 2002). Interestingly, a novel Mycoplasma phylotype was
found to dominate in wild Atlantic salmon and pen-reared fish
in Scotland, whereas the farmed fish in Norway were dominated
by Acinetobacter junii. The farmed fish in the two locations
were fed different diets. Another study looking at changes in
gut microbiota of salmon throughout the life cycle observed that
all stages were dominated by Proteobacteria and were enriched
for Tenericutes (Genus Mycoplasma especially; Llewellyn et al.,
2016). Taken together, these studies suggest the presence of
a core microbiota that can persist often in spite of changing
factors. Other studies have also reported results to support this
“core microbiota” hypothesis (Roeselers et al., 2011). In the fish
model species zebrafish, it was shown that there were significant
similarities in the gut microbiota found in fish collected recently
from their natural habitat and those reared for generations in lab
facilities. However, also observed were variations correlated to lab
facility and historical connecxions between these different sites
(Roeselers et al., 2011).

One of the most egregious alterations commonly encountered
by farmed fish is the increasing inclusion of plant ingredients into
carnivorous diets. The ability of carnivorous fish to adaptively
modulate digestive functions to meet changes in diet composition
is limited (Buddington et al., 1997). Feed efficiency, growth rates,
whole body composition of fish and nitrogen retention were
significantly, negatively affected when 80% or more fish meal was
replaced by plant proteins in diets fed to juvenile turbot, Psetta
maxima (Fournier et al., 2004). Similar results were reported in
a study performed on red sea bream, Pagrus major, whereby the
experimental diet with low fishmeal and high plant protein levels
caused significant reductions in feed conversion and protein
efficiency ratio, digestibility of protein and disease resistance
against Edwardsiella tarda (Khosravi et al., 2015). Studies
focussed on plant protein digestion in salmonids predominate
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among the published literature. Addition of plant-based proteins
into salmonid diets has caused numerous intestinal disorders
(Urán et al., 2008; Penn et al., 2011; Sahlmann et al., 2013). These
intestinal disorders are frequently reported in conjunction with
alterations in the gut microbiota (Bakke-McKellep et al., 2007;
Green et al., 2013). In Atlantic salmon, soybean meal-induced
enteritis was accompanied by increased numbers and diversity of
gut bacteria, although numbers of LAB were reduced compared
to fish on a fishmeal-based diet (Bakke-McKellep et al., 2007).
Similarly, Green et al. (2013) found that salmon fed soy protein
concentrate experienced intestinal disorders at high seawater
temperatures and coincidently experienced increased bacterial
diversity which included bacteria not normally associated with
marine fish (Escherichia and Propionibacterium). Gut microbial
changes related to plant-protein diets have also been recorded in
other carnivorous fish species. In Atlantic cod, Gram-negative
bacteria Chryseobacterium spp. and Psychrobacter glacincola,
and Gram-positive bacteria belonging to Carnobacterium, were
dominant in the GIT of fish fed soybean meal while fish fed
fishmeal were dominated by Gram-positive bacteria of the genera
Brochothrix and Carnobacterium only (Ringø et al., 2006). Now
that a link between certain plant ingredients, changes in gut
microbiota composition and intestinal disorders are recognised,
concerted efforts are being made to reduce the negative impacts
of these ingredients, often through supplementation and further
modification of the compound diets (Barrows et al., 2008;
Krogdahl et al., 2010).

Changes in gut microbiota composition attributed to captive-
state have also been reported in freshwater fish (Bucio et al., 2006)
as well as other marine animals (Nelson et al., 2013) and are now
generally accepted. However, knowledge of the gut microbiota in
wild marine fish requires more attention to provide a baseline for
comparative purposes to better understand the effects of captive
rearing.

MANIPULATION OF THE FISH GUT
MICROBIOTA

The innate link between a host’s microbial community and its
health status is recognised in humans and other animals and
much research is now directed toward methods to manipulate
these microbial communities to boost host health. Fish have not
been omitted from this area of nutrition and with the growth of
the aquaculture industry, there has been a growing interest in
the manipulation of fish gut microbiota to improve welfare and
nutrition. The principle methods of gut microbial manipulation
have included the alteration of dietary proteins and lipids, as well
as the addition of probiotics and prebiotics in the diet.

Proteins
Proteins, the building blocks of the body, are involved in a
plethora of chemical pathways and bodily functions. The source
(Desai et al., 2012), quantity (Geurden et al., 2014) and chemical
structure (Kotzamanis et al., 2007) of proteins can influence gut
health and microbial composition. In Atlantic salmon dietary
protein quantity has been shown to alter gut microbiota. A recent

study reported an association between reduced protein levels in
the diet and a more divergent microbial community structure in
the gut (Zarkasi et al., 2016). Peptides and glycopeptides, released
through hydrolytic digestion modulate the condition and activity
of the intestinal cells as well as the residing microbiota (Świątecka
et al., 2012). Altering dietary protein by providing protein
hydrolysates can directly and indirectly change the hosts gut
microbial community. Introduction of short peptides to the diet
can directly manipulate gut microbial composition by providing
suitable substrates for bacteria thus encouraging proliferation
(Kotzamanis et al., 2007; Delcroix et al., 2015). Certain peptides
can exhibit antimicrobial activity and thus help to protect
against pathogenic bacteria (Sila et al., 2014). Indirectly, they are
thought to result in rapid absorption of amino acids, decreasing
splanchnic extraction, causing higher systemic amino acid levels
(Manninen, 2009; Egerton et al., 2018). Single amino acids
play an important role in immune defence, contributing to the
synthesis of antibodies and controlling key immune regulatory
pathways (Kiron, 2012). Improved immunity, often associated
with dietary protein hydrolysates, can allow for the reduction
in pathogenic gut microbiota (Tang et al., 2008; Bui et al., 2014;
Khosravi et al., 2015). The source and the degree of hydrolysis of
proteins in fish diets have been reported to alter gut microbiota in
larvae. Changes in culturable bacteria, especially Vibrio spp., were
reported with seabass, Dicentrarchus labrax, larvae (Kotzamanis
et al., 2007). Delcroix et al. (2015) also reported significant
differences in gut microbiota related to diet but did not provide
details of composition.

Lipids
Fat or oil source and composition is an area of great interest
in human nutrition. A recent seminal study used a rat model
to show how fat type (saturated animal lard vs. polyunsaturated
fish oil) altered the gut microbiota and in turn affected white
adipose tissue (WAT) inflammation (Caesar et al., 2015). Lipids
are important macronutrients in the diet of fish. Investigations of
dietary lipids have been long-standing. The level of lipid inclusion
has been examined (Lesel et al., 1989; Ringø and Birkbeck, 1999)
and Lesel et al. (1989) found that increasing lipid concentrations
resulted in a more diverse gut microbial community. More
importantly, for the aquaculture industry, the substitution of
fish oils for different dietary plant oils has also been studied
(Ringø et al., 2002; Montero et al., 2010). All natural plant oils
are deficient in marine polyunsaturated fatty acids; arachidonic
acid, eicosapentaenoic acid and docosahexaenoic acid (Merrifield
et al., 2011). Ringø et al. (2002) found differences of the
aerobic gut microbial communities of Arctic charr, Salvelinus
alpinus L., fed soybean, linseed or marine oils. This study and
others (Hardy, 1997; Lødemel et al., 2001) have shown that
replacement of fish oils with plant oils can actually improve fishes’
resistance to pathogenic bacteria, for which Ringø et al. (2002)
suggests the associated gut microbial change plays a role. Further
research is needed on this topic to confirm the effects of lipid
source, composition and concentration on fish gut microbiota.
Furthermore, long-chain polyunsaturated fatty acid synthesising
bacteria have been discussed in the literature for over two-
decades and it is reported that they have mostly been isolated
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from marine sources such as seawater, fish, and sediments
(Nichols and McMeekin, 2002; Yoshida et al., 2016). Shewanella
sp. along with Vibrio sp. are the major PUFA-producing bacterial
species isolated from the GIT of fish and invertebrates (Monroig
et al., 2013). Research into potential use of such bacteria for
probiotic purposes would be a novel and interesting route of
investigation for fish health and nutrition.

Probiotics
Probiotics are defined as ‘live microorganisms which, when
administered in adequate amounts, provide a health benefit to
the host’ (WHO and FAO, 2006). Their use in aquaculture, as
an alternative to antibiotics, rose significantly as legislation was
introduced that restricted the widespread use of chemicals in
animal rearing (Abelli et al., 2009). Gram-positive and Gram-
negative bacteria, bacteriophages, microalgae and yeasts have all
been tested as potential probiotics in fish (Akhter et al., 2015).
Some of the most frequently investigated probiotics include LAB
Bacillus, Lactococcus, Shewanella, and Aeromonas genera (Hagi
et al., 2004; Burr et al., 2005; Merrifield and Carnevali, 2014). In
a recent review, Carnevali et al. (2017) listed 61 published studies
that investigated the administration of probiotics to teleosts.
In conjunction with the manipulation of the gut microbial
composition, many studies have reported an increase in growth
rates (Gatesoupe, 1991; Bagheri et al., 2008; Lobo et al., 2014)
and modulation of immune status (Balcázar et al., 2006; Huang
et al., 2014; Cordero et al., 2015). Thus far, trials have mostly been
performed on larvae and juveniles from which positive effects in
the intestinal mucosal cells and stimulation of the innate immune
response have been reported (Cerezuela et al., 2011; Abid et al.,
2013). However, in aquaculture the successful administration of
probiotics can be difficult. Issues reported include low viability
of the bacteria during processing and storage, loss from leaching
in the water during feeding, as well as problems related to feed
handling and preparation (Merrifield et al., 2010). Despite this,
when successfully administered, probiotics have been found to
reduce the cost of fish farming through improvements in fish
welfare and nutrition (El-Haroun et al., 2006).

Prebiotics
Contrarily to probiotics, prebiotics do not introduce novel
microbiota into the intestinal tract, but rather are defined as
‘substrates that are selectively used by host microorganisms
conferring a health benefit’ (Gibson et al., 2017). As a
result, these indigestible food ingredients have been shown
to enhance immune response (Torrecillas et al., 2007), improve
nutrient uptake (Bongers and van den Heuvel, 2003) and
increase growth and feed conversion ratios (Adel et al., 2016).
There are also fewer difficulties compared to probiotics in
successfully administering these supplements. The principle
prebiotics used for fish are fructo-oligosaccharides, short-chain
fructooligosaccharides, oligofructose, mannanoligosaccharides,
trans-galactooligosaccharides, inulin, galactooligosaccharides,
xylooligosaccharides, arabinoxylooligosaccharides and
isomaltooligosaccharides (Ringø et al., 2016). Results of
prebiotic feeding studies vary considerably (Burr et al., 2010;
Zhou et al., 2010; Torrecillas et al., 2014) and it appears likely

that success will be supplement and dose-dependent, with
considerations for time of supplementation, culture conditions,
fish species and age required (Torrecillas et al., 2014). Prebiotics
are sometimes used in conjunction with probiotics, creating
a nutritional mixture (synbiotic) that can provide enhanced
benefits for the host (Cerezuela et al., 2011). This enhanced
effect was initially hypothesised as probiotics are mainly active
in the small intestine, while prebiotics influence the microbiota
of the large intestine in humans (Gibson and Roberfroid, 1995).
Some studies have reported supportive results to suggest an
enhanced effect of synbiotics over prebiotics or probiotics alone
(Rodriguez-Estrada et al., 2009; Mehrabi et al., 2012). However,
there has been some disparity within the published studies
(Ai et al., 2011; Geng et al., 2011).

The use of probiotics and prebiotics in aquaculture is a
fast-growing area and research is building an understanding of
the mechanistic pathways within which they work. For recent
comprehensive reviews on this topic see Cerezuela et al. (2011),
Dimitroglou et al. (2011), Torrecillas et al. (2014), Song et al.
(2014), Akhter et al. (2015), Ringø et al. (2016), and Carnevali
et al. (2017).

CONCLUSION

Similar to mammals, the gut microbiota of fish can be recognised
as an organ, in itself responsible for key physiological functions
which aid health maintenance of its host. Knowledge of its
composition and exact functional role in health and disease is
vital given the environmental changes to which fish are being
exposed, particularly in light of the growth of the aquaculture
industry and rising sea temperatures as a result of climate change.

The literature on the gut microbiota of marine fish thus far has
provided an understanding of many areas and we now appreciate
the mechanisms of colonisation and development of the fish gut
microbiota. Earlier studies had suggested that bacterial levels
in the fish gut were low (Yoshimizu and Kimura, 1976), while
recent studies, with the help of advanced molecular techniques
including next generation sequencing technologies, have painted
a different view (Zarkasi et al., 2014) and numbers have been
shown to reach as high as 109 cfu/g in gut content of particular
species.

It has been reported that 90% of fish intestinal microbiota
studied to date are composed of Proteobacteria, Bacteroidetes
and Firmicutes (Ghanbari et al., 2015). However, within these
phyla, studies reporting gut microbiota composition have
generally conveyed conflicting results and this is undoubtedly
a feature of the diversity which exists amongst fish. Such
diversity in results can pose difficulties in extrapolating real
and meaningful trends and correlations between gut microbial
composition and the factors that shape it. Despite this, studies
generated to date have enabled us to infer certain conclusions
such as the dominance of particular genera where the genus
Vibrio appears to be a key member followed closely by
Photobacterium and Clostridium. However, further studies are
warranted to confirm such inferences. Efforts to improve and
standardise sample collection, including differentiating between
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allochthonous and autochthonous bacteria, and subsequent
analysis should greatly benefit inter-study comparisons and add
strength to the data reported. Undoubtedly next generation
sequencing technologies will help this enormously, providing
more comprehensive datasets.

Diet and trophic level have presented as clear influencing
factors of fish gut microbial composition. It has been shown
that Clostridium is linked to an herbivorous diet while Vibrio
and Photobacterium are commonly found in carnivores. Seasonal
changes and the associated changes in water temperature and
captive rearing have also been shown to influence microbiota
composition and certain studies have cited the detrimental
impact of each. In this regard, strategies which enable the
manipulation of gut microbiota composition toward that of a
healthy microbiota are essential. Probiotics and prebiotics are at
the forefront of this but perhaps one of the greatest impediments
is the lack of baseline compositional data from healthy wild fish
in their natural environments. Thus, an increased focus toward
collecting such data is essential if dietary manipulation strategies
are to be of full benefit. Inarguably, the need to better understand
the innate relationship between gut microbiota and their fish
hosts is the ultimate goal. Some excellent initial work on the role
and mechanistic pathways of gut microbiota has been produced
(Ringø et al., 2010; Ray et al., 2012). However, gaining a greater
understanding of the specific effects of particular microbes and
their associated components on host health will improve our
ability to manipulate and fortify fish gut microbial communities
to enhance fish health and aquaculture productivity. The use of
transcriptomics will be important in this future research.

There are a number of important topics in this area that would
benefit from further research in the future. Firstly, producing
baseline data on the gut microbiota of wild populations,
which includes domains beyond just bacteria should be
prioritised. Investigations into the potential effects of on-coming
climate change including changes in water salinity, acidity and
temperature on the gut microbiota of fish will be important. The
other area that will continue to be prioritised is diet manipulation.
Finding diets that are sustainable and also benefit the fish in

terms of nutrition and health is imperative for the aquaculture
industry. Throughout these studies, the role of the gut microbiota
will need to be considered. Finally, the supply of marine lipids
is becoming an inhibitory factor for the aquaculture industry. In
this review, we have highlighted two interesting areas of research
related to this which are worthy of further research. Firstly, initial
reports linking dietary plant oils to pathogenic resistance and
secondly, the formative research on PUFA-producing bacteria
that could potentially play an important role in meeting the
future demands for marine lipids. Although researchers working
in this field have significantly expanded our knowledge on this
topic there is still great scope for further research. Data collection
from wild populations, laboratory experiments and work within
aquaculture will all be important contributors.
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