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Human T cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell
leukemia/lymphoma (ATL), HTLV-1 associated myelopathy (HAM/TSP), and of a number
of inflammatory diseases with an estimated 10–20 million infected individuals worldwide.
Despite a number of therapeutic approaches, a cure for ATL is still in its infancy.
Conventional chemotherapy has short-term efficacy, particularly in the acute subtype.
Allogeneic stem cell transplantation offers long-term disease control to around one third
of transplanted patients, but few can reach to transplant. This prompted, over the
past recent years, the conduction of a number of clinical trials using novel treatments.
Meanwhile, new data have been accumulated on biological and molecular bases of
HTLV-1 transforming and infecting activity. These data offer new rational for targeted
therapies of ATL. Taking into account the double-face of ATL as an hematologic
malignancy as well as a viral infectious disease, this Mini-Review seeks to provide an
up-to-date overview of recent efforts in the understanding of the mechanisms involved
in already used therapeutic regimens showing promising results, and in selecting novel
drug targets for ATL.
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INTRODUCTION

Human T cell leukemia virus type 1 (HTLV-1) is the first identified human retrovirus endemic in
southwestern Japan, the Caribbean islands, inter-tropical Africa, South America, Romania and the
Middle East, with an estimated 10–20 million infected individuals worldwide. HTLV-1 is known
to cause adult T cell leukemia/lymphoma (ATL), HTLV-1 associated myelopathy (HAM/TSP),
and a number of inflammatory diseases. Firstly detected and isolated from a cutaneous T cell
lymphoma almost 40 years ago, HTLV-1 still represents a significant challenge for the scientific
community engaged to disclose its oncogenic potential and to identify a focused therapy (Gallo,
2005; Tagaya and Gallo, 2017). HTLV-1 transforms CD4+ lymphocytes in vitro and in vivo,
and complex mechanisms control virus spreading, expression of viral proteins and host immune
response in infected individuals (Figure 1). As a consequence, ATL patients are often refractory
to intensive, conventional chemotherapy regimens. Classically used regimen are CHOP, CHOEP
dose-adjusted EPOCH, and hyper-CVAD, alternating with high-dose methotrexate and cytarabine
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FIGURE 1 | HTLV-1 driven leukomogenesis and possible mechanism of antiviral therapy. (A) Main immortalization/transformation process activated by HTLV-1
regulatory protein Tax and HBZ in newly infected CD4+ cells transmit virus to uninfected CD4+ cells and leading to epigenetic and genetic changes in ATL
transformed cells. Cell migration and cell-to-cell virus transmission, presumably involving also dendritic cells, favor the release of inflammatory cytokines and
chemokines milieu in the microenvironment and contribute to the maintaining of the infected clones. (B) AZT/IFN with or without arsenic trioxide (AS) could interrupt
the maintaining route of ATL.

(Dittus and Sloan, 2017). An intensive treatment consisting of
VCAP-AMP-VECP with the prophylactic use of G-CSF, has been
introduced in Japan (Watanabe et al., 2011). In addition, results
of preclinical studies, such as the high expression of CCR4 in
ATL cells (Ishida et al., 2003), led to hypothesize new targets for
biological therapy in ATL. Indeed, clinical trials using humanized
monoclonal antibodies such as mogamulizumab (anti-CCR4)
(Ishida et al., 2004; Yamamoto et al., 2010), alemtuzumab

(anti-CD52) (Sharma et al., 2017), or daclizumab (anti-CD25)
(Berkowitz et al., 2014) have been conducted on ATL patients
(Figure 2). However, an important hurdle emerged in practically
all the completed studies, is the limited duration of the response.
Allogeneic stem transplantation could represent an alternative,
potentially curative approach (Zell et al., 2016). Unfortunately,
its use is limited to a small percentage of ATL patients. Recently
published review articles provide detailed information on the
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FIGURE 2 | Novel approaches for ATL therapy. (A) Biological therapy with monoclonal antibodies and corresponding targets involved in neoplastic signaling in ATL
cells. (B) Compounds and corresponding targets potentially useful for innovative targeted therapies in ATL.
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state-of-the-art of treatment strategies until today adopted in
clinical trials for ATL patients and on related results (Kato and
Akashi, 2015; Hermine et al., 2018), and this mini-review will not
address these aspects.

What makes the design of therapeutic approaches for ATL
problematic is the double routes of HTLV-1 transmission in vivo,
i.e., the mitotic and the RT-dependent ones, that might require a
combined approach targeting both chronically infected host cells
and direct viral replication. Actually, in the past recent years a lot
of data have been accumulated on biological and molecular bases
of HTLV-1 transforming as well as infecting activity. These data
offer new rational for targeted therapies of ATL. Thus, taking into
account the double-face of ATL as an hematologic malignancy
as well as a viral infectious disease, this mini-review seeks to
specifically focus on providing an up-to-date overview of recent
efforts in: (i) understanding mechanisms involved in already used
therapeutic regimens showing promising results, (ii) identifying
and selecting novel drug targets for ATL.

ONCOGENIC POTENTIAL OF HTLV-1

Adult T cell leukemia/lymphoma is a severe, aggressive
leukemia, unequivocally associated to HTLV-1 infection, which
develop in 2–4% of the infected individuals after a long time
of latency. Four clinical forms/subtypes of ATL have been
recognized: acute, lymphomatous, chronic, and smoldering.
(Shimoyama, 1991). The smoldering is the mildest form
while the acute type represents the most aggressive form, but
the life expectancy for each subtype is very poor reaching a
maximum of 24 months. Although the molecular mechanism
of virus transformation is highly complex and not entirely
clarified, several studies highlighted that the viral regulatory
proteins Tax and HTLV-1 bZIP factor (HBZ) play key roles
in driving oncogenesis in HTLV-1 infected cells (Figure 1).
The Tax protein has been demonstrated to trigger a number of
immortalization/transformation related events in the early phase
after infection, such as activation of the interaction with cAMP-
responsive element-binding protein/activating transcription
factor (CREB/ATF), the activation of NF-κB transcription factor,
inhibition of p53, dysregulation of the cell cycle by interfering
with the cellular checkpoint, impairment of cellular DNA repair
mechanisms resulting in genetic instability, induction of DNA
damage through production of reactive oxygen species, induction
of both pro-apoptotic and anti-apoptotic activities (Chlichlia
and Khazaie, 2010). In particular, Tax has been recently shown to
intervene at an early phase of cell transformation by upregulating
a family of early growth factor1 (EGR1), which upregulate the
NF-κB system, establishing a positive feedback loop (Huang et al.,
2017). Thus, Tax is likely required to initiate leukemogenesis
while its expression is not routinely detected later in fresh cells
from at least 50% of patients with established ATL. Recent data,
however, demonstrated that survival of ATL cells depend on
transient tax expression (Dassouki et al., 2015; Mahgoub et al.,
2018) Conversely, HBZ is persistently expressed, even if at low
level, in vivo in ATL cells, and interacts with elongation factors,
Rb/E2F-1 complex, for cell cycle progression (Kawatsuki et al.,

2016), inhibits apoptosis and upregulates expression of CCR4,
thus promoting proliferation and migration of T cells (Sugata
et al., 2016) and finally inducing global epigenetic changes in
infected cells. In addition epigenetic dysregulation plays a role in
ATL transformation consisting in GpC methylation of cell cycle,
p53, apoptotic genes and histone modification of epigenetic
reprogramming genes (Watanabe, 2017).

TARGETED BIOLOGICAL THERAPY
FOR ATL

Similarly to leukemic cells of different types, ATL cells exhibit
high expression of genes associated to cell proliferation/death,
cytokines, chemokines and/or markers of cell transformation.
Therefore, shared potential pharmacological targets can justify in
ATL the use of biological therapy set up for other malignancies.
As observed in other neoplasia, the balance between pro and
anti apoptotic response is subverted in ATL cells. Preclinical
studies have shown that HTLV-1 infection in vitro gives rise,
in a first phase, to high proliferation and a concomitant high
apoptosis rate in infected cells until, in a successive phase,
the selection of immortalized clones lead to outgrowth of
cells preferentially exhibiting anti-apoptotic gene expression
(Matteucci et al., 2004). Coherently, transformed clones from
ATL patients over-express in culture the anti-apoptotic Bcl-2,
Bcl-xL, and Bcl-w proteins and exhibit ex vivo a 10- to 20-fold
higher sensitivity to navitoclax (ABT-263), an orally bio-available
mimetic of the Bcl-2 homology domain 3 small molecule, as
compared to non-HTLV-1-associated leukemic cells (Tse et al.,
2008). Interestingly, molecular studies showed that the efficacy
of navitoclax in ATL cells in vitro was increased by Tax induced
upregulation of the pro-apoptotic Bax gene. However, the side
effects of navitoclax limit its therapeutic use in vivo. Another
crucial target in ATL can be detected in the complex network
of autocrine (IL-2-IL-2Rα/IL-15-IL-15Rα) and paracrine (IL-9)
loops, able to drive ex vivo spontaneous proliferation of ATL
cells at an early stage (Chen et al., 2010). The three involved
cytokines share in common a γc receptor whose expression
is regulated by a family of kinase (JAK/STAT). Interestingly,
JAK/STAT selective inhibitors suppressed the proliferation of
smoldering/chronic ATL cells ex vivo (Ju et al., 2011). Given
that combining inhibitors of the same signaling pathway can
increase the chance to block cancer cell growth, a combination
of navitoclax and of the JAK/STAT inhibitor ruxolitinib, was
tested on ATL cells ex vivo and in animals. The combination
provided additive/synergistic activity in inhibiting proliferation
of ATL cells, delayed tumor growth and prolonged survival in
tumor –bearing mice. This was associated to increasing inhibition
of Bcl-xL which favored the upregulation of the pro apoptotic
gene expression (Zhang et al., 2015). In vivo, the immune
response has a remarkable impact on the turnover of HTLV-1
infected clones. Actually, cytotoxic T lymphocytes recognizing
the immunodominant viral protein Tax and HBZ are both critical
to determine the proviral load (Bangham and Matsuoka, 2017).
Ruxolitinib is currently under evaluation in phase 2 clinical trials
in ATL patients.
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ANTIRETROVIRAL THERAPY FOR ATL

Resistance to conventional chemotherapy prompted a recon-
sideration of therapy in ATL. Taking into account the retroviral
etiology of the disease and that antiretroviral drugs proved
their effectiveness in counteracting HIV infection, the use of
AZT was tested in ATL. The rationale for this therapeutic
intervention was to keep a low level of virus spreading and,
possibly, also to limit the onset of inflammatory processes. In
fact, successful results were initially reported in two preliminary
phase II studies, using the combination of AZT and alpha
interferon (IFN) showing an unexpected high response rate,
particularly in previously untreated acute ATL patients (Gill
et al., 1995; Hermine et al., 1995, 1998). A prospective phase
II study on 13 patients who received AZT/IFN treatment as
initial therapy, showed nine complete response (CR) and four
partial remission with mild toxicity. The CR patients survived
more than three years, after which most of the patients relapse
underlying the need for additional therapy with AZT/IFN
(Hermine et al., 2002). The impact of first-line AZT/IFN
therapy on long-term survival was reported in a worldwide
meta-analysis showing a significant improvement of survival
of the leukemic subtypes with an unprecedented 100% 5-year
overall-survival in chronic and smoldering ATL, at a median
follow-up time of 5 years (Bazarbachi et al., 2010). Although
AZT/IFN therapy provided reasonable management of ATL,
most patients relapse. To counteract this aspect, based on
previous experience in acute promyelocytic leukemia, arsenic
trioxide (AS) was tested in ATL. The arsenic/IFN combination
induced proteasomal degradation of Tax through stepwise poly-
sumoylation and SUMO-dependent ubiquitination (El-Sabban
et al., 2000; Dassouki et al., 2015). This combination cured
murine ATL derived from tax-transgenic through selective
targeting of ATL leukemia initiating cells (El Hajj et al., 2010).
The triple combination of arsenic, IFN and AZT resulted in a
high rate of response in chronic ATL patients (Kchour et al.,
2009). However, the mechanisms involved in the therapeutic
effectiveness of AZT/IFN are not clear, although in vitro studies
demonstrated that this combination differently affects HTLV-
1 mRNA and viral protein expression and activates the p53
pathway and apoptosis in HTLV-1 infected cells (Kinpara
et al., 2013). Nevertheless, no clear evidence was provided
concerning the inhibition of viremia by AZT/IFN in ATL
patients. However, viremia in ATL patients is low and viral
load, reverse transcriptase (RT) activity and/or other virus
related assays, carried out in lymphocytes from patients, could
be more reliable parameters for assessing HTLV-1 replicative
potential in ATL patients. Interestingly, we have recently
reported that long-term in vivo therapy with AZT and IFN
actually caused complete inhibition of RT activity, reduction
of p19 release and viral mRNA, and a dramatic decrease of
the oligoclonal index, in short-term cultures of PBMCs from
ATL patients who responded to therapy, but not in those
who did not respond (Macchi et al., 2017). Thus, the above
reported data sustain that the therapeutic efficacy of AZT/IFN
combination in ATL is actually mediated, at least in part, by
the inhibition of RT-dependent viral replication. Consequently,

we can hypothesize that the AZT/IFN combination in ATL
patients targets viral replication presumably outside leukemic
cells. This could occur in cells such as dendritic cells or in newly
infected T lymphocytes, immediately after their first contact with
the virus, or other cell types in which a dynamic, continuous
viral replication occurs. In this case, AZT/IFN treatment
can impede HTLV-1 viral replication that could provide a
microenvironment that is mandatory for survival and/or renewal
of ATL cells (Figure 1). This could occur through direct cell-to-
cell communication or paracrine stimulation through secreted
Tax or various cytokines/chemokines as reported for chronic
lymphocytic leukemia (Bazarbachi et al., 2011). Moreover,
these findings could explain the impossibility to set-up long-
term culture of ATL cells in vitro and why the AZT/IFN
combination exerts a beneficial effect in vivo but not ex vivo
on ATL cells. A recent trial using EPOCH chemotherapy
in combination with bortezomib, to block NF-κB activation,
and raltegravir, as antiviral drug, in acute ATL and in ATL
lymphoma showed that this regiment was well tolerated, leading
to 67% response rate. Changes in RNA viral load and HBZ
viral expression ex vivo were found as reliable parameters
of response as well as inhibition of viral replication and
repression of NF-κB activation through proteasome inhibition
(Ratner et al., 2016). Thus, accumulating evidence sustains
that controlling virus spread is a crucial aspect in ATL
therapy.

Regarding in vitro studies, AZT and tenofovir inhibit virus
transmission to PBMC in short-term cultures and interfere
with immortalization in the long run at a drug concentration
which was poorly toxic toward uninfected cells (Macchi et al.,
1997; Balestrieri et al., 2005). Conversely, lamivudine was not
effective in inhibiting HTLV-1 infection in vitro, presumably
owed to the presence of an isoleucine at position 118 in HTLV-
1 RT, conferring natural resistance to 3TC (Balestrieri et al.,
2002; Toro et al., 2003). Different not licensed compounds,
such as the PCOAN phosphonates, were able to inhibit cell-
to-cell HTLV-1 transmission directly inhibiting the HTLV-1
RT activity, as demonstrated by a cell-free assay (Balestrieri
et al., 2008b). Inhibition of HTLV-1 infection could also
rely on other still unclear mechanisms, as shown in case of
compounds of natural origin such as carbohydrate-binding
agents (Balestrieri et al., 2008a) and an extract from the
seeds of bergamot, which remarkably blocked virus horizontal
transmission in vitro (Balestrieri et al., 2011). In addition,
raltegravir and diketo acid, MK-2048, were active inhibitors of
viral transmission as well as viral immortalization of HTLV-1 in
lymphoid and non lymphoid cells, in vitro (Seegulam and Ratner,
2011).

NOVEL MOLECULAR TARGETS IN ATL

Further targets are being investigated to find new therapeutic
approaches in ATL (Figure 2). Tax is known to remarkably affect
the host cell proliferation by directly intervening in the processes
regulating DNA transcription, replication and repair. On the
basis of this regulatory role of Tax in HTLV-1 transformation,
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a few druggable targets have been demonstrated in preclinical
studies. CDK9 is a component of a transcription factor, P-TEFb,
essential for transcription of most MHC class II genes and for the
transcriptional elongation by phosphorylating the C-terminal
domain of RNA polymerase II. The importance of CDK9 for
a targeted therapy was demonstrated in advanced stage of
chronic lymphocytic leukemia and multiple myeloma (Tong
et al., 2010). An additional reason to investigate CDK9 as a
possible molecular target in ATL is that P-TEFb is present within
HTLV-1 transformed cells in Tax-regulated complexes (Cho et al.,
2010). In fact, the P-TEFb/CDK-9 inhibitor, BAY 1143572, was
able to block the growth of ATL cells ex vivo, and to decrease
MCL-1 and c-Myc expression levels. In addition, BAY 1143572
decreased ATL cell migration in the liver and bone marrow in
a model of ATL in vivo xenograft, in immunocompromised
NOG mice (Narita et al., 2017). Tax was reported to affect
the replicative fork during DNA replication by blocking the
progression of the process (Chaib-Mezrag et al., 2014). Helicases
are deeply involved in DNA double-strand break repair through
the homologous repair as well as the non-homologous end-
joining pathway. In particular, the WRN helicases are mutated
in cancer and are generally highly expressed in human leukemia
(Sallmyr et al., 2008). This finding prompted to assay WRN
helicases inhibitors in ATL cells. The results showed that the
WRN inhibitors NSC 19630 and NSC 617145 efficiently killed
HTLV-1-transformed and patient-derived cells, by inducing cell
cycle arrest, downregulation of BCl-2, caspase 3 activation, and
apoptosis in a dose-dependent manner, without affecting HTLV-
1 expression (Moles et al., 2016). Tax was also recognized to
induce genomic double strand breaks during DNA replication
and alteration in the subsequent use of non-homologous end
joining pathway for repair during the S phase (Baydoun et al.,
2012). Thus, the genomic instability afforded by Tax represents
a possible target within the repair enzymes family. PJ-34, a small
molecule inhibitor of poly (ADP-ribose) polymerase (PARP),
arrested cell cycle at S/G2M phase, inducing reactivation of p53
and caspase 3 activation in HTLV-1 infected cells. However,
MT-2 chronically infected cells were resistant to PJ-34, showing
reduced caspase 3 cleavage and increased RelA/p65 expression.
These results suggest that the NF-κB system might be involved
in resistance to PJ-34 (Bai et al., 2015). The inhibitors of
JAK/STAT pathway regulating expression of IL-2R common γ

chain reported as therapeutic option in ATL, were found to be
highly immunosuppressive. Thus more recent data proposed a
different JAK/STAT-pathway associated target, relying on the
Pim 1 downstream target of JAK, whose expression is regulated
by miRNA124a. The Pim 1 gene was found to be constitutively
expressed in 71% of freshly isolated ATL cells and in chronically

HTLV-1 infected cell lines, while PBMC from healthy donors
were negative. Treatment with the Pim 1 inhibitors, SMI-4a
or AZD1208, decreased ATL cells proliferation and decreased
Pim 1 activity as demonstrated by downregulation of p4E-BP1,
p-p70S6K, and p-Bad. The AZD 1208 was found more efficacious
than SMI-4a. Moreover, AZD 1208 significantly inhibited ATL
tumors in the pre-clinical NOG mice model (Bellon et al., 2016),
showing that the JAK/STAT-Pim1 pathway could be a novel
therapeutic target for the treatment of ATL. In addition the ATL
cells exhibited a downregulation of miRNA and Dicer expression.
The suitability of these target was demonstrated by the fact that
the in vitro effect of deacetylase inhibitor, valproate, on ATL cells
was owed to the rescue of the pre-miRNA maturation pathway
(Gazon et al., 2016).

CONCLUSION

Theoretically, ATL cells exhibit a number of potential, different
viral and cellular pharmacological targets. A number of studies
suggests to take under consideration the suitability of numerous,
known drugs to counteract ATL. However, it is hard to explain
why, despite broad chances of potentially druggable targets,
success is still limited in ATL clinical studies. Possible reasons
could reside in the long latency of HTLV-1 infection, allowing
the virus to escape host response, as well as the lack of suitable
markers of disease progression. Hopefully, more deep knowledge
of how the virus affects the regulation of host immune response
and the metabolic requirements of transformed cells could
represent new issues for future challenges in ATL therapy.
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