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Cystic fibrosis (CF) is an autosomal recessive disease associated with recurrent lung
infections that can lead to morbidity and mortality. The impact of antibiotics for
treatment of acute pulmonary exacerbations on the CF airway microbiome remains
unclear with prior studies giving conflicting results and being limited by their use of
16S ribosomal RNA sequencing. Our primary objective was to validate the use of
true single molecular sequencing (tSMS) and PathoScope in the analysis of the CF
airway microbiome. Three control samples were created with differing amounts of
Burkholderia cepacia, Pseudomonas aeruginosa, and Prevotella melaninogenica, three
common bacteria found in cystic fibrosis lungs. Paired sputa were also obtained from
three study participants with CF before and >6 days after initiation of antibiotics.
Antibiotic resistant B. cepacia and P. aeruginosa were identified in concurrently obtained
respiratory cultures. Direct sequencing was performed using tSMS, and filtered reads
were aligned to reference genomes from NCBI using PathoScope and Kraken and
unique clade-specific marker genes using MetaPhlAn. A total of 180–518 K of 6–12
million filtered reads were aligned for each sample. Detection of known pathogens
in control samples was most successful using PathoScope. In the CF sputa, alpha
diversity measures varied based on the alignment method used, but similar trends were
found between pre- and post-antibiotic samples. PathoScope outperformed Kraken
and MetaPhlAn in our validation study of artificial bacterial community controls and
also has advantages over Kraken and MetaPhlAn of being able to determine bacterial
strains and the presence of fungal organisms. PathoScope can be confidently used
when evaluating metagenomic data to determine CF airway microbiome diversity.
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INTRODUCTION

Cystic fibrosis (CF) is an autosomal recessive disease that affects
more than 30,000 people in the United States (MacKenzie et al.,
2014). Patients suffer from recurrent and chronic pulmonary
infections that are strongly associated with morbidity and
mortality (Ramsey, 1996). Recent use of culture-independent
next generation sequencing (NGS) has identified novel and
diverse communities of microbes in the CF airway, leading
to an alteration in the traditional understanding of the role
of infection in progressive lung disease (Huang and LiPuma,
2016). Decreasing microbial diversity is clearly associated with
the presence of Pseudomonas aeruginosa and increasing age
(Cox et al., 2010; Klepac-Ceraj et al., 2010; Boutin et al., 2015;
Coburn et al., 2015). Cross-sectional studies have shown a
difference in the structure and composition of airway microbiota
between stable patients and those experiencing severe pulmonary
decline, with decreased diversity in those with more advanced
disease (Coburn et al., 2015; Flight et al., 2015; Bacci et al.,
2016).

Antibiotic use has dramatically improved the longevity of
children with CF and are likely responsible for perturbations
of the airway microbiome (VanDevanter and LiPuma, 2012).
However, the impact of antibiotics for treatment of acute
pulmonary exacerbations on the CF airway microbiome remains
unclear. Some studies have found that antibiotics do not lead to
significant changes within the airway microbiome. Specifically,
Fodor et al. (2012) found small decreases in bacterial richness
but minimal changes in the overall community structure. Price
et al. (2013) also followed CF patients through acute pulmonary
exacerbations and found that the total and relative abundance
of bacterial genera were stable during the exacerbation and
after antibiotic treatment. Cuthbertson et al. (2016) also found
that certain core microbiota remained resilient, regardless of
exacerbation or antibiotic treatment state, but that rare species
had much greater variability over time. However, other studies
have reported that microbial diversity and the proportion of
pathogenic bacteria decreased following antibiotic treatment.
Zemanick et al. (2013) and Smith et al. (2014) found a
decrease in microbial diversity early in the treatment course
(around 72 h), which was also associated with a high relative
abundance of P. aeruginosa. Later in the antibiotic treatment
course (>7 days), the diversity appeared to return (Smith et al.,
2014).

Longitudinal studies in patients with CF have shown long-
term antibiotic use has also been associated with decreasing
microbial diversity over time (Klepac-Ceraj et al., 2010; Zhao
et al., 2012). However, increased antibiotic exposure is also
confounded by age and declining lung function, making the
establishment of a direct link between antibiotic use and
microbial diversity difficult (Zhao et al., 2012).

Most of these prior studies investigating the impact of
antibiotics on changes in the CF airway microbiome used 16S
ribosomal RNA (rRNA) sequencing. This may be a limitation,
as this approach requires PCR amplification that may suffer
from primer bias in terms of accurate assessment of relative
frequencies of bacterial taxa. There may also be a lack of

differentiation amongst species with highly similar 16S sequences
(Hilton et al., 2016). Metagenomic studies of the CF airway
can give an unbiased look at the microbiome, and can also
provide details on pathogen strain types (Feigelman et al., 2017).
Furthermore, metagenomics studies could be used investigate the
presence of antibiotic resistance genes or other fitness-conferring
mutations (Feigelman et al., 2017). Our primary objective with
this study was to validate the use of a metagenomic sequencing
approach using true single molecular sequencing (tSMS, SeqLL
Inc.) technology and the PathoScope computational framework
(Francis et al., 2013; Hong et al., 2014) in CF airway samples.

Materials and Methods
Creation of Control Samples for Method
Validation
Approximately 5 µg of dehydrated genomic bacterial DNA
for P. aeruginosa (ATCC R© 47085D-5, strain PAO1-LAC),
B. cepacia (ATCC R© 25416D-5), and Prevotella melaninogenica
(ATCC R© 25845D-5) were obtained from ATCC (Manassas,
VA, United States). To re-suspend the genomic DNA, 60 µL
of molecular grade water were added to each sample. The
samples were centrifuged (2000 g × 10 s) and incubated while
continuously rocking overnight at 4◦C. They were then incubated
at 65◦C for 1 h and then measured using a NanoDropTM

spectrophotometer. Measured DNA concentrations were
194.2 ng/µL for P. aeruginosa, 187.8 ng/µL for B. cepacia, and
147.8 ng/µL for P. melaninogenica. Different proportions of
these bacterial DNA were mixed together to create artificial
community controls. Each 100 ng of Control A contained
20.7 ng of P. aeruginosa, 40 ng of B. cepacia, and 39.3 ng of
P. melaninogenica. Control B contained 36.7 ng of P. aeruginosa,
35.4 ng of B. cepacia, and 35.4 ng of P. melaninogenica per
100 ng. Control C contained 47.5 ng of P. aeruginosa, 34.4 ng
of B. cepacia, and 18.1 ng of P. melaninogenica per 100 ng.
These mixtures were then frozen at −80◦C until sequencing was
performed.

Patients and Sample Collection
The creation of a bio- and data repository was approved
08DEC2015 by the Institutional Review Board (Pro6781)
at Children’s National Health System. Study subjects were
consented for participation in the study prior to respiratory
sample collection and extraction of data from electronic medical
records. Paired sputa were obtained from three participants
with documented antibiotic resistance for this study. Patient
demographics and sample details are reported in Table 1.

Respiratory Sample Collection and
Processing
Per the biorepository protocol, spontaneously expectorated
sputum samples obtained for clinical care were collected from
the microbiology laboratory within 24 h of the patient’s clinical
visit. Sputum samples were stored in a 4◦C refrigerator prior
to processing. For processing, sputum samples were mixed
with Sputasol (dithiothreitol, Fisher Healthcare, Houston TX,
United States), vortexed, and placed in a 37◦C heated bead bath to
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homogenize the sample. The homogenized sputum was pelleted
through centrifugation (12,000 g × 10 min). Supernatants were
removed and bacterial pellets were frozen at −80◦C until they
underwent DNA extraction.

Respiratory Culture Results
Clinical culture results within the electronic medical record were
used to identify the pathogen and MICs for various antibiotics.
The clinical microbiology laboratory uses MicroScan (Beckman
Coulter, Brea, CA, United States) to determine identification and
susceptibility of bacterial pathogens grown in culture and has
an internally validated protocol it uses for mucoid Pseudomonas
aeruginosa (Zimmer et al., 2004).

DNA Extraction
Pelleted bacterial cells were rapidly thawed and mixed with
1 mL of sterile phosphate buffered saline (PBS). Bacterial DNA
was extracted using a QIAamp DNA Microbiome kit (Qiagen,
Valencia, CA, United States), following the protocol as outlined
by the company. This kit was chosen as it has been reported to
increase the ratio of bacterial to human DNA extracted (Qiagen,
2016).

Metagenomic NGS
Metagenomic NGS was performed using tSMS (SeqLL Inc.,
Woburn, MA, United States). A starting amount of at least 300 ng
of DNA (range 300–3000 ng) was used. Samples were prepared
by first shearing to 100–200 nucleotides to create the appropriate
sized fragments. This was followed by poly-A tailing and 3′ end
blocking for capture on the flow cell surface. Two sequencing
runs were performed, with the first loading 11.5 ng of DNA per
sample and the second loading 16 ng of DNA per sample. The
samples were then sequenced using 18 channels of a flow cell (two
channels per sample). One channel was used for the run reference
oligo. The instrument was operated at 550 field of view depth.

Bioinformatic and Statistical Analysis
Raw reads were filtered by SeqLL to those with a quality
reference score at or above 4.4/5.0 and with a length cutoff of
24 bases. The quality score considers the length of the aligned
read, number of matches, and number of errors when it is
normalized to the length of each read. The formula used is
score = (number of matches∗5−number of mismatches∗4)/read
length (Kapranov et al., 2010). Filtered reads per channel
ranged from between 7.3 million to 13.3 million. The internal
control oligo generated an observed mean length that indicated
operational performance that was consistent with optimal system
operational specifications.

FASTQ files containing filtered reads were aligned to reference
genomes using PathoScope (Hong et al., 2014), Kraken (Davis
et al., 2013), and MetaPhlAn (Segata et al., 2012). PathoScope
and Kraken attempt to remove human sequences before aligning
to microbial reference genomes. The reference database for
PathoScope was created using sequences identified in the
National Center for Biotechnology Information (NCBI) Archaea,
Bacteria, Virus, and Fungal reference and representative genome
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database, which contains at least one genome for each species
in the Entrez genome collection that has assembly data. To this
we added all complete genome assemblies for P. aeruginosa,
B. cepacia, and Burkholderia cenocepacia, thus enabling strain-
specific identification of these species. The Kraken reference
database also included NCBI bacterial and viral reference
genomes. PathoScope and Kraken were run using the Colonial
One High-Performance Computing Cluster at GWU. Reference
contigs with unusually high read counts were screened against
the nt database using BLAST; contigs determined to be
contaminants (e.g., human sequences) were removed before
analysis. MetaPhlAn was run using bioBakery v1.7, a virtual
environment operated by the Huttenhower Lab (bioBakery,
2017).

Alpha diversity was measured as the number of
species identified, the Shannon-Weiner Index, and the
Simpson’s Reciprocal Index. The Shannon-Weiner Index
was calculated in Excel (Microsoft, Redmond, WA,
United States) using the equation −

∑[
ln
(
ni/

∑
N
)]

. The
Simpson’s Reciprocal Index was calculated using the equation
1/
∑[

n∗i (ni − 1) /
(∑

N∗
(∑

N− 1
))]

. Continuous variables
were compared using t-test, while percentages of relative
taxonomic abundance were compared using linear regression
or McNemar’s test for correlated proportions. Taxonomy
and metadata files were imported into phyloseq (McMurdie
and Holmes, 2013) within R. Geometric means were used to
estimate size factor and dispersion estimates, and differentially
abundant species were identified using log2 fold change (adjusted
p-value < 0.05) as implemented in DESeq2 (Love et al., 2014).
PERMANOVA was also calculated to measure the differences
in overall bacterial distribution using the adonis function of
vegan in R (Oksanen et al., 2017). Lastly, principle coordinates
analysis (PCoA) plots were generated using Bray–Curtis distance
matrices with log transformed counts to visualize differences
between computational frameworks.

RESULTS

Control Sample Comparison
We analyzed the tSMS generated metagenomics data with
PathoScope resulting in the identification of a range of 33–73
bacterial/viral strains per control sample. The Kraken analysis of
the same data resulted in the identification of a range of 442–518
bacterial/viral strains per sample, and the MetaPhlAn analysis
resulted in the identification of a range of 55–76 bacterial/viral
strains per sample.

When looking individually at the proportions between each
comparison, it can be appreciated that PathoScope was more
representative of the true amounts of bacteria used to create
the artificial communities than Kraken or MetaPhlAn (Table 2).
These differences in proportions were measured using linear
regression. PathoScope had higher r2-values than Kraken in all
comparisons, and had higher r2-values than MetaPhlAn two out
of three times. In fact, PathoScope was significantly similar to
the added proportions in Control A (p = 0.041), and approached
significance in Control B (p = 0.071).

Cystic Fibrosis Sample Comparison
Metagenomic Sequencing
Six sputum samples from three study subjects who experienced
an acute pulmonary exacerbation and whose respiratory cultures
grew antibiotic-resistant bacteria were sequenced (see Table 1).
Across all six samples, a total of 36 million sequencing reads
passed quality control filters (6–12 M reads per sample).
The filtered reads were assigned taxonomic labels using
three metagenomic taxonomic classifiers: PathoScope, Kraken,
and MetaPhlAn. PathoScope and Kraken align against whole
reference genomes, while MetaPhlAn uses a reference set of
clade-specific marker genes. With PathoScope, 3.6% (range 2.7–
4.4%) of the total reads were initially aligned to genomes

TABLE 2 | Expected and obtained proportions of artificial communities.

Burkholderia
cepacia complex

Pseudomonas
aeruginosa

Prevotella
melaninogenica

Other r2 p-value∗

Control A

% added 40.0 20.7 39.3 0 NA NA

% detected with PathoScope 45.3 22.9 31.8 0.04 0.919 0.041

% detected with Kraken 11.8 27.3 46.3 14.6 0.160 0.600

% detected with MetaPhlAn 18.7 59.7 19.3 2.1 0.032 0.822

Control B

% added 35.4 36.7 27.9 0 NA NA

% detected with PathoScope 30.7 32.4 37.0 0.001 0.863 0.071

% detected with Kraken 7.1 34.2 48.2 10.4 0.123 0.649

% detected with MetaPhlAn 10.6 62.9 24.9 1.5 0.402 0.366

Control C

% added 34.4 47.5 18.1 0 NA NA

% detected with PathoScope 32.9 30.4 36.7 0 0.506 0.288

% detected with Kraken 7.7 32.3 49.1 10.8 0.025 0.841

% detected with MetaPhlAn 11.1 63.3 23.1 2.3 0.623 0.211

∗Linear regression, two-sided p-value. Bold indicates p < 0.05.
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within the bacterial and viral reference database. Of these
reads, 66% (range 48–87%) of the reads were removed as they
aligned to human genome sequences during the filtering process.
Ultimately, 1.3% (range 0.5–1.8%) of the total sequences were
aligned to bacterial and viral reference genomes. With Kraken,
13% (range 10–16%) of the reads were classified. After filters were
applied for human reads, 2.4% (range 0.4–4.1%) of the classified
reads were identified as microbial. Of the classified reads, 2.3%
(range 0.3–4%) were identified as bacterial and 0.002% (0.001–
0.003%) were identified as viral. MetaPhlAn output was reported
as relative abundance of microbial species after filtering, so the
above determinations of aligned/classified and human filtering
was not possible. However, of the 100% microbial reads reported
per sample, 54% (range 16–77%) were identified as bacterial and
40% (range 20–59%) were identified as viral. Kraken identified
the most distinct bacterial and viral (including bacteriophage)
species (n = 516), while MetaPhlAn identified the next most
(n = 202) followed by PathoScope (n = 91). PathoScope was also
able to provide strain level information, identifying 283 strains
total; two strains of B. cepacia, 9 strains of B. cenocepacia, and
109 strains of P. aeruginosa were detected within the six sputum
samples.

With PathoScope, fifty-one bacteria contributed to more
than 0.01% of aligned reads per sample, and only 22 bacteria
contributed to more than 0.01% of all total aligned reads. The
bacterial taxonomic profile of each of the samples is showed over
83% of the total reads were aligned to P. aeruginosa and 4.7%
aligned to B. cenocepacia (Figure 1A). The remaining reads that
attributed to more than one percent of total aligned bacteria were
Nocardia brevicatena (3.1%), Porphyromonas somerae (2.4%),
Sanguibacteroides justesenii (2.2%), and Prevotella nanceiensis
(1.7%). No viruses were detected with over 0.01% contribution
to all total aligned reads.

With Kraken, 130 species contributed to at least 0.01% of the
aligned reads per sample, and 54 species contributed to 0.01%
of all aligned reads. The bacterial and viral taxonomic profile
of each of the samples showed over 93% of the total reads
aligned to P. aeruginosa, while 3.5% of total aligned reads were
B. cenocepacia (Figure 1B). The remaining identified bacteria
that contributed to more than 0.1% of total aligned reads were
Prevotella sp. oral taxon 299 (0.7%), Veillonella parvula (0.3%),
Rothia mucilaginosa (0.2%), Streptococcus parasanguinis (0.2%),
and Prevotella melaninogenica (0.1%). Other bacteria identified
within the B. cepacia complex include B. ambifaria (0.03%), B.
lata (0.03%), B. cepacia (0.02%), and B. multivorans (0.01%).
Pseudomonas phage B3 was detected with 0.02% contribution to
all total aligned reads.

With MetaPhlAn, 201 species contributed to at least 0.01%
of the aligned reads per sample, and 175 species contributed
to 0.01% of all aligned reads. One hundred sixty three species
contributed to at least 0.1% of aligned reads per sample, while 82
contributed to 0.1% of all aligned reads. The bacterial and viral
taxonomic profile of each of the samples showed over 38% of the
total reads aligned to P. aeruginosa, while 2.6% of reads aligned
to B. cenocepacia (Figure 1C). Porphyromonas and Prevotella
species, commonly identified in the CF lung, were identified
at more than 1% of total aligned reads. The majority of other

FIGURE 1 | Bacterial and viral taxonomic profile of pre- and post-antibiotic
sputum samples in three subjects with cystic fibrosis who grew antibiotic
resistant bacteria. Only bacterial and viral species with a minimum total
observation count of 0.01% of total reads are shown for PathoScope (A) and
Kraken (B). Only bacterial and viral species with a minimum total observation
count of 0.1% of total reads are shown for MetaPhlAn (C). Burkholderia
cepacia was the pathogen identified in culture for subject S1, but the majority
of reads were attributed to Burkholderia cenocepacia. Pseudomonas
aeruginosa was identified as the predominant bacteria for subjects S2 and S3,
and was also identified in corresponding respiratory cultures.

high contributors to the community identified were viruses and
phages.

When comparing diversity indices at the species level there
were no significant differences identified by the Shannon-Weiner
index or the Simpson’s reciprocal index across all computational
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platforms (Table 3). Significant differences were seen with a
decreased species count from pre- to post-antibiotics using
Kraken (p = 0.023), and a decrease in the proportion of cultured
bacteria using PathoScope (p = 0.016). We also measured
bacterial distributions pre- versus post-antibiotics using Bray–
Curtis distance matrices by PERMANOVA. There was no
significant difference detected with either platform (Kraken
p = 0.05, PathoScope p = 0.6, and MetaPhlAn p > 0.999).

Next, to better evaluate potential differences by computational
framework, we performed a Bray–Curtis PCoA plot using log
transformed counts (Figure 2). PERMANOVA again revealed
no difference by antibiotic timing (p = 0.993), but did detect a
significant difference by computational framework (p = 0.001).
The subsequent permutation test for homogeneity of multivariate
dispersions was not significant (p = 0.989).

When evaluating the PathoScope data at the strain level, there
were again no significant differences noted in alpha diversity
pre- and post-antibiotic treatment. The pre- and post-antibiotic
Shannon-Weiner diversity was 1.798 (0.433) vs. 1.464 (0.083),
respectively (p = 0.310). The pre- and post-antibiotic Simpson’s
reciprocal index was 4.256 (1.531) vs. 3.052 (0.274), respectively
(p = 0.318). There was also no significant difference identified by
PERMANOVA (p = 0.9). However, using phyloseq and DESeq2
to evaluate strain specific data generated in PathoScope, we
found several significant differences pre- and post-antibiotics (see
Figure 3). Prevotella histicola, one B. cenocepacia strain, and four
P. aeruginosa strains were more abundant in the post-antibiotic
samples.

Kraken and MetaPhlAn focus solely on bacterial and viral
species identification and do not identify fungal sequences from
metagenomic data. PathoScope allows for metagenomics data
to be aligned to fungal reference genomes. Ninety-two fungal
species were identified that contributed to at least >0.1% of
total fungal reads amongst all six samples. Approximately 4 and
1.4% of total fungal reads were assigned Aspergillus and Candida
species, respectively, which are both known fungal pathogens in
CF (Delhaes et al., 2012; Willger et al., 2014).

DISCUSSION

16S rRNA sequencing has traditionally been used to describe
the airway microbiome in cystic fibrosis patients (Harris et al.,
2007; Tunney et al., 2008; Fodor et al., 2012; Zhao et al.,
2012; Zemanick et al., 2013; Carmody et al., 2013; Lim et al.,
2014). There are many reasons for this, but part of it has to
do with human DNA contamination within respiratory samples
that makes sample processing complex (Lim et al., 2014). By
limiting to 16S rRNA sequencing, however, the resolution for
microbiome characterization is limited. If we do not identify
bacteria to their species level, we may not discover the differing
roles of organisms such as Prevotella based on their species
or strain (Zemanick et al., 2013; Sherrard et al., 2014, 2016).
Furthermore, metagenomic sequencing can also identify viruses,
including bacteriophages, which can harbor antibiotic resistance
genes or increase bacterial growth and virulence (Willner and
Furlan, 2010; Willner et al., 2012). Thus, we sought to establish TA

B
LE

3
|A

lp
ha

di
ve

rs
ity

in
di

ce
s

an
d

pe
rc

en
ta

ge
of

re
ad

s
at

tr
ib

ut
ed

to
th

e
cu

ltu
re

d
pa

th
og

en
at

th
e

sp
ec

ie
s

le
ve

l.

P
re

-a
nt

ib
io

ti
c

P
o

st
-a

nt
ib

io
ti

c
P

-v
al

ue
†

P
S

K
M

PA
P

S
K

M
PA

P
S

K
M

PA

N
o.

of
sp

ec
ie

s
(m

ea
n
±

S
D

)
27
±

32
19

6
±

44
72
±

14
12
±

4
13

9
±

44
54
±

9
0.

53
4

0.
02

3
0.

08
9

S
ha

nn
on

-W
ei

ne
r

in
de

x
(m

ea
n
±

S
D

)
0.

68
0
±

0.
46

5
0.

34
1
±

0.
17

2
2.

45
±

0.
52

5
0.

74
7
±

0.
43

0
0.

42
5
±

0.
42

9
2.

28
±

0.
57

0
0.

58
8

0.
73

8
0.

57
7

S
im

ps
on

’s
re

ci
pr

oc
al

in
de

x
(m

ea
n
±

S
D

)
1.

52
5
±

0.
43

8
1.

10
5
±

0.
05

9
8.

04
5
±

6.
31

4
1.

88
0
±

0.
94

4
1.

20
0
±

0.
24

1
6.

43
3
±

5.
42

1
0.

45
0

0.
58

6
0.

27
1

P
er

ce
nt

ag
e

cu
ltu

re
d

pa
th

og
en
∗

(m
ea

n
%

)
82

.6
%

95
.9

%
39

.9
%

75
.5

%
93

.0
%

42
.6

%
0.

01
6

0.
25

0
0.

25
0

∗
Th

e
cu

ltu
re

d
pa

th
og

en
fo

rs
ub

je
ct

S
1

w
as

co
ns

id
er

ed
al

lB
ur

kh
ol

de
ria

sp
ec

ie
s

pr
es

en
tw

ith
in

B
ur

kh
ol

de
ria

ce
pa

ci
a

co
m

pl
ex

(B
.a

m
bi

fa
ria

,B
.c

ep
ac

ia
,B

.c
en

oc
ep

ac
ia

,B
.l

at
a,

an
d

B
.m

ul
tiv

or
an

s)
.T

he
cu

ltu
re

d
pa

th
og

en
fo

r
su

bj
ec

ts
S

2
an

d
S

3
w

as
P

se
ud

om
on

as
ae

ru
gi

no
sa

.†
Tw

o-
si

de
d

tt
es

t,
pa

ire
d

sa
m

pl
es

fo
r

co
nt

in
uo

us
va

ria
bl

es
;M

cN
em

ar
’s

te
st

,t
w

o-
si

de
d

fo
r

pr
op

or
tio

ns
.B

ol
d

in
di

ca
te

s
p

<
0.

05
.

Frontiers in Microbiology | www.frontiersin.org 6 May 2018 | Volume 9 | Article 1069

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01069 May 23, 2018 Time: 11:43 # 7

Hahn et al. tSMS Determination of CF Microbiome

FIGURE 2 | Two-dimensional principle coordinates analysis (PCoA) plot of pre- and post-antibiotic samples analyzed across computational frameworks. The PCoA
was created using Bray–Curtis distance matrices with log transformed counts. Differences in sample types are shown by different shapes, while differences in
computational framework are shown by different colors. K, Kraken, MPA, MetaPhlAn, PS, PathoScope.

a technique of performing metagenomic sequencing of the
cystic fibrosis airway microbiome using tSMS and PathoScope.
By eliminating artificial bias, tSMS may has been successfully
used in other areas but has not previously been used to study
the CF airway microbiome (Orlando et al., 2011; Ginolhac
et al., 2012; SEQLL, 2016). PathoScope, which also has not
previously been used to study the CF lung, has successfully
been used to filter out human reads and accurately identify
pathogens within clinical samples (Francis et al., 2013; Hong
et al., 2014; Byrd et al., 2014; Pérez-Losada et al., 2015). We
compared our PathoScope results to results generated using
Kraken (Davis et al., 2013) and MetaPhlAn (Segata et al.,
2012).

The use of different NGS platforms and bioinformatic
analysis techniques can impact both pathogen identification and
diversity measures (Hahn et al., 2016). Our initial study of
three control samples was encouraging that this combination
of techniques would be successful in accurately detecting
B. cepacia and P. aeruginosa. Control C showed much more
variability than Controls A and B. This may be due to
pipetting errors as this control sample was created last, or
due to errors in sequencing as there were a large number

of bacterial strains detected in this sample and almost 0.2%
of taxonomic ID calls were for bacteria not added to the
sample.

Our results demonstrate the ability to detect P. aeruginosa
effectively using our metagenomic approach, which is a very
important pathogen in CF (Harris et al., 2007; Carmody et al.,
2013; Zemanick et al., 2013; Smith et al., 2014). This species
grew in the respiratory cultures of two out of three study
participants and was easily identified in those four samples.
It was also detected to be part of the airway microbiome of
the third subject, and the total number of reads aligned to
P. aeruginosa was more than 47%. We were also able to easily
identify B. cenocepacia and B. cepacia, which are also important
pathogens within the CF airway (Fodor et al., 2012). It should
be noted that Burkholderia cepacia complex includes at least
17 Burkholderia species, with B. cenocepacia being the one of
the most common in CF (Drevinek and Mahenthiralingam,
2010). Other genera that have been previously described to be
components of the CF airway microbiome include and were
identified in our cohort include Porphyromonas spp., Prevotella
spp., Rothia spp., Streptococcus spp., and Veillonella spp. (Harris
et al., 2007; Tunney et al., 2008; Fodor et al., 2012; Zhao et al.,
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FIGURE 3 | Relative abundance of bacterial species and strains pre- and post-antibiotic treatment. The bacterial species and strains plotted on the left side of the
graph were more abundant in the post-antibiotic samples, while the bacterial species and strains plotted on the right side of the graph were more abundant in the
pre-antibiotic samples. All fold-changes are significant at p < 0.05.

2012; Carmody et al., 2013; Zemanick et al., 2013; Lim et al.,
2014). While PathoScope, Kraken, and MetaPhlAn all identified
B. cenocepacia and P. aeruginosa as the dominant bacteria,
lower abundance bacteria and the detection of viruses were not
completely parallel. In addition, no bacteriophages were detected
using PathoScope, but Pseudomonas phage B3 was detected
using Kraken. Propionibacterium and Staphylococcus phages
were also detected using MetaPhlAn. The limits in detection
of bacteriophages in our samples are likely due in part to the
smaller reference libraries for viruses and phages (Feigelman
et al., 2017).

As PathoScope allowed for the detection of bacterial strain,
it allowed us the opportunity to compare bacterial strains pre-
and post-antibiotics. Interestingly, there was a shift in the relative
abundance of a few strains of P. aeruginosa and B. cenocepacia.
This might suggest that these strains possessed the necessary
antibiotic resistance, while the other strains did not. Some prior
studies demonstrated that P. aeruginosa decreased with antibiotic
exposure during an acute pulmonary exacerbation (Zemanick
et al., 2013). However, other studies have shown resilience of

core bacteria within the CF airway microbiome with antibiotic
use (Cuthbertson et al., 2016). Studies have microbial diversity
following antibiotic use have also been mixed, with some showing
decreased diversity (Zemanick et al., 2013; Smith et al., 2014),
while other show no changes in diversity (Fodor et al., 2012; Price
et al., 2013). The level of detail available using metagenomics and
PathoScope could provide new insights into studies of individual
bacterial abundance and microbial diversity of the CF airway in
response to antibiotic use.

Using PathoScope, we were also able to evaluate the presence
of fungal pathogens within the cystic fibrosis airway microbiome.
Candida albicans and Aspergillus fumigatus are commonly
detected in CF sputum cultures and have also been associated
with acute pulmonary exacerbations (Willger et al., 2014).
Sequencing studies of the CF lung mycobiome have also
identified these pathogens. One study found that 74–99% of
fungal reads were due to a mixture of Candida species and
Malassezia (Willger et al., 2014). An earlier study found more
diversity of fungal pathogens within four adult CF patients
(Delhaes et al., 2012). In our study, we similarly identified the
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presence of several Aspergillus and Candida species. However, we
also found more richness, with a total of 92 fungal species.

Our study has a few limitations. First, it is limited by the small
number of subjects. Second, the contamination of human DNA in
our sequencing may have affected our analysis. Our rates of 1–2%
non-human reads are similar to other groups (Bacci et al., 2017).
However, others have published that about a half a million reads
are sufficient to provide a comprehensive metagenomic analysis
of the taxa within the CF airway (Moran Losada et al., 2016).

CONCLUSION

PathoScope outperformed Kraken and MetaPhlAn in our
validation study of artificial bacterial community controls.
PathoScope also has advantages over Kraken and MetaPhlAn
in being able to determine bacterial strains and the presence
of fungal organisms. Thus, PathoScope can be confidently used
when evaluating metagenomic data to determine CF airway
microbiome diversity.
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