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Extensive utilization of polybrominated diphenyl ethers (PBDEs) as flame retardants since
the 1960s in a variety of commercial products has resulted in ubiquitous environmental
distribution of commercial PBDE mixtures. Dangers posed to biological populations
became apparent after the discovery of elevated levels of PBDEs in biota, most notably in
human breast milk and tissues. Environmental persistence of PBDEs results in significant
transboundary displacement, threatening fragile ecosystems globally. Despite efforts to
curtail usage of PBDEs, public concern remains about the effects of legacy PBDEs
contamination and continued discharge of PBDEs in regions lacking restrictions on
usage and manufacture. Among available technologies for remediation of PBDEs such
as ex-situ soil washing, electrokinetic degradation, and biodegradation, this review
focuses on bioremediation by microbes under anaerobic conditions. Bioremediation is
generally preferred as it is less disruptive to contaminated ecosystems, is cost-effective,
and can be implemented at sites that may be inaccessible to more traditional
ex-situ methods. The aims of this review are to (1) summarize current knowledge
of anaerobic microbes that debrominate PBDEs and their associated synergistic
partnerships with non-dehalogenating microbes; (2) explore current understandings
of the metabolic reductive debromination of PBDE congeners; (3) discuss recent
discoveries on dehalogenase genes involved in debromination of PBDEs.

Keywords: flame retardants, organohalides, polybrominated diphenyl ethers (PBDEs), reductive debromination,
debromination pathways, reductive dehalogenase genes

INTRODUCTION

Polybrominated diphenyl ethers (PBDEs) have been widely used as flame retardant additives in a
variety of manufactured products, from paints and plastics to textiles and televisions since 1960s.
Deposition of anthropogenic PBDEs has subsequently been identified in air, soils, and water across
the world (McGrath et al., 2017), even in remote areas including isolated mountaintop sediments,
the Faroe Islands, and the Antarctic (Lindstrom, 1999; Gallego et al., 2007; Wild et al., 2015). In
recent years, PBDEs concentrations as high as 10,000 ng/g soil have been detected at manufacturing
and e-recycling sites (Alabi et al., 2012; Labunska et al., 2013; Li et al.,, 2015; Deng et al.,, 2016).
Notably, PBDEs have the tendency to accumulate in biota (de Boer et al., 1998; Boon et al,
2002; Norstrom et al., 2002; Zhu and Hites, 2004) and have diverse toxicological effects including
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endocrine disruption, metabolic disorders in biological
populations, as well as neurological and developmental disorders
in human (Siddiqi et al., 2003; Windham et al., 2015; ATSDR,
2017). Growing concerns over risks to human and environmental
health have resulted in hepta- through tetra-BDEs being listed
as persistent organic pollutants (POPs) on the United Nations
Stockholm Convention in 2009 (United Nations Environment
Programme, 2009).

Though restrictions and bans on manufacture and usage of
PBDEs have been in place for several years, these legislations
have no effect on the release of PBDEs from existing products
or from recycled materials containing PBDEs. Environmental
deposition of PBDEs can occur via release during manufacture
and use of consumer products, improper disposal, and recycling
of PBDEs containing products, volatilization during incineration,
and discharge from wastewater treatment facilities. PBDEs are
highly lipophilic, have low water solubility and low vapor
pressures. These physical characteristics are largely dictated
by the number and arrangement of bromine atoms on the
molecule, with highly brominated PBDEs being more lipophilic,
less soluble and less volatile (Table 1). Hence, highly brominated
PBDE:s adsorb readily to soils and sediments, where they persist
and act as reservoirs leaching into other compartments over
time (O’Driscoll et al., 2016). PBDEs also tend to bind to
the organic fraction of particulate matter, soils, vegetation, and
sediments following environmental deposition. Thus, PBDEs
have a tendency to be exchanged between the atmosphere and
surface, allowing passive transport over long distances.

PBDE formulations have been primarily manufactured as
three different technical mixtures (Figure 1): penta-BDEs, octa-
BDEs, and deca-BDEs. Although BDE-209 has historically
been the most widely used PBDE congener, BDE —47, —99,
—100, and —153 are the most commonly observed PBDEs
in the environment (Darnerud et al., 2001), indicating that
environmental transformation of highly brominated BDEs
is an important pathway contributing to the dispersal and
environmental impact of PBDEs. The partial debromination of
deca- and octa-BDEs is particularly worrisome because the less
brominated metabolites like tetra- and penta-BDEs are of higher
toxicity (Palm et al., 2002). Both abiotic and biotic processes are
responsible for the breakdown of PBDEs in the environment.
Photolysis, which can occur in the atmosphere and at soil
surfaces, of lesser brominated BDEs (BDE-28, BDE-47, BDE-
99, BDE-100, BDE-153, and BDE-183) (Rayne et al., 2006; Fang
et al, 2008) and of BDE-209 (Stapleton and Dodder, 2008)
has been demonstrated under laboratory conditions, although
there is only weak evidence that atmospheric photodegradation
is a major contributor to environmental attenuation of PBDEs
(Schenker et al., 2008). Anaerobic and anoxic sediments and soils
are major sinks and environmental reservoirs for PBDEs, making
anoxic debromination by microorganisms an important route for
eliminating PBDEs in the environment.

Debromination of a variety of PBDEs, including the three
primary technical mixtures, has been observed in soil, sewage
sludge, and estuarine and marine sediments under different
environmental conditions (redox, pH, available electron donors,
etc.), although the process is typically slow and often results

in incomplete debromination of PBDEs. Despite these apparent
limitations of anaerobic microbial degradation of PBDEs,
bioremediation is considered the most environmentally friendly
technology to remediate PBDEs. Although bioremediation
requires extensive site characterization to be successful and is
often much slower than traditional ex-situ treatment strategies,
it is less expensive, less disruptive to sites, and can be more
complete in degrading hazardous compounds. Considering the
fragility and inaccessibility of many of the environments and
ecosystems plagued by PBDEs contamination, bioremediation
via anaerobic microbes is the best available option for eliminating
PBDEs from contaminated areas.

This review aims to summarize current knowledge of
microbial reductive debromination of PBDEs under anaerobic
conditions, the debromination pathways involved, and
dehalogenase genes identified so far. Investigation of PBDEs
debrominating microbes and exploration of the underlying
mechanisms of debromination will enable more effective
tracking the fate of PBDEs in the environment.

MICROORGANISMS INVOLVED IN
REDUCTIVE DEBROMINATION OF PBDEs

The hydrophobicity of PBDEs impedes bioavailability, which
results in low biomass of debrominating microorganisms.
This low abundance is a critical challenge to enrichment,
isolation, and characterization of PBDE debrominating bacteria.
After pioneering efforts identified debromination of PBDEs in
previously isolated organochlorine dehalogenating members of
the genera Sulfurospirillum and Dehalococcoides (He et al., 2006)
as well as Desulfitobacterium and Dehalobacter (Robrock et al.,
2008), later studies successfully enriched and isolated PBDEs
debrominating bacteria from multiple environmental sources
(Lee et al., 2011; Ding et al., 2013, 2017) and confirmed the role
of members of the genera Dehalococcoides and Acetobacterium in
environmental debromination of PBDEs (Figure 2, Table 2).
Studies evaluating debromination potential with either
technical PBDE mixtures or environmentally relevant BDE
congeners in microcosms established from soils and sediments
collected from various locations and environments have
reported differences in both the rate and extent of PBDE
debromination after long-term incubation (Table2). When
the primary goal is identification of functional bacteria,
rather than developing enrichment cultures for fundamental
studies, high-throughput sequencing and quantitative real-
time PCR have been used to detect changes in microbial
composition and identify specific populations whose increase
correlates with debromination. Chen et al used this strategy to
identify organohalide respiring Dehalobacter, Dehalococcoides,
Dehalogenimonas, and Desulfitobacterium populations in a
microcosm during reductive debromination of tetra-BDE 47
(Chen et al.,, 2018). Though some studies have purported to
identify debrominating populations in microbial communities
using less-sensitive molecular techniques [e.g., denaturing
gradient gel electrophoresis (DGGE) and terminal restriction
fragment length polymorphism (T-RFLP), Qiu et al, 2012;
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TABLE 1 | Physical properties of PBDE mixtures.

Property Penta-BDE Octa-BDE Deca-BDE
Molecular weight Mixture Mixture 959.22
Color Clear, amber to pale yellow Off-white Off-white
Physical state Highly viscous liquid Powder Powder
Melting point —7 to —=3°C (commercial) 85-89°C (commercial); 200°C 290-306°C
(range, 167-257); 79-87°C;
170-220°C
Boiling point >300°C (decomposition Decomposes at >330°C Decomposes at >320, >400,
starts above 200°C) (commercial) and 425°C
Density (g/mL) 2.28 at 25°C; 2.25-2.28 2.76; 2.8 (commercial) 3.0; 3.25
Solubility:
— Water 13.3 pg/L (commercial); <1 ppb at 25°C (commercial); <0.1 pg/L
2.4 wg/L 1.98 ng/L (heptabromodipheny!
(pentabromodipheny! ether ether component)
component);
10.9 pg/L
(tetrabromodiphenyl ether
component)
— Organic solvent(s) 10 g/kg methanol; miscible in Acetone (20 g/L); benzene (200 d-limonene (0.1823 g/100g
toluene g/L); methanol (2 g/L)—all at solvent); n-propanol (0.1823
25°C g/100g solvent)—all at 20°C *
Partition coefficients:
— Log Kow 6.64-6.97; 6.57 (commercial) 6.29 (commercial) 6.265
- Log Koc 4.89-5.10 5.92-6.22 6.8
Vapor pressure 22 x1077-55 x 10~ mm 9.0 x 10710-1.7 x 10=9 mm 3.2 x 1078 mm Hg

Hg at 25°C; 3.5 x 10~ mm
Hg (commercial)

Henry's Law constant (atm-m3/mole) 1.2 x 1075;1.2 x 1076;
35x 1076

Hg at 25°C; 4.9 x 10~8 mm Hg

at 21°C (commercial)

75%x1078;2.6 x 1077 1.62 x 1076, 1.93 x 1078; 1.2
x 1078;4.4 x 1078

Adapted from ATSDR (2017); * From Chen et al. (2016).

2,2',3,4,4"-pentaBDE others, 3.4%

Congener 203, 4.4%
2,2'3,4,4'5,5'6-octaBD

Congener 154, 3.9%
2,2'4,4'5,6"-hexaBDI

Congener 153, 4.7%

Congener 196, 10.5%
2,2'4,4'5,5'-hexaBDI g

2,2'3,3'4,4'5' 6-octal

Congener 207, 11.5%
2.2'.3,3',4,4',4,5,5'»nonaBD_/

Congener 100, 11.2%
2,2'4,4',6-pentaBDE

Congener 47, 32.7%

2,2'4,4'tetraBDE Congener 197, 22.2%

2,2',3,3'4,4',6,6-octaBDE

COMMERCIAL PENTA-BDE MIXTURE
(DE-71, BROMKAL 70-SDE )

production batches (La Guardia et al., 2006).

COMMERCIAL OCTA-BDE MIXTURE
(DE-79, BROMKAL 79-8DE)

Congener 85, 2.5% others, 9.4% Congener 206, 2.18%

others, 1.02%. /2.2',3.3',4.4'.5.5'.G-nDnaBDE

TIIIIIT

Congener 183, 42%
2,2'3,4,4'5' 6-heptaBDE

Congener 209, 96.8%
2,2'3,3'4,4'5,5',6,6'-decaBDE

COMMERCIAL DECA-BDE MIXTURE
(DE-83R, BROMKAL 82-ODE, SAYTEX 102E)

FIGURE 1 | Compositions of representative penta-, octa-, and deca-BDE mixtures. Congeners below 2% (w/w) are considered as others. As a result of the chemical
process used to generate PBDE mixtures, the exact congener composition remains undefined and may vary significantly between different manufacturers and

Huang et al., 2014], these results must be viewed skeptically.
Organohalide respiring bacteria are typically minor populations,
even within enrichment cultures, whose presence can be
masked by more dominant non-debrominating populations,
thus large changes in detected abundance that appear to
be related to debromination often only represent small
relative changes in abundance of the population—which

is difficult to discern by DGGE or T-RFLP. In such cases,
researchers may make erroneous conclusions about the
identity of debrominating populations in the microbial
community.

PBDEs debromination has been reported by bacteria of at
least six different genera, and can be broadly divided as either
metabolic process—energy from debromination to support cell
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Dehalococcoides mccartyi DG** A2 (JQ627628)

Dehalococcoides mccartyi CBDB1 (AF230641)

Dehalococcoides mccartyi BAV1 * (NC_009455)
Dehalococcoides mccartyi GY50 (NC_022964)

Dehalococcoides mccartyi 195** (NR 114415)

A ium sp. AG A (JQ627627)

Dehalobacter restrictus PER-K23** (NR 121722)

De

ium JWI/IU-DC - ATCC 51507** (NR_0741281)

D ium ct irans Co23** (NR_026038)

Desulfitobacterium frappieri PCP-1** (DFU40078)

DSM 12446** (NR_121740)

—
0.050

FIGURE 2 | Phylogenetic analysis of PBDE debrominating bacteria. The tree
was constructed with MEGA 7 (Kumar et al., 2016) using Neighbor-joining
method in Kimura 2-parameter mode (Kimura, 1980). @, derived from same
culture, *require auxiliary substrate, *only in mixed culture.

growth, or co-metabolic process—not supporting cell growth
(Tiehm and Schmidt, 2011). Co-metabolic dehalogenation
typically requires supplementation with auxiliary substrates,
e.g., other types of organohalides. Several studies of PBDEs
debrominating microbial consortia and isolates have reported
debromination only in the presence of additional halogenated
electron acceptors (He et al., 2006; Robrock et al., 2008; Lee and
He, 2010). Carbon sources may also act as auxiliary substrates,
as in the case of the lactate, pyruvate or H,-CO, dependent co-
metabolic degradation of PBDEs identified in Acetobacterium
sp. strain AG (Ding et al, 2013). The use of benign, non-
halogenated auxiliary substrates in co-metabolic debromination
makes strain AG a particularly interesting candidate for in-
situ bioremediation. Co-metabolic reductive debromination of
PBDE:s is currently more frequently reported than metabolic
debromination. However, metabolic reductive debromination
is generally favored for site remediation because it does not
require auxiliary substrates and has higher energy-utilization
efficiency. Thus far, only Dehalococcoides mccartyi strains GY50
and GY52, both isolated from co-culture GY2 (Lee et al., 2011),
have been shown to metabolically debrominate PBDEs (Ding
etal., 2017). Strain GY50 is of particular interest as it completely
debrominates penta-BDE mixtures to diphenyl ether, rather than
producing partially debrominated end-products.

SYNERGISTIC INTERACTIONS IN
MICROBIAL REDUCTIVE
DEBROMINATION OF PBDEs

Synergistic metabolic interactions between organohalide
respiring bacteria and other bacterial populations can increase
the robustness of dehalogenation in microbial consortia by
providing certain growth factors (He et al., 2007; Men et al,
2011). Although the exact nature of most of these synergisms
is unknown, faster and extensive debromination in mixed
microbial communities has been observed. Co-metabolic
debromination in co-culture G consisting of D. mccartyi

strain DG and Acetobacterium sp. strain AG, with presence
of auxiliary substrate, TCE, is an example of this synergistic
metabolic interactions (Ding et al, 2013). Culture G, a co-
culture originating from a river bank, was found to reductively
debrominate octa- and penta-BDE mixtures to less brominated
congeners ranging from penta- to di-BDEs. Debromination
of the BDE mixtures by strain DG was slower and also less
extensive than that in the parent culture, by producing only trace
amounts of penta- and tetra-BDEs after 6 weeks' incubation.
Strain AG had the same penta-BDEs debromination capacity
as culture G, albeit more slowly and less extensively than its
parent culture, and had an octa-BDE debrominating profile
similar to that of strain DG. Debromination of octa-BDE could
be rescued in co-cultures of strain AG and strain DG, indicating
a synergistic relationship between these two populations. The
authors speculated that the Acetobacterium provides certain
growth factors, such as vitamin B, in the form of cobalamin,
which are essential for PBDEs debromination by strain DG.

Besides supplying essential nutrients during synergistic
interactions, another benefit of synergetic microbial interactions
can be seen in the more extensive debromination of PBDEs by
culture EC195 plus strain BAV1 compared to culture EC195
alone, as direct participants in debromination processes (He
et al., 2006). The highly enriched autotrophic culture EC195
produced hepta- through di-BDEs from an octa-BDE mixture
and D. mccartyi strain BAV1 did not debrominate octa-BDEs in
pure culture. However, addition of strain BAV1 to EC195 resulted
in further debromination, with generation of only tetra- through
di-BDEs from the octa-BDE mixture. The hexa- and penta-BDE
debromination by EC195 plus strain BAV1 suggests a role for
BAV1 in synergistic debromination of lesser brominated PBDE:s.

However, interactions among populations in mixed microbial
communities do not necessarily improve debromination activity.
For example, inhibition of methanogenic bacteria in culture
GY-T-2 by the addition of BES increased the rate and
extent of the debromination of PBDEs (Lee and He, 2010).
It is possible that methanogens in GY-T-2 compete with
the PBDE debrominating populations in the community
for limiting factors, such as hydrogen, thereby inhibiting
debromination.

REDUCTIVE DEBROMINATION OF PBDEs
AND FUNCTIONAL GENES

Anaerobic reductive debromination of PBDEs was first observed
in a bioreactor where di-BDE 15 was converted to mono-BDE
3 and diphenyl ether (Rayne et al., 2003). Later investigations of
biological transformation of PBDE mixtures and some individual
congeners (e.g., tetra-BDE 47, penta-BDE 99) identified and
characterized anaerobic microbial reductive debromination of
PBDEs in sewage sludge treatments as well as in terrestrial,
marine, and estuarial soils and sediments, and in microbial
consortia and isolates derived from these sources (Gerecke et al.,
2005; He et al., 2006; Robrock et al., 2008; Tokarz et al., 2008; Lee
and He, 2010; Lee et al., 2011; Xu et al., 2014; Zhu et al.,, 2014;
Stiborova et al., 2015).
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Debromination of PBDEs is partial in almost all observed
systems, yielding lesser brominated metabolites, and typically
occurs slowly and at nanomolar concentrations. Gerecke et al.
reported microbial debromination of 5% of 11.2nM deca-BDE
209 to nona- and octa-BDEs after 238 days in a microcosm
established from sewage sludge (Gerecke et al., 2005). A separate
study utilizing a D. meccartyi-containing microbial consortia,
ANAS195, observed production of 500 nM hepta- to di-BDEs
from 1.3uM of an octa-BDE mixture with the presence of
TCE after 6 months’ incubation (He et al., 2006). Similarly,
partial debromination of deca-BDE 209 and tetra-BDE 47 was
reported after 90 days incubation by the autochthonous microbial
community in e-waste contaminated soil containing a range
of deca- to tri-BDEs (Song et al., 2015). Though uncommon,
complete debromination of tetra- and penta-BDEs to diphenyl
ether was demonstrated by Lee et al in a co-culture, GY2 (Lee
et al., 2011), from which a novel D. mccartyi strain, GY50, that
debrominated ~1,180 nM tetra-BDE 47, penta-BDEs 99 and 100
to diphenyl ether in 2 weeks was isolated (Ding et al., 2017).

There is a marked variation in observed debromination rates,
pathways, and relative abundance of daughter products among
different studies of anaerobic microbial debromination. This is
most likely due to regional differences in nutrient availability
and bioavailability of PBDEs as well as site-specific variations
in microbial community composition. However, it is generally
true that more highly substituted PBDEs (deca- and octa-BDEs)
are debrominated by fewer organisms and more slowly than
lesser substituted congeners (penta- and tetra-BDEs), which
is a common trend in microbial dehalogenation of aromatic
organohalides [i.e., PBDEs, polychlorinated biphenyl ethers
(PCBs), polychlorinated dibenzo-p-dioxins and polychlorinated
dibenzofurans (PCDD/Fs), etc.]. This is thought to be a result
of the increased hydrophobicity of more highly halogenated
aromatics and of the reduced reactivity of more highly
substituted aromatic rings resulting from changes in electron
density (Fagervold et al, 2007; Cooper et al., 2015; Zhang
et al, 2017, 2018). Instances of this phenomenon can be
seen in several studies in which prevalence of octa-BDEs
debromination was observed in pure cultures and defined mixed
cultures than debromination of deca-BDEs (He et al., 2006;
Robrock et al., 2008; Xu et al., 2014). Similarly, studies of the
debromination potential of municipal sewage sludge (Shin et al.,
2010) and various sediment slurries (Zhu et al., 2014) have noted
debromination of hexa- to tetra-BDEs but no debromination of
deca- or hepta-BDEs.

Attempts to identify the products of anaerobic microbial
debromination have also revealed preferential removal of para
and meta bromine substituents (Figure 3), a trend which is also
present in microbial dehalogenation of aromatic organohalides,
such as PCBs (Wang and He, 2013; Wang et al., 2014). This
preference appears to exist regardless of the degree of bromine
saturation, and has been observed in debromination of deca-
BDE 209 (Gerecke et al., 2005) as well as in debromination
of octa-BDEs (BDE 196, 203, and 197), hepta-BDE 183,
hexa-BDE 153, penta-BDE 99, and tetra-BDE 47 (Robrock
et al., 2008). The 2008 study by Robrock et al. also suggests

preferential removal of double-flanked bromine moieties. Strict
para and para-dominant debromination patterns in penta-
and octa-BDE mixtures are also found in culture G with
the presence of TCE, although meta- and ortho-bromine
substitution were suggested as minor pathways in octa-BDE
debromination (Ding et al., 2013). The only exception thus far
identified not following preferential para and meta substitution
is the predominance of ortho-bromine removal in co-culture
GY2, as well as in D. mccartyi strain GY50 (derived from
culture GY2), in stepwise conversion of penta-BDE 100 to
di-BDE 15 via tetra-BDE 47 and tri-BDE 28 (Lee et al,
2011).

The preference on para-, meta-, or ortho-bromine substitution
could be determined by the reductive dehalogenases present in
the debrominating bacteria. Identification and characterization
of reductive dehalogenases responsible for dehalogenation
of specific compounds allow researchers to investigate the
mechanisms of organohalide respiration and provide targets
that can be used to monitor populations of organohalide
respiring bacteria in laboratory and field-scale bioremediation
studies. Reductive dehalogenases responsible for dehalogenation
of a wide variety of halogenated compounds have been
reviewed in Hug et al. (2013). Identification of PBDEs reductive
dehalogenases is impeded by the co-metabolic nature of PBDEs
debromination in most mixed cultures and isolates, as the
presence of auxiliary substrates makes it more challenging
to determine single gene products responsible for observed
activities, and by marginal cell yield of PBDEs debrominating
populations in mixed cultures.

The only PBDE reductive dehalogenases characterized to date,
PbrAl, PbrA2, and PbrA3, were identified in D. mccartyi strain
GY50 using a combination of transcriptomics and proteomics
(Lee et al,, 2011; Ding et al., 2017). The fortuitous emergence
of two variant strains that exhibited distinct dehalogenation
profiles to strain GY50 allowed for functional characterization
of the three PBDE dehalogenases. The deletion of a genomic
island containing both PbrAl and PbrA2 in the genome of
strain GY52 and the lack of di-BDE debromination in this
strain provided strong evidence for the role of PbrA3 in
debromination of penta- and tetra-BDEs to di-BDE (BDE
15), while simultaneously implicating PbrAl and PbrA2 in
removal of unflanked para-bromines from BDE 15 to mono-
BDE (BDE 4) and diphenyl ether. Several hundred putative
reductive dehalogenase homologous genes have been identified
in the genomes of different Dehalococcoides strains and have
been categorized into more than 50 orthologous groups based
on amino acid similarity (Hug et al., 2013). The three PBDE
reductive dehalogenases, PbrAl, PbrA2, and PbrA3, which
catalyze different debromination pathways and attack bromine
moieties at different positions, are phylogenetically distinct—
sharing <40% amino acid sequence similarity with each other
(Figure 4). It is not uncommon for reductive dehalogenase
genes with similar functionality to exhibit significant disparities
in nucleotide sequence, but the phylogenetic similarity of
the PBDE reductive dehalogenases to enzymes which catalyze
dehalogenation of other poly-halogenated aromatic compounds
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FIGURE 3 | Debromination pathways of PBDEs in mixed and pure microbial cultures.

may reveal some structural aspect that is common among among reductive dehalogenases is predictive of substrate range
enzymes mediating catalysis of these types of organohalides.  (Hug, 2016), the clustering of known reductive dehalogenase
While neither nucleotide nor amino acid sequence similarity  into orthologous groups at least provides a starting point
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FIGURE 4 | Phylogenetic analysis of functionally characterized RDases (blue
color) in Dehalococcoides mccartyi including orthologs (black color) of PBDE
reductive dehalogenases (red color). The tree was constructed with MEGA 7
(Kumar et al., 2016) using maximum likelihood method in JTT matrix-based
model (Jones et al., 1992).

for putatively identifying other PBDE reductive dehalogenases.
For example, debromination of PBDEs and other brominated
benzenes (Wagner et al, 2012) and phenols (Yang et al,
2015) by strain CBDB1 contains one reductive dehalogenase
gene that clusters within the same ortholog group as PbrA3,
though no functional genes were implicated in the original
study. More information about the functions of uncharacterized
dehalogenases is necessary before meaningful comparative
analyses of these orthologs can be performed. The emergence and
characterization of the GY52 variant facilitated description of the
regiospecificity of these three dehalogenases and demonstrated
a strategy by which other PBDE dehalogenases can be
investigated.

OUTLOOK

Though production and usage of PBDE mixtures have declined
after implementation of bans and voluntarily cessation of
manufacture, the environmental persistence and potential for
transboundary disbursement make PBDEs a continuing threat
to biological populations around the globe. The degree of the
debromination of PBDEs not only affects physical and chemical

properties, but also toxicity and potential for bioaccumulation.
Highly substituted deca-, nona-, and octa-BDEs are thermally
labile and are partially degraded to lesser brominated congeners
in the environment resulting in an increase in the risk presented
by the original contamination. Because PBDEs preferentially
sorb to organic matter, they tend to accumulate in anaerobic
and anoxic soils and sediments. Harnessing the metabolic
potential of anaerobic microbes that can detoxify PBDEs by
removing bromine substituents has the potential to be a cost
effective and efficient approach to remediate PBDEs in the
environment.

Microbial debromination of PBDEs must overcome several
obstacles before it can be considered a viable technology for
bioremediation. Most of the bacteria that are currently known
to debrominate PBDEs do so co-metabolically and partially. This
incomplete debromination may often cause additional problems
in-situ and the requirement for auxiliary substrates can severely
limit the rate and extent of debromination. The only anaerobic
microbe that can completely detoxify PBDEs and couple cell
growth is D. meccartyi GY50 which can metabolize penta-
and tetra-BDEs to produce diphenyl ether as an end-product.
However, since deca- and octa-BDE mixtures also represent the
majority of PBDEs production and pollution globally, further
study is necessary to find other bacterial isolates and mixed
cultures that can metabolize these highly brominated congeners.
In general, co-cultures could likely be a promising solution to
completely debrominate higher brominated BDEs to diphenyl
ether via intermediates such as penta- and tetra-BDEs.

The slow growth rate and low cell yields associated with
debrominating bacteria have impeded efforts to elucidate
the mechanisms of microbial PBDE degradation. The
isolation of D. mccartyi GY50 has revealed functional
PBDE reductive dehalogenases for the first time, which
may facilitate identification of additional PBDE dehalogenases
in other Dehalococcoides. Discovery of enzymes responsible
for the observed debromination of higher brominated
deca- and octa-BDEs would be particularly valuable to the
advancement of PBDEs bioremediation efforts. Recent advances
in heterologous expression and purification of functional
reductive dehalogenases will facilitate investigations into the
dehalogenation potential of uncharacterized dehalogenases
and may make it possible to establish a platform for in-vitro
production of specific dehalogenases for bioremediation.

In summary, the innate capacity of some anaerobic microbes
to detoxify different PBDEs can potentially be exploited as a
tool to remediate contaminated soils and sediments. Application
of these microbes in-situ has been hindered by the slow
rate of cell growth and associated debromination of target
compounds. Combining organohalide respiring bacteria with
other physical and chemical processes to increase the rate
and extent of anaerobic debromination of PBDEs has been
investigated with varying degrees of success. Recent descriptions
of PBDE debrominating isolates and defined microbial consortia
have shed light on genes responsible for some, but not all,
of the natural attenuation of PBDEs that has been observed.
Future investigations to elucidate and characterize additional
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PBDEs dehalogenases in anaerobic systems may provide a
clearer picture of the mechanisms responsible for the partial
degradation of highly substituted PBDEs in the environment
and pave the way for development of new strategies to
address the persistent threat that PBDEs pose to biological
populations.
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