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This study assessed the species composition, distribution, and functional profiles of

cyanobacteria in Camamu Bay, a tropical oligotrophic estuarine system on the northeast

coast of Brazil, using shotgun metagenomic sequencing. Surface-water samples were

evaluated in two different rainfall periods (rainy and dry seasons), at nine stations

in the three hydrodynamic regions of the bay. At a fixed sampling station, on each

season, samples were taken over a tidal cycle at 3-h intervals over 12 h. A total of 219

cyanobacterial taxa were identified, demonstrating a diverse community of freshwater,

euryhaline, and marine cyanobacteria. The genera of greater relative abundance,

Synechococcus and Prochlorococcus, corresponded to the picoplankton fraction.

Although Camamu Bay has conspicuous marine characteristics, the contribution of

freshwater during the rainy season caused variation in cyanobacteria community, with

an increase in species richness. Due the high prevalence of Synechococcus (90% of

the sequences), the functional analysis revealed only minor differences in gene content

between the dry and rainy seasons. In both rainy and dry seasons, an increase in

Prochlorococcus relative abundance occurred during high tide, demonstrating the tidal

influence in the bay. The environmental characteristics of the bay provide niche conditions

for a wide variety of cyanobacteria, including freshwater, euryhaline, and marine strains.

Keywords: marine cyanobacteria, metagenomic diversity, functional profile, shotgun, Camamu Bay

INTRODUCTION

Estuaries are aquatic coastal ecosystems connecting rivers to the ocean. These systems receive
large inputs of nutrients and are strongly influenced by tides, where the ocean water is diluted
by freshwater from continental drainage (Pritchard, 1967). Estuarine systems vary widely in their
physical and chemical properties, altering habitats, and community composition, and therefore
biogeochemical processes (Ghosal et al., 2000; Attrill and Rundle, 2002; Brunet and Lizon, 2003;
Cloern et al., 2016). Phytoplankton is themajor source of carbon in estuaries, in addition to the high
input of organic compounds carried primarily by continental freshwaters (Cloern et al., 2014). They
play a fundamental role in the processes and biogeochemical cycles that maintain the functioning
of these systems (Cloern and Dufford, 2005; Cloern et al., 2014).

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2018.01393
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2018.01393&domain=pdf&date_stamp=2018-06-26
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:helenmaffe@gmail.com
https://doi.org/10.3389/fmicb.2018.01393
https://www.frontiersin.org/articles/10.3389/fmicb.2018.01393/full
http://loop.frontiersin.org/people/483694/overview
http://loop.frontiersin.org/people/437120/overview
http://loop.frontiersin.org/people/212315/overview


Affe et al. Metagenomic of a Tropical Estuary

Cyanobacteria constitute a dominant prokaryotic fraction
of the marine phytoplankton community (Waterbury et al.,
1979; Fogg, 1982; Capone et al., 1997; Paerl, 2012; Shih
et al., 2013; Coutinho et al., 2016). They contribute to global
primary production and regulate the biogeochemical cycles of
several elements, including nitrogen through biological nitrogen
fixation (Falkowski and Woodhead, 1992; Falkowski, 1997;
Whitehead et al., 2014). Several studies have reported shifts in
the cyanobacterial community, particularly picocyanobacteria,
based on analysis of the V3–V4 region of the 16S rRNA gene,
mainly using the primers CYA359F (forward), CYA781R (a), and
CYA781R (b) (reverse) (Nübel et al., 1997). For example, studies
based on partial 16S rRNA sequences suggest high geographical
endemism and rapid diversification of Synechococcus populations
in the Baltic Sea (Haverkamp et al., 2009).

Advances in sequencing technologies and analytical tools to
quantify differences among cyanobacterial communities have
supported an increase in the number of microbial-diversity
studies. They have also improved knowledge of the role
of these organisms in the functioning and maintenance of
marine ecosystems (Turnbaugh et al., 2007; Raes and Bork,
2008; Logares et al., 2009; Caporaso et al., 2012; González
et al., 2012; Grosskopf and Soyer, 2014; Ininbergs et al.,
2015). In particular, metagenomic analyses of environmental
samples have increased the accuracy of quantitative approaches
to cyanobacterial communities, allowing evaluations of their
taxonomic composition, the relative abundance of their genes,
and their metabolic profiles (Venter et al., 2004; DeLong et al.,
2006; Sunagawa et al., 2015). These analyses have also improved
the understanding of non-culturable species and their association
with a variety of environmental parameters in different water
bodies (Galand et al., 2009) and depths (Johnson et al., 2006;
Brown et al., 2009; Sharpton, 2014; Díez et al., 2016).

Studies on the diversity and structure ofmarine cyanobacterial
communities using metagenomic approaches have demonstrated
the overall dominance of picocyanobacteria belonging to the
genera Synechococcus and Prochlorococcus (Partensky et al.,
1999; Garcia-Pichel et al., 2003; Flombaum et al., 2013;
Díez et al., 2016). Cyanobacterial communities in estuarine
and other brackish environments remain poorly studied
through molecular techniques, especially those involving high-
throughput sequencing (Balzano et al., 2015; Ininbergs et al.,
2015; Celepli et al., 2017). Metagenomic studies in these
environments may reveal important aspects of the genetic
and functional biodiversity of the microbial communities,
considering the variability resulting from the mixing of marine
and freshwater (Muylaert et al., 2009; Cloern et al., 2016).

The Brazilian coastline contains over a hundred estuaries,
from the equator in the north to the temperate south (Bernardino
et al., 2016). Studies applying metagenomic techniques to assess
the diversity of cyanobacteria in these systems are incipient. The
few previous studies were restricted to an analysis of bacterial
diversity, for instance in Guanabara Bay, a hypereutrophic
estuary in southeastern Brazil (Gregoracci et al., 2012).

Here, we present the first metagenomic shotgun approach
performed in a Brazilian tropical oligotrophic estuarine system.
Camamu Bay is a system formed by three hydrodynamic regions,

delimited by the drainage area of five tributary streams, besides
the main channel, where all exchanges between the bay and the
adjacent coastal area occur (Menezes, 2011; Amorim et al., 2015).
We hypothesized that the cyanobacteria community would show
spatial and temporal changes in response to the influence of
rivers on the estuary hydrodynamic regions and the force of the
tides at the entrance of the system. The objective of this study
was to characterize the diversity of cyanobacteria in this tropical
estuarine system over two different rainfall periods (rainy and
dry seasons) and through complete tidal cycles. Camamu Bay is a
relatively pristine system, and the expansion of knowledge of its
biodiversity will lead to a better understanding of the community
patterns of cyanobacteria in the natural environment.

MATERIALS AND METHODS

Study Area
Camamu Bay is situated on the central coast of the state of Bahia,
Brazil (Figure 1), a region with a warm and humid climate, 25◦C
annual mean temperature, and high rainfall, between 2,400 and
2,600mm yr−1 (Centro de Recursos Ambientais and Assessoria
de Comunicação Social, 2007). This estuary is shallow (mean
depth 5m), with well-mixed water, especially during spring tides
(Amorim et al., 2011, 2015).

The hydrodynamic circulation inside the bay is forced by tides,
with a maximum range of 2.7m and current velocities from 0.6
to 1.2m s−1 (Amorim et al., 2015). The principal rivers entering
the bay are the Serinhaém River (SER) in the northern part, a
shallow channel with 7.3m mean depth; the Igrapiúna, Pinaré,
and Sorojó rivers in the central region (CEN), with 3m mean
depth and maximum depth of 7m in the river channels; and the
Maraú River (MAR) in the southern part, with 6.2m mean depth
(Oliveira et al., 2002; Hatje et al., 2008; Amorim et al., 2011).
The Maraú channel is a partially mixed system; the Serinhaém
channel is well mixed during spring tides and somewhat mixed
during neap tides, and the water is well mixed from the bay
entrance to mid-bay. The system has a seasonally controlled
cleaning/purifying capacity; the water is renewed every 90 days
in the dry season and every 30 days in the rainy season (Amorim
et al., 2015).

Sampling and Analyses
Sampling was conducted during spring tides in two different
rainfall periods. The first period was in October 2014, after
cumulative precipitation of 198.2mm (rainy season), and the
second was in January 2015, after cumulative rainfall of 93.2mm
(dry season), for the 30-day period before each sampling. Rainfall
data were obtained from the National Meteorological Institute
(INMET)1, based on records of the automatic meteorological
station (13◦54′S, 38◦58′W) in the municipality of Maraú, Bahia.
The discharges of the principal tributary streams were calculated
using the equation of Smith et al. (1999).

1Instituto Nacional de Meteorologia, Centro de Previsão de Tempo e Estudos
Climáticos – Instituto Nacional de Pesquisas Espaciais (INMET/CPETEC-INPE).
Available online at: http://proclima.cptec.inpe.br/balanco_hidrico/balancohidrico.
shtml
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FIGURE 1 | Map showing the 10 sampling locations in Camamu Bay: spatial

distribution in the hydrodynamic regions point 1–3 (MAR), 4–6 (CEN), 7–9

(SER), and the fixed sampling station (FS), point 10 (sampling over a tidal

cycle).

To evaluate possible influences of the tributary streams on the
bay system, three sites were sampled in each of the hydrodynamic
regions (SER, CEN, and MAR) of the bay, with three points
sampled at each site (Figure 1, points 1–9). To determine the
influence of the tide on the cyanobacterial community, time-
series samples were taken at a fixed sampling station (FS), at
intervals of 3 h, for a total of 12 h over two tidal cycles. The
fixed sampling station, at the bay entrance (Figure 1, point 10),
is representative of the entire water exchange of the system,
following hydrodynamic modeling of the area according to
Menezes (2011). At each sampling station and each hour of the
tidal cycle, the temperature, salinity, and dissolved oxygen were
measured in situ, using a multiparameter meter (Hanna HI 9829,
São Paulo, SP, Brazil). Water transparency was estimated using a
Secchi disc.

For nutrient analyses, water samples (5 L) were collected at
the subsurface, using a Van Dorn bottle. Samples were stored
in polyethylene flasks, pre-washed (HCl and distilled water),
and immediately filtered using a vacuum pump (PRÓ-TOOLS
2110, Porto Alegre, RS, Brazil) with fiberglass filters (Whatman
GF/F, 0.7µmpore, Sigma-Aldrich, St. Louis, MO, USA). Aliquots
of 250mL of the filtered volume of each sample were kept
frozen (−20◦C) for at most 2 weeks until the analyses were

conducted. The dissolved inorganic nutrients (nitrite, nitrate,
ammonium, phosphate) were analyzed (24 samples/period) by
the spectrophotometric method, according to Grasshoff et al.
(1983).

For DNA extraction, water samples (1 L) were collected
at the subsurface, using a Van Dorn bottle, and immediately
filtered through a polycarbonate membrane (Merck GS, 0.22µm
pore, Darmstadt, Germany) with a vacuum pump. The filters
were stored in microtubes kept on ice during transport to the
laboratory, where they were stored in an ultra-freezer at −80◦C
(Thermo Scientific, Waltham, MA, USA) until DNA extraction.

Metagenomic Library Preparation,
Sequencing, and Bioinformatic Analyses
GenomicDNAwas extracted by cutting the filter into small pieces
with sterilized scissors and then transferring the fragments to
tubes containing beads, following themanufacturer’s instructions
in the PowerSoil DNA Isolation Kit (MoBio Laboratories,
Carlsbad, CA, USA).

The metagenomic libraries were prepared by fragmentation
of total DNA using a Nextera XT DNA Sample Preparation Kit
(Illumina, Inc., San Diego, CA, USA), using 1 ng of total DNA
of each sample. After fragmentation, the DNA was labeled with
adapters using the Nextera XT Index Kit (Illumina), and purified
with the Agencourt AMPure XP Beads Kit (Beckman Coulter,
Inc., Brea, CA, USA). The entire preparation procedure followed
the Nextera DNA Sample Preparation Guide (Illumina).

Quantification of the DNA libraries was performed by real-
time PCR, using the KAPA Library Quantification Kit for
Illumina (KAPA Biosystems, Wilmington, DE, USA), according
to the manufacturer’s protocol. The library obtained from each
sample was normalized to obtain equimolar amounts of DNA
and later grouped in a single pool. The libraries were sequenced
on the MiSeq platform (Illumina) with the 600-cycle MiSeq
reagent kit v3 (Illumina), at the Center for Functional Genomics
Applied to Agriculture and Agroenergy at the University of São
Paulo, ESALQ, Piracicaba.

After sequencing, the paired-end reads were merged using
the Flash tool (Fast Length Adjustment of Short Reads) version
1.2.7 (http://ccb.jhu.edu/software/FLASH/). The sequences were
filtered by quality (Phred 20) and size (minimum length 80 bp)
using Seqyclean 1.3.12 (http://cores.ibest.uidaho.edu/software/
seqyclean).

Metagenomic data were analyzed using MEGAN6 (Huson
et al., 2016). Sequences were aligned against the NCBI-nr
database (as of August 2017) using DIAMOND (Buchfink et al.,
2015) and the taxonomic assignation of the reads was performed
based on the lowest common ancestor (LCA) algorithm (Huson
et al., 2016). In this approach, reads that aligned with conserved
sequences were assigned to high-level taxa (for instance Phylum),
whereas sequences aligned to species-specific sequences were
assigned to lower taxa (for instance genus/species) (Huson et al.,
2016). The parameters min Score = 50, top Percent = 10, max
Expected = 0.01, and Percent to cover = 100 were used as
program default values as detailed by Huson et al. (2007), and
all sequences assigned to cyanobacteria were extracted from the
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total data set. Functional classification was performed based on
the SEED database (Overbeek et al., 2005).

The metagenomic reads were mapped against the
Synechococcus sp. CB 0205 genome (NZ_ADXM00000000.1),
using the bowtie2 tool (Langdon, 2015). The genome coverage
was evaluated using genomecov implemented in beedtools
toolset (Quinlan, 2014), considering 5x of sequencing coverage.

The sequences are available in the MG-RAST v4.0.3.
metagenomic analysis server (http://www.mg-rast.org) under
the unique identifiers: 4696532.3, 4696533.3, 4696534.3,
4696535.3, 4696536.3, 4696537.3, 4696538.3, 4696539.3,
4696540.3, 4696541.3, 4696542.3, 4696543.3, 4696545.3,
4696546.3, 4696547.3, 4696549.3, 4696551.3, 4696553.3,
4696555.3, 4696556.3, 4696557.3, 4696558.3, 4696559.3,
4696560.3, 4696561.3, 4696563.3, 4696564.3, 4696565.3,
4696566.3, 4696567.3, 4696568.3, 4696569.3, 4696570.3,
4696571.3, 4696572.3, 4696573.3, 4696574.3, 4696575.3,
4696576.3, 4696577.3, 4696578.3, 4696579.3, 4696580.3,
4696581.3, 4696582.3, and 4696583.3.

Statistical Analyses
The number of reads for taxonomic and functional data was
normalized by relative abundance, dividing each count by
the total number of assigned reads per library to prevent
bias generated by different sequencing coverage. Cyanobacterial
diversity was inferred based on species richness (S), Shannon
diversity index (H′), and Pielou species evenness (J′). Samples
were clustered combining yjr Bray-Curtis dissimilarity andWard
methods. Analysis of variance was performed with a Kruskal-
Wallis test after checking the assumptions for parametric analyses
(normality and homoscedasticity) using the Shapiro-Wilk and
Levene tests, followed by the value multiple-comparison tests to
assess the occurrence of significant differences (p < 0.05).

A multivariate analysis of redundancy (RDA) was used to
evaluate the influence of abiotic variables on the cyanobacterial
community in the bay. To quantify the relative contributions
of the abiotic variables to the explanation of community
composition, a variation-partitioning analysis was performed
(Borcard et al., 1992; Peres-Neto et al., 2006). The environmental
data were separated into four groups: (1) water flow; (2)
temperature; (3) nutrients (nitrite, nitrate, and phosphate);
and (4) physical and chemical variables (salinity, transparency,
and dissolved oxygen). Environmental data were standardized,
and the Hellinger transformation was applied (Legendre and
Gallagher, 2001). All statistical analyses were carried out in the R
environment, with the Vegan packages (R Core Team, 2016). The
STAMP program was used for statistical analysis of functional
data (Parks and Beiko, 2010; Parks et al., 2014).

Samples collected from site CEN in the dry season were
discarded, due to the low quality of sequencing.

RESULTS

Environmental Variables
The water temperature in the rainy season was 26 ± 0.12◦C
on average. The great freshwater input (∼13.5 m3 s−1) in this
period increased the oxygen content of the estuarine water,

reaching saturation (>100%), and increased the concentrations
of dissolved inorganic nutrients. The concentration of nitrogen
compounds (nitrate, nitrite) was 0.84 ± 0.3µM on average, but
for all samples, the ammonium concentration was below the
detectable level (<0.01µM). Phosphate concentration was 0.44
± 0.04µM and water-column transparency was 1.6 ± 0.2m on
average.

During the dry season, the low freshwater input (∼2.6 m3/s)
into the bay led to subsaturation of dissolved oxygen (∼60%).
Lower nutrient concentrations were observed for nitrogenous
forms (0.67 ± 0.2µM), but not for phosphate (0.42 ± 0.02µM).
The temperature was higher during this season (31 ± 0.3◦C),
and water-column transparency (2.5 ± 0.4m) also increased
compared to the rainy period. The salinity remained similar in
both seasons (32± 1.6 on average).

Taxonomic Composition
The lowest common ancestor algorithm (LCA) was used to assign
the reads taxonomically. This implies that for the subsequent
analyses, only the reads assigned to infra-levels integrate the data
set for the statistical analyses. A summary of the number of
reads for each taxonomic level is provided in the supplementary
material (Supplementary Table 1). In total, 219 species comprised
the cyanobacterial community in Camamu Bay (Supplementary
Table 2). The taxonomic assignments showed a large number of
sequences attributed to different strains of the picocyanobacteria
Prochlorococcus (58 strains), followed by Synechococcus (34
strains) (Supplementary Table 2). Sequences of Synechococcus
belonged to three subclades: 5.1 (Synechococcus sp. WH 8109,
Synechococcus sp. RS 9916, and Synechococcus sp. CC 9605), 5.3
(Synechococcus sp. RCC 307), and 5.2 (Synechococcus sp. CB
0205). The latter comprised 41% of the sequences that could
be assigned to species level, and ranged from 12.3% of to 7.8%
of the reads assigned to phylum level. About 10% of the total
cyanobacterial metagenomic reads from Camamu Bay samples
were mapped against the CB0205 draft genome (Supplementary
Table 2). Using a cutoff of 5x sequencing depth coverage (only loci
with at least 5mapped reads) between 0.78 and 7.32% (on average
0.89%) of the CB0205 genome was covered. Using 1x sequencing
coverage, on average 16.70% (3.9–40.96%) of the genome was
covered.

Synechococcus encompassed almost 90% of the sequences
assigned to genus level retrieved in all samples, followed by
Prochlorococcus with 5% of the sequences. Besides, Microcystis
(0.3%), Leptolyngbya (0.6%), Cyanobium (0.7%), Trichodesmium
(0.8%), and other genera were also observed, together comprising
2% of the sequences (Figure 2A; Supplementary Table 3).

Although detected at lower levels, Microcystis was observed
mainly at the Maraú site, in a higher proportion in the dry
season and Trichodesmium was mostly observed in the Maraú
and Central samples, and was more pronounced in the rainy
season (Figure 2A).

Cyanobacterial taxonomic analysis demonstrated differences
in the community composition between the dry and rainy
seasons, with an increase in the number of sequences assigned
to cyanobacteria in the latter (p = 0.0002), especially for the
Central andMaraú sites. No significant differences were observed
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FIGURE 2 | Cluster of hydrodynamic regions between rainy and dry seasons as a function of the variation of the relative abundance of cyanobacteria (A) and diversity

(Shannon index) and Pielou evenness (B).

in the relative abundance of taxa (p= 0.43) among hydrodynamic
regions (MAR, CEN, and SER) in the two seasons analyzed
(Figure 2A).

The spatial distribution of cyanobacteria strains in the bay
was relatively homogeneous, mainly due to the dominance of
Synechococcus in all samples. The Shannon diversity index (H′)
and evenness ranged from 3.6 to 4.2 bits ind−1 and 0.5 and 0.6 in
the rainy season and from 3.1 to 3.4 bits ind−1 and 0.5 in the dry
season, respectively (Figure 2B). A more pronounced variation
in species richness occurred in the rainy season, with 162 (±12)
taxa, while only 81 (±13) taxa were identified in the dry season
(Supplementary Table 1).

The composition of the cyanobacteria community was similar
during tidal cycles, with Synechococcus dominating all sampling
times (Figure 3A). The Shannon diversity index (H′) and
the Pielou species evenness (J′) (Figure 3B) were also similar
throughout the tidal cycle. However, the relative abundance
of other taxa, mainly Prochlorococcus, increased at high tide
(Figure 3A).

The redundancy analysis (RDA, Figure 4A) separated the
rainy- and dry-season samples on axis 1 (77% explicability).
The environmental variables that most reflected this separation
between the dry and rainy seasons were freshwater inflow
(Flow) and the concentrations of dissolved nutrients (NO3,
NO2, PO4). Dry-season samples were more related to higher
water temperature (Temp) and transparency (Transp). Variance
partition indicated that the abiotic variables explained 58%
of the variation in the community. The fraction shared by
the four sets of variables (flow + temperature + nutrients

+ physical and chemical variables) explained around 30% of
the variation. Individual environmental variables explained only
small proportions of the biological data (Figure 4B).

Functional Profile
The SEED database was used to predict the functional
profile of the cyanobacterial community in Camamu Bay.
The cyanobacterial functional profile was strongly associated
with the metabolism of Synechococcus and Prochlorococcus,
given the predominance of these genera in the system.
Sequences assigned to cofactors, vitamins, pigments, and
amino acids and derivatives were abundant in both seasons
(Figure 5A). The functional diversity did not vary regarding the
composition of most metabolic functions. Significant differences
in relative abundances between the dry and rainy seasons
occurred only for photosynthesis, cell wall, and capsule,
and metabolism of aromatic compounds (Figure 5B). For
aromatic compounds, sequences assigned to genes involved in
degradation of benzoate, chlorobenzoate, and n-phenylalkanoic
acid were dominant in the samples, mainly in the dry season
(Figure 6). These sequences were associated primarily with
Synechococcus. A high representativeness of Synechococcus sp.
CB0205 sequences was observed, especially in Central andMaraú
samples (Figure 6). Only a few reads matched genes related
to phosphorus metabolism (0.10%) and nitrogen metabolism
(0.04%) (Figure 5A).

Comparing samples from the tidal cycles, the relative
abundance of genes related to nitrogen (nitrite, nitrate, and
ammonium transport) and to phosphorus metabolism increased
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FIGURE 3 | Variation of relative abundance (A) and diversity (Shannon index) and Pielou evenness (B) of cyanobacteria reads in tidal cycles.

FIGURE 4 | Multivariate analysis of redundancy (RDA) of the composition and abundance of cyanobacteria reads (A) and variation-partitioning analysis (B), to quantify

the relative contributions (58%) of the abiotic variables to the explanation of the composition and abundance of cyanobacteria. Black symbols, rainy season (October

2014); gray symbols, dry season (January 2015); Triangle, SER; circle, CEN; rectangle, MAR.

during high tide, coinciding with the increase in Prochlorococcus
abundance in the same samples (Figure 7A). For nitrogen
metabolism, genes related to ammonium transport showed
the highest relative abundance (47.8%), in dry and rainy
seasons (Figure 7B). Concerning phosphorus metabolism, the
predominant genes were those related to phosphate transport, in
both seasons (Figure 7C).

DISCUSSION

Camamu Bay is a relatively pristine system (Carreira et al., 2016)
with oligotrophic characteristics (Affe et al., 2018). The low
nutrient concentrations in the bay are related to the influence
of the tropical waters of the Brazil Current, which flows year-
round along the Bahia state coast (Signorini et al., 1989; Silveira
et al., 2000). The bay shows a robust marine influence because
of the large mouth opening, low contribution from tributary
streams throughout the year, and tidal forcing. Tidal forcing
causes extensive mixing of the water column, mainly during
spring tides (Amorim et al., 2011, 2015). Our data showed that

although nutrient concentrations increased in the rainy season,
the mean levels of total nitrogen and total phosphorus remained
much lower than 11.43 and 1.61µM, respectively, characteristic
of oligotrophic estuarine environments (Silva, 2000). Thus, the
environmental factors were rather homogeneous among the
hydrodynamic regions and also through the tidal cycles in both
seasons.

The metagenomic analysis revealed a high taxonomic
diversity of cyanobacteria in the surface waters of Camamu
Bay, without significant changes in the community structure
(i.e., Shannon Diversity and Pielou’s evenness Index), between
sites, tides, or dry and rainy seasons (Figures 2B, 3B). The
increase in species richness and diversity in the rainy season
is linked to the increased fluvial discharges. This increased the
number of freshwater taxa such as Leptolyngbya and Cyanobium
(Figures 2A, 3A). We also observed a significant input of
dissolved nutrients in this season (Figure 2A), transported by
the rivers. These conditions are frequently associated with an
increase in the support capacity of different systems (Costa
et al., 2009; Majewska et al., 2017). However, picocyanobacteria
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FIGURE 5 | Functional profile (SEED subsystems level 1) of the cyanobacteria community (A) and occurrence of significant variations in relative abundances of the

metabolic functions between the dry (light green bars) and rainy (dark green bars) seasons (B).

FIGURE 6 | Relative abundance of cyanobacterial reads assigned to genes related to the metabolism of aromatic compounds (based on z-score transformed

functional annotations). Taxonomic assignment of the reads linked to metabolism of aromatic compounds.

predominantly described in marine habitat prevailed in the bay,
and marine Synechococcus strains dominated the community
across all samples in both seasons (90% of the sequences).

Our results agree with previous studies in other oligotrophic
marine waters and estuaries worldwide. The picoplankton
fraction is dominated by the unicellular coccoid Prochlorococcus
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FIGURE 7 | Variation of the relative abundance of cyanobacterial genes involved in nitrogen and phosphorus metabolism in tidal cycles (A) and composition of

functions (SEED subsystems level 2) linked to nitrogen (B) and phosphorus (C) metabolism in Camamu Bay.

and Synechococcus lineages (Platt et al., 1983; Fogg, 1995;
Partensky et al., 1999; Garcia-Pichel et al., 2003; Cerino et al.,
2012; Flombaum et al., 2013; Belevich et al., 2015; Díez et al.,
2016), which are responsible for more than 50% of the biomass
and primary productivity in coastal and estuarine environments
(Johnson and Sieburth, 1979; Ray et al., 1989; Murrell and Lores,
2004). The ecological success of Prochlorococcus in these systems
is due to its photosynthetic apparatus, which allows the species
to develop in a wide range of light intensities. Similarly, specific
adaptations of Synechococcus enable its members to develop in
horizontal gradients of nutrients (Allewalt et al., 2006; Johnson
et al., 2006).

Synechococcus is one of the most important genera of
microorganisms in coastal systems, due mainly to its wide
geographic distribution and importance for primary productivity
(Flombaum et al., 2013; Dvorák et al., 2014). In general, the
factors that control the abundance of this genus are still poorly
understood. The wide variability of the group was investigated
based on top-down factors such as grazing pressure, and bottom-
up factors, mainly light, temperature variation, and availability

of nutrients, especially nitrogen (Olson et al., 1990; Blanchot
et al., 1992; Campbell and Vaulot, 1993; Scanlan and West, 2002;
Dufresne et al., 2005, 2008; Paerl et al., 2011). According to
Dvorák et al. (2014), the rapid generation time, and the small
size and the shape of the cells allow it to compete effectively for
nutrients and aid in capturing light. These factors contribute to
the dominance of Synechococcus in surface water layers, in a wide
variety of systems, under different environmental conditions
year-round (Feingersch et al., 2010; Cerino et al., 2012; Mella-
Flores et al., 2012; Quero and Luna, 2014).

In Camamu Bay, the dominance of Synechococcus may be
linked to the fact that nitrate comprised ∼65% of the total
nitrogen in the system. It has been reported that these organisms
can proliferate at low phosphate concentrations (Lomas et al.,
2010; Kretz et al., 2015), and predominate in coastal systems
where nitrate is the primary form of available nitrogen (Herrero
et al., 2001; Wawrik et al., 2009).

Besides a high relative abundance, our data showed a high
diversity of Synechococcus, with a total of 34 oligotypes including
freshwater, euryhaline, and marine strains. Twenty-one of these
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strains belong to nine different clades (I-IV, VI-X, CB5, UCA,
WPCI, Minus11), which are common in warm oligotrophic
waters (Toledo et al., 1999; Palenik, 2001; Toledo and Palenik,
2003; Chen et al., 2004; Dufresne et al., 2008; Zwirglmaier et al.,
2008; Díez et al., 2016). The dominance of euryhaline strains
belonging to subclades 5.1 (clades II, IX), 5.2 (clade CB5), and
5.3 (clade X) in Camamu Bay agrees with previous studies
in estuaries with different salinity gradients (Xia et al., 2015,
2017a; Mackey et al., 2017). Differences in niches among these
three subclades were found in the Baltic Sea, with subclade 5.1
predominating in the marine zone, while subclades 5.2 and 5.3
were more abundant in the zones with the highest freshwater
influence and dominated the low salinity-brackish transition
zones, respectively (Larsson et al., 2014; Celepli et al., 2017).
In this study, reads that matched Synechococcus sp. CB 0205
(clade CB5, subclade 5.2) were dominant in all the samples.
This strain was isolated from the Chesapeake Bay in summer
(Chen et al., 2006; Cai et al., 2010). It has been reported for
temperate estuarine and coastal waters, and is also prevalent in
polar/subpolar waters (Huang et al., 2012; Boeuf et al., 2014).

Other Synechococcus taxa identified in the bay include
Synechococcus sp. WH 8109 and Synechococcus sp. CC 9605
(clade II, subclade 5.1), Synechococcus sp. RCC 307 (clade
X, subclade 5.3), and Synechococcus sp. CC 9916 (clade XI,
subclade 5.1). They are typically found in tropical or subtropical
regions, in oceanic waters as well as the coastal zone in both
surface and deep waters (Zwirglmaier et al., 2008; Scanlan et al.,
2009; Mella-Flores et al., 2012; Xia et al., 2017b). Despite the
inherent limitation of the technique for identification at low
taxonomic levels, the results obtained here agree with others from
similar environments. Taken together, these results suggest that
the Synechococcus strains in Camamu Bay belong to different
clades.

Prochlorococcus showed the highest diversity (58 strains)
among the picocyanobacteria in the bay, although the genus
comprised only 4% of the total sequences. The majority of
the sequences belong to the clades with adaptations to intense
light (HL II), in agreement with the literature for tropical
and subtropical marine surface waters (e.g., Rocap et al., 2002;
Bouman et al., 2006; Zwirglmaier et al., 2008; Biller et al., 2014;
Babić et al., 2017). The increase in Prochlorococcus sequences
during high tides suggests that cells are transported from ocean
waters to the interior of the bay in these periods (Figure 3A). This
indicates the significant influence of the marine contribution on
the composition and dynamics of species in the bay.

A small group of freshwater, brackish and marine taxa
comprised the remaining cyanobacteria taxa observed. Although
they were responsible for the high richness of the community,
these cyanobacteria occurred in low relative abundances (<5%
of the sequences) (Figures 2A, 3A). High-throughput methods
allowed us to assess these rare taxa, which usually are neglected
in most studies using conventional techniques. These rare
organisms function as a seed bank in the environment (Pedrós-
Alió, 2012; Shade and Gilbert, 2015), and they can increase in
abundance when environmental conditions shift and became
favorable to their growth. This is the basis of the cyanobacteria
bloom formation, when a few cells can rapidly proliferate and

dominate the environment. For instance, Microcystis is well
known for its capacity to form blooms in eutrophic waters, and
problems with blooms of toxic strains have been reported in
many estuaries throughout the world (Robson and Hamilton,
2004; Lehman et al., 2005; Otten et al., 2017; Kurobe et al.,
2018). Microcystis was detected in Camamu Bay, mainly at
the site close to the Maraú River (Figure 2A), indicating the
potential for a bloom. Approximately 90 families live in the
vicinity of the sampling points. Untreated domestic sewage is
often discharged into the adjacent mangroves, due to the lack
of basic sanitation (Pacheco, 2006). This practice can elevate the
concentrations of nutrients in the system and cause a bloom
formation, with direct and indirect effects on the estuarine
system.

The functional contribution of the cyanobacteria in Camamu
Bay was estimated using the SEED database. SEED is a subsystem
approach that groups genes based on their functional roles in
specific biological processes (for more information see Overbeek
et al., 2005). The continuous curation of the SEED collection
performed by genome-annotation specialists provides increased
confidence in automatic predictions.

Considering the high degree of dominance of Synechococcus in
Camamu Bay, only a few variations could be observed regarding
the functional metagenomic analyses in both the spatial and
temporal samples, among the three hydrodynamic regions and
through the tidal cycles, respectively (Figure 5A). The variation
in relative abundance of genes affecting nutrient metabolism
(i.e., phosphorus and nitrogen) during tidal periods reflected
the increase in the relative abundance of Prochlorococcus during
high tides (Figures 3A, 6A). The relatively stable composition
of cyanobacteria functional genes in the Camamu Bay, was
due to the limited variation in taxonomic composition of
the cyanobacterial community between the dry and rainy
seasons.

The increase in the relative abundance of reads assigned
to the metabolism of aromatic compounds (Figure 5B) is
notable, considering that cyanobacteria are well known for their
ability to degrade these compounds. Marine cyanobacteria taxa
in association with aerobic organotrophic bacteria are being
reported as promising in bioremediation studies, due to their
ability to degrade oil (Raghukumar et al., 2001; Abed et al., 2009).
This may be particularly important in Camamu Bay, considering
the oil and natural-gas exploration and extraction activities on
the adjacent platform, which pose a potential risk to the system
in case of an oil spill in the ocean (Amorim et al., 2011).

Camamu Bay is a homogeneous system over spatial scale
(hydrodynamic regions). The typical ocean-water characteristics,
which influence the bay much more than the river discharges,
illustrate the oligotrophic conditions of the system and the
predominance of marine species in both the dry and rainy
seasons. However, the greater fluvial contribution in the
rainy season increased the species richness with the input of
freshwater strains. These environmental characteristics provide
niche conditions for a wide variety of cyanobacteria, composed
of freshwater, euryhaline, and marine strains. The data acquired
in this first metagenomic study revealed that strains of
Synechococcus dominate in all seasons; many are putatively
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assigned to strain CB 0205, which is commonly reported from
temperate estuarine and coastal waters as well as polar/subpolar
waters. These findings confirmed the hypothesis that the
changes in the community, although small, are influenced by
the seasonal variation. We suggest that Camamu Bay can
be used as a model system for studies of microbial ecology,
because it is an estuarine system still preserved. Further
studies are needed to clarify the geographical distributions
of the different Synechococcus clades, and which factors drive
their respective adaptations and ecological success in this
system.
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