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Etiologic diagnosis of bacterial pneumonia relies on identification of causative pathogens
by cultures, which require extended incubation periods and have limited sensitivity.
Next-generation sequencing of microbial DNA directly from patient samples may
improve diagnostic accuracy for guiding antibiotic prescriptions. In this study, we
hypothesized that enhanced pathogen detection using sequencing can improve upon
culture-based diagnosis and that certain sequencing profiles correlate with host
response. We prospectively collected endotracheal aspirates and plasma within 72 h
of intubation from patients with acute respiratory failure. We performed 16S rRNA
gene sequencing to determine pathogen abundance in lung samples and measured
plasma biomarkers to assess host responses to detected pathogens. Among 56
patients, 12 patients (21%) had positive respiratory cultures. Sequencing revealed
lung communities with low diversity (p < 0.02) dominated by taxa (>50% relative
abundance) corresponding to clinically isolated pathogens (concordance p = 0.009).
Importantly, sequencing detected dominant pathogens in 20% of the culture-negative
patients exposed to broad-spectrum empiric antibiotics. Regardless of culture results,
pathogen dominance correlated with increased plasma markers of host injury (receptor
of advanced glycation end-products-RAGE) and inflammation (interleukin-6, tumor
necrosis factor receptor 1-TNFR1) (p < 0.05), compared to subjects without dominant
pathogens in their lung communities. Machine-learning algorithms identified pathogen
abundance by sequencing as the most informative predictor of culture positivity. Thus,
enhanced detection of pathogenic bacteria by sequencing improves etiologic diagnosis
of pneumonia, correlates with host responses, and offers substantial opportunity for
individualized therapeutic targeting and antimicrobial stewardship. Clinical translation
will require validation with rapid whole meta-genome sequencing approaches to guide
real-time antibiotic prescriptions.
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INTRODUCTION

Severe pneumonia is a leading cause of hospitalization and death
among adults in the US, often requiring admission to an intensive
care unit (ICU) (Chalmers et al., 2011; Barrett et al., 2014; Jain
et al., 2015; Valley et al., 2015). While appropriate antibiotic
therapy is the cornerstone of pneumonia management, etiologic
pathogen diagnosis with current culture-based microbiologic
tests is often negative in patients with a clinical picture of
pneumonia (Jain et al., 2015) or requires long incubation periods
(∼3 days) to provide actionable results (Zumla et al., 2014;
Jain et al., 2015; Vincent et al., 2015). Consequently, antibiotic
prescriptions for severe pneumonia are empiric and typically
include two or three broad-spectrum agents prescribed for seven
or more days (Mandell et al., 2007; Kalil et al., 2016). This “one-
size-fits-all” practice is hazardous for individual patients, who
may receive insufficient or disproportionately intense antibiotics,
and further contributes to antibiotic resistance, a global health
threat (Laxminarayan et al., 2013; Modi et al., 2014; Kitsios et al.,
2017).

Next-generation sequencing (NGS) of microbial DNA
extracted directly from patient samples without the need for
ex vivo organismal growth may overcome shortcomings of
culture-based diagnosis. By sequencing either amplified bacterial
marker genes (typically the 16S rRNA gene [16S sequencing])
or whole metagenomes, NGS provides comprehensive profiling
of resident microbial communities with relative abundance
information of the constituent bacteria, regardless of whether
they are alive, dead or fastidious. With improvements in
fidelity and accessibility of whole metagenome sequencing,
identification of non-bacterial microbes (viruses, fungi and
parasites) (Kuczynski et al., 2011) is becoming increasingly
feasible and holds promise for clinical utility in the near
future (Judge et al., 2015). Despite the theoretical advantages
of NGS, the technology has not yet been validated as a
diagnostic tool to guide antimicrobial prescriptions in
the ICU.

To examine the clinical validity (Khoury et al., 2003) of
16S sequencing for etiologic diagnosis of bacterial pneumonia
in patients requiring mechanical ventilation, we conducted
this proof-of-concept study with the Microbiome Cohort in
Acute Lung Injury Registry (MICALIR) at the University
of Pittsburgh Medical Center (UPMC), assessing the upper
and lower respiratory tract microbiome composition and its
association with clinical diagnoses, host responses, and clinical
outcomes.

MATERIALS AND METHODS

This study is reported in compliance with the Strengthening the
Reporting of Observational studies in Epidemiology (STROBE)
statement (details presented in Supplementary Table 1) (Elm
et al., 2007). Extensive methods regarding clinical data recording,
sample collection, experimental protocols and statistical analyses
are presented in the Supplement. Primary data and statistical
code for replication of our findings are also provided in the online

Supplement and are also available for download at https://github.
com/MicrobiomeALIR/Resp_Microbiome_Profiles_Pneumonia.

Study Design and Participants
We conducted a prospective cohort study from June 2015 –
March 2017 enrolling consecutive adult patients in the Medical
ICU with acute respiratory failure within 72 h of intubation.
Eligible patients were 18 years or older with acute respiratory
failure requiring mechanical ventilation via endotracheal
intubation. Exclusion criteria included inability to obtain
informed consent, presence of tracheostomy, or mechanical
ventilation for more than 72 h. Given our focus on etiologic
diagnosis of bacterial pneumonia, we divided patients into
culture-positive and culture-negative cases, based on clinical
microbiologic results of respiratory specimens. We considered
specimens obtained within 48 h of research sample timing
acquisition so that such specimens would be reflective of the
same infectious process being studied by NGS. Clinical cultures
were obtained at the discretion of the treating physicians who
were not involved in the MICALIR study. We considered
microbiologic cultures of respiratory specimens [sputum, endo-
tracheal aspirates (ETAs), or bronchoalveolar lavage – (BAL)]
as positive when pathogenic bacterial species had been isolated
by the clinical laboratory and treating physicians covered these
bacteria with antibiotics (i.e., clinically these bacteria were not
considered to be airway colonizers). Culture-negative cases
were defined as those in which no organismal growth was
observed or presence of “normal respiratory flora” was reported,
as per standard clinical practices. We also recorded results of
respiratory viral panel testing performed in nasopharyngeal
swabs or respiratory specimens. The University of Pittsburgh
Institutional Review Board approved the MICALIR study and
written informed consent was provided by all participants or
their surrogates in accordance with the Declaration of Helsinki.

Clinical Data Collection
We collected prospective clinical data on participants including
age, gender, body mass index and history of smoking, comorbid
conditions, such as diabetes and chronic obstructive pulmonary
disease (COPD), on the day of enrollment. Physiological and
laboratory variables such as PaO2 to FiO2 ratio, levels of
positive end-expiratory pressure, plateau pressure, systolic blood
pressure, white blood cell count etc. were obtained from the
medical record by recording the physiologically worse value
within a 24 h period on the day of enrollment (e.g., lowest blood
pressure or highest creatinine value). We measured modified
sequential organ failure assessment (SOFA) scores (we did not
include the neurologic component of SOFA score because all
patients were intubated and receiving sedative medications) by
using the physiologically worse values within 24 h of enrollment.
We recorded antibiotics and vasopressors administered during
the first week of ICU course from intubation. A consensus
committee of clinical experts (GDK, JE, WB, JSL, AM, BJM)
reviewed all available data for the enrolled patients and
performed retrospective classifications of the etiology and
severity of their acute respiratory failure. Classifications were
performed without knowledge of microbiome sequencing or host
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biomarker data and included sepsis, acute respiratory distress
syndrome (ARDS), pneumonia or aspiration, and intubation for
airway protection without risk factors for ARDS per established
criteria (Gong et al., 2005; ARDS Definition Task Force et al.,
2012; Singer et al., 2016; Neto et al., 2016). Prospective clinical
outcomes included 30-day mortality, duration of ICU stay, acute
kidney injury (Mehta et al., 2007), incident shock (defined as need
for vasopressors) and ventilator-free days (VFD) (Kalanuria et al.,
2014).

Sample Collection
Immediately after enrollment, we obtained baseline samples
for microbiome analyses of the oral and lung communities,
with swabs of the base of the tongue and ETA, respectively.
Simultaneous blood samples (10cc) were collected for
centrifugation and separation of plasma. All samples were
frozen and stored at −80◦C.

Laboratory Analyses
We extracted bacterial DNA directly from oral swabs and
ETAs and amplified the V4 hypervariable region of the 16S
rRNA gene for sequencing on the Illumina MiSeq platform
(Morris et al., 2013). We also performed qPCR of the V3-
V4 region of the 16S rRNA gene to obtain absolute bacterial
loads in each sample (Liu et al., 2012). For plasma biomarker
analyses, we constructed a custom Luminex multi-analyte panel
(R&D Systems, Minneapolis, MI, United States) (McKay et al.,
2017) targeting biomarkers associated with pneumonia diagnosis
(procalcitonin) and acute lung injury outcomes (RAGE: receptor
of advanced glycation end-products, IL-6: interleukin-6, IL-8:
interleukin-8, sTNFR1: soluble tumor necrosis factor receptor
1) (Narvaez-Rivera et al., 2012; Calfee et al., 2014; Famous
et al., 2017). Clinical microbiologic cultures were processed per
standard procedures as described in the Supplement.

Data Processing and Statistical Analysis
Methods
From derived 16S sequences, we applied a custom pipeline
for Operational Taxonomic Units (OTUs-taxa) classification
(Supplement). We calculated descriptive statistics of baseline
characteristics and performed non-parametric comparisons
using the R software (R Foundation for Statistical Computing,
2016). We performed ecological analyses of alpha diversity
(richness-Shannon and evenness-Dominance), beta diversity
(Bray–Curtis dissimilarity index), and taxonomic descriptions
between culture-positive and negative cases with the Quantitative
Insights in Microbial Ecology software (QIIME) and the R
vegan package (Dixon, 2003; Caporaso et al., 2010). Beta-
diversity comparisons with permutation analysis of variance
(Permanova at 1000 permutations) were visualized with non-
metric multidimensional scaling (NMDS). From the taxonomic
composition of the reference-standard culture-positive cases
and the available literature on the composition of the healthy
lung microbiome (Morris et al., 2013; Segal et al., 2016), we
operationally defined taxa as “pathogenic” (when corresponding
to clinically relevant bacterial species isolated in cultures) vs.

“oral-origin” taxa, for those taxa that have been included in
the supraglottic pneumotype of the lung microbiome created
by microaspiration of oral bacteria (Segal et al., 2016). From
observed taxonomic profiles and distribution of pathogen and
oral taxa abundances, we defined pathogen dominance or oral
taxa dominance as relative abundance of >50%, respectively.
We compared log-transformed concentrations of host-response
biomarkers and pathogen or oral taxa dominance with linear
regression models, adjusted for culture results and history of
COPD.

Integrative Analysis and Modeling of
Microbiome and Clinical Data
To move beyond simple correlations and comprehensively
examine which microbiome variables are directly linked to
clinical variables, we used Probabilistic Graphical Models
(PGMs). PGMs can estimate and graphically represent the
complex relationships of large numbers of variables that interact
with each other, allowing for the discovery of direct links between
variables based on their conditional dependencies. We used the
CausalMGM (Causal Mixed Graphical Model) R package1, a novel
algorithm that can accurately identify the underlying graphical
model structure over mixed data types (continuous and discrete)
(Sedgewick et al., 2016; Raghu et al., 2017).

RESULTS

Cohort Descriptive Data
Fifty six patients were enrolled (mean age 56 years, 61% men), 12
(21%) with positive cultures for common respiratory pathogens
(Table 1). Culture-positive and negative patients had similar
distribution of comorbid conditions, severity of illness scores,
mechanical ventilation parameters, laboratory values and clinical
outcomes (Table 1). Empiric antibiotics were prescribed for 54/56
(96%) of patients at the time of enrollment, with a median
exposure of two different classes of antibiotics (gram-positive,
gram-negative, and atypical coverage).

16S Sequencing Results
We analyzed a total of 110 clinical microbiome samples
(56 ETAs and 54 oral swabs) and 71 experimental control
samples. Clinical samples produced 3835 (standard deviation
[SD] = 1329) reads (high-quality 16S sequences) on average,
whereas negative experimental controls generated relatively few
reads (mean = 136 [SD = 146]) (p < 10−16) (Figure 1A) and were
compositionally dissimilar to clinical samples by Bray–Curtis
indices (Figure 1B).

Lung Microbial Community Profiles
Lung communities in culture-positive subjects had significantly
lower alpha diversity (richness [p = 0.02] and evenness [p = 0.04])
compared to culture-negative subjects (Figure 2A). Culture-
negative communities had a wide distribution of alpha diversity,

1https://github.com/benoslab/causalMGM
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TABLE 1 | Baseline characteristics and clinical outcomes of patients enrolled in the Microbiome Cohort of the Acute Lung Injury Registry (MICALIR) study, categorized as
patients with positive or negative respiratory cultures.

Variable All Culture-positive Culture-negative^ P-value

N 56 12 44

Age, mean (SD), years 55.9 (15.3) 54.7 (17.2) 56.2 (14.9) 0.88

Males, N (%) 34 (61) 5 (42) 29 (66) 0.18

BMI, mean (SD) 32.2 (10.2) 28.8 (7.1) 33.1 (10.8) 0.19

History of diabetes, N (%) 25 (45) 6 (50) 19 (43) 0.75

History of COPD, N (%) 17 (30) 5 (42) 12 (27) 0.47

History of pulmonary fibrosis, N (%) 4 (7) 1 (9) 3 (7) 1.00

History of smoking, N (%) 1.00

Current 15 (27) 3 (25) 12 (27)

Former 15 (27) 3 (25) 12 (27)

Never 26 (46) 6 (50) 20 (46)

Sepsis, N (%)# 50 (89) 12 (100) 38 (86) 0.32

ARDS, N (%)$ 21 (38) 7 (58) 14 (32) 0.11

High clinical index for pneumonia& 34 (61) 12 22 (50%) 0.002

Aspiration, N (%) 14 (25) 3 (25) 11 (25) 1

SOFA score, median (IQR)∗ 7.0 (4.8–9.0) 8.5 (6.8–9.2) 7.0 (4.0–9.0) 0.09

PaO2:FIO2 ratio, mean (SD), mmHg 168.7 (81.6) 172.2 (118.3) 164.6 (67.2) 0.51

PEEP, median (IQR), cm 5.0 (5.0–10.0) 5.0 (5.0–9.0) 5.0 (5.0–10.0) 0.48

Plateau pressure, mean (SD), cm 23.3 (7.3) 23.2 (8.8) 23.6 (7.1) 0.90

Tidal volume (per kg of PBW), mean (SD), ml/kg 6.7 (1.2) 6.5 (1.5) 6.7 (1.1) 0.64

SBP, mean (SD), mmHg 118.7 (20.4) 105.2 (14.8) 122.3 (20.3) 0.007

Creatinine, median (IQR), mg/dl 1.4 (0.8–2.4) 1.9 (1.2–3.6) 1.4 (0.8–2.4) 0.26

WBC, mean (SD), x 10−9 per liter 13.9 (6.1) 15.8 (6.5) 13.4 (5.9) 0.33

Temperature, mean (SD), C 37.1 (0.9) 36.9 (0.9) 37.1 (0.9) 0.42

Respiratory Virus infection, N (%) 6 (11) 2 (17)^^ 4 (10) ## 0.58

ICU LOS, median (IQR), days 8.0 (6.0–15.0) 7.5 (6.0–18.2) 8.5 (5.8–14.2) 0.77

VFD, median (IQR), days 21 (0–24) 10.5 (0–23.2) 20.5 (9.5–24.2) 0.29

30 Day mortality, N (%) 13 (23) 4 (33) 9 (20) 0.44

Acute kidney injury, N (%) 44 (79) 11 (92) 33 (75) 0.42

Data are presented as mean (with standard deviations) or median (with interquartile range) for continuous variables (for normally and not normally distributed variables,
respectively) and N (%) for categorical variables. Values of recorded variables were collected within 24 h of enrollment. P-values for comparisons between patients with
positive respiratory cultures vs. negative respiratory cultures are shown, obtained from non-parametric Mann–Whitney test comparisons for continuous variables and
Fisher tests for categorical variables. Statistically significant p-values (p < 0.05) are highlighted in bold. SD, standard deviation; IQR, interquartile range; BMI, body mass
index; COPD, chronic obstructive pulmonary disease; ARDS, acute respiratory distress syndrome; SOFA, sequential organ failure assessment; PaO2, partial pressure of
arterial oxygen; FiO2, Fractional inhaled concentration of oxygen; WBC, white blood cell count; PBW, predicted body weight; PEEP, positive end-expiratory pressure; SBP,
systolic blood pressure; ICU LOS, intensive care unit length of stay; VFD, ventilator free days. ^For 6 of the 44 culture-negative patients, there were no available respiratory
sample clinical cultures within 48 h of research sample acquisition. These patients had negative routine clinical screening swabs for methicillin-resistant S. aureus and
Vancomycin-resistant Enterococcus and were retrospectively deemed as low index of suspicion for pneumonia (e.g., intubated for airway protection for seizures or drug
overdose). For these cases, we assigned the absence of a clinical respiratory microbiologic specimen as negative cultures. #Sepsis was defined according to the Sepsis-3
criteria. $ARDS was diagnosed according to the Berlin definition criteria. ∗SOFA score calculation does not include the neurologic component of SOFA score because
all patients were intubated and receiving sedative medications, impairing our ability to perform assessment of the Glasgow Coma Scale in a consistent and reproducible
fashion. ^^N = 2, respiratory syncytial virus and influenza. ##N = 4, influenza, respiratory syncytial virus, metapneumovirus and parainfluenza.

ranging from very low richness as in culture-positive cases
(Shannon = 0-1) to high alpha diversity (Shannon > 2.9)
in the range of the healthy lung microbiome, despite the
fact that these patients were exposed to broad-spectrum
antibiotics (Morris et al., 2013). Culture-positive communities
had overall significantly different taxonomic composition by
Bray–Curtis indices compared to culture-negative communities
(Permanova p = 0.003) (Figure 2B). On the other hand, lung
communities from patients with a history of COPD (a disease
process that is known to affect lung microbiome composition)
(Sze et al., 2014) had modest differences in alpha and beta

diversity compared to patients without COPD (Supplementary
Figure 3).

By examining the taxonomic composition of the 12 culture-
positive samples (Figure 3A), we found that 16S sequencing
detected taxa concordant to the clinically isolated bacterial
pathogens in 11/12 samples (e.g., Staphylococcus genera for
S. aureus and Enterobacteriaceae for Klebsiella pneumoniae). In
9 (75%) samples, the concordant taxa were the most abundant
organisms in their respective communities. In two other cases
(cases 10 and 11, Figure 3A), sequencing revealed that taxa
corresponding to clinical isolates (Klebsiella and Staphylococcus,
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FIGURE 1 | Comparisons of sequencing results between clinical samples and experimental controls. (A) N of reads by sample type in the MICALIR study. Clinical
samples (lung and oral) produced about 30 times more reads than negative control samples (p < 10−16) [ExtractionNeg: negative control for DNA extraction
experiments; TrachAspControls: sterile left-over saline from the one used to instill into the endotracheal tube for suctioning endotracheal aspirates; PCRNeg: PCR
negative controls]. A rarefaction level of 850 reads was selected for alpha diversity analyses, which excluded small numbers of clinical samples for these analyses.
(B) Non-metric multidimensional scaling (NMDS) plot of Bray–Curtis dissimilarity indices between clinical samples (lung and oral) versus negative controls (extraction,
PCR and tracheal sampling procedure controls) and positive controls. Experimental control samples were compositionally markedly dissimilar to clinical samples by
Bray–Curtis indices (Permanova p-value = 0.001). No taxa detected in negative controls were filtered from downstream analyses.

respectively) had low abundance in their communities, which
were dominated by potentially pathogenic taxa undetected by
clinical cultures (Enterococcus and Fusobacterium, respectively)
(Grupper et al., 2009; Johannesen et al., 2016; Kelly et al., 2016).
Although definitive causal inferences about the clinical impact
of these bacteria are not possible, in the case of Fusobacterium

dominance (case 11), vancomycin monotherapy targeted against
the cultured methicillin-resistant S. aureus (MRSA) failed to
produce a clinical response, whereas improvement ensued
after empiric addition of piperacillin/tazobactam which in
fact is effective against the fastidious anaerobe Fusobacterium
(Johannesen et al., 2016).
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FIGURE 2 | Culture-positive lung communities have significantly lower alpha diversity and are compositionally distinct from culture-negative communities. (A) Alpha
diversity comparisons between culture-positive and culture-negative cases showed statistically significant differences in Shannon and Dominance indices,
representing richness and evenness, respectively, indicating that culture-positive communities are being dominated by fewer bacterial species. Culture-negative
communities demonstrated a wide range of alpha diversity. (B) Beta diversity (Bray–Curtis dissimilarity indices) comparisons between respiratory culture-positive
(Resp Cx Positive) and negative (Resp Cx negative) cases showed significant differences (Permanova p-value = 0.003), but certain culture-negative samples
overlapped with the culture-positive cluster indicating underlying compositional similarity.

Based on the overall concordance between culture-
isolated bacteria and taxonomic abundance by sequencing,
we operationally defined the most abundant taxa in culture-
positive communities as “pathogens” (Supplementary Table 2
and Supplementary Figure 4). Looking then into the culture-
negative cases that represent a diagnostic “black-box,” we found
that 9/44 (20%) communities were dominated by pathogenic
taxa (e.g., Staphylococcus or Pseudomonas genera) suggesting
a specific etiology that was undefined by standard culture-
based methods (Figure 3B). The remaining culture-negative

samples were populated by the most common members
of the supraglottic pneumotype of the lung microbiome,
such as Prevotella, Veillonella, and Streptococcus taxa (“oral-
origin” taxa) (Segal et al., 2016; Dickson et al., 2017). In
four culture-negative cases, clinical viral panel testing was
positive for respiratory viruses (influenza, parainfluenza,
metapneumovirus, and respiratory syncytial virus) without
identification of common bacterial pathogens (Figure 2B), and
thus no indication of the commonly suspected bacterial
super-infection that leads to empiric antibiotic courses
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FIGURE 3 | Pathogen dominance detection in culture-positive (A) and negative lung samples (B). Taxonomic composition is shown as stacked bar-graphs, with
each bar representing a patient’s community, with taxa colored individually and heights of component bars corresponding to relative abundance of each taxon. In
culture-positive samples (A), the clinically isolated organisms by routine microbiologic cultures are spelled out vertically in each bar (Methicillin-resistant S. aureus in
cases 1, 2, 11; Methicillin-sensitive S. aureus in cases 3, 4, 5; Haemophilus influenza in case 5; Pseudomonas aeruginosa in case 6, Klebsiella pneumoniae in cases
7, 8, and 10, Escherichia coli in case 9; Serratia marcescens in case 12. In cases 1–9, the most abundant taxon corresponded to the clinically isolated pathogen
(culture-concordance). In three cases (10–12), there was discordance between cultures and sequencing (i.e., the most abundant organism was not the one isolated
by cultures. In cases 10 and 11, the clinically isolated Klebsiella pneumoniae and S. aureus corresponded to a minority of concordant reads in these communities
that were dominated by Enterococcus and Fusobacterium taxa, respectively. In case 12, sequencing showed dominance by Haemophilus taxa whereas cultures
isolated Serratia marcescens. Among culture-negative samples (B), 20% were dominated by pathogenic taxa similar to the ones detected in culture-positive cases,
and the remaining samples showed high abundance of oral bacteria. In six cases highlighted with the “#” symbol, respiratory viral panels of the nasopharynx or
respiratory specimens were positive (for influenza, respiratory syncytial virus, metapneumovirus or parainfluenza virus). The “other” taxonomic assignment
corresponds to multiple genera not corresponding to “pathogens” or “oral taxa” lumped together for display purposes. H.Flu, Haemophilus Influenza.

in patients with viral pneumonia (van der Sluijs et al.,
2010).

After examining different thresholds of pathogen abundance
(Supplementary Figure 5), we found that a relative abundance
of ∼50% (community dominance) was strongly associated with
bacterial culture results with an odds-ratio (OR) of 48.2 (95% CI:
2.6-898.9, p = 0.009) (Figure 4). In contrast, oral taxa dominance

was strongly “protective” against respiratory culture positivity
(OR = 0.01 [95% CI: 0.0008–0.26, p = 0.004]).

We also quantified the bacterial load in lung communities
by 16S qPCR and found no significant differences in absolute
number of 16S rRNA gene copies between culture-positive and
negative samples, underscoring the fact that several culture-
negative samples were carrying high bacterial loads that were
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FIGURE 4 | Dominance of lung communities by pathogens or oral taxa was strongly associated with respiratory culture results. (A) Pathogen dominance (>50%
abundance) was strongly associated with concordant pathogen culture-positivity [Fisher’s odds ratio (OR) with continuity correction and associated 95% confidence
interval shown]. The reference standard here was chosen to be concordant pathogen positivity, as the sequencing diagnostic test would be clinically valid if able to
detect the same organism as our current reference standard of cultures. (B) Oral taxa dominance (>50% abundance) practically eliminated the odds of
culture-positivity by any pathogen (OR = 0.01). The reference standard here was defined as “any pathogen,” given that oral taxa are not generally considered as
pathogens or speciated by routine microbiologic cultures, and this comparison aims to assess the negative predictive value of high oral abundance in a lung
community for ruling out culture positivity by any pathogenic bacteria.

clinically undetected. There was a wide range of 16S rRNA copies
across samples (range from 34 to 50,390,355 copies) (Figure 5),
and we did not identify a diagnostic threshold of absolute
pathogen abundance for association with culture positivity. Thus,
in our dataset relative abundance of pathogens, which is reflective
of within community microbial dynamics, appeared as a stronger
predictor of culture positivity compared to absolute pathogen
abundance as quantified by 16S qPCR copies.

Oral Microbial Community Profiles
Oral microbiome profiles closely reflected the patterns observed
with the lung microbiome, with lower alpha diversity in subjects
with positive respiratory cultures compared to culture-negative
subjects (p = 0.002) (Figure 6). We further examined the
taxonomic composition of the oral communities in subjects with
pathogen dominance in their lung communities (n = 19) and
found that the oral communities were dominated by the same
pathogen (Supplementary Figure 6) in seven subjects (36%),
implicating colonization of the oral cavity as a potential source
of pneumonia pathogens and suggesting the potential utility of
oral sample sequencing for pneumonia diagnosis.

Host Responses to Lung Microbiota and
Clinical Outcomes
Lung community pathogen dominance was significantly
associated with higher levels of circulating inflammatory

cytokines (IL-6: p = 0.007; sTNFR1: p = 0.03) and epithelial
injury biomarkers (RAGE: p = 0.02) (Figure 7). For IL-
6, the association remained significant after adjusting for
culture results (p = 0.03), suggesting that such pathogenic
bacteria induce host inflammation regardless of their
viability or ability to grow in cultures at the time of
sample acquisition (Table 2). These associations remained
statistically significant and with larger effect sizes when
adjusted for history of COPD, a disease process that could
also confound host-microbiome associations (Table 2). We
did not find any significant associations between important
patient-centered outcomes (mortality, shock, VFD and
length of ICU stay) and pathogen dominance in the lung
communities.

Network Analyses
Probabilistic graph interrogation of our dataset using
CausalMGM identified five microbial taxa and the levels of
hemoglobin to be the most informative values for respiratory
culture positivity, as well as a composite variable measuring
pathogen taxa abundance (Figure 8). These findings extended
our univariate taxonomic analyses in that they identified
the taxa that are directly linked to positive cultures (not
simply correlated) and highlighted sequenced bacterial taxa
as the strongest explanatory variables of culture positivity. To
examine the ability of 16S taxonomic data alone to predict
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FIGURE 5 | Bacterial load in culture-positive and negative lung communities as quantified by 16S rRNA gene qPCR. No significant differences between
culture-positive and negative samples were found. The Y-axis showing number of 16S rRNA gene copies per sample is square-root transformed for visualization
purposes.

culture positivity, we used the Markov blanket around the
culture-positivity variable as a feature selection method (Huang
et al., 2015). The taxonomy-based classifier yielded mean
accuracy of 82.3% (SD = 7%) (Table 3), indicating proof-of-
concept utility for use of sequencing in clinical practice for
predicting culture results, if sequencing results were available
real-time.

DISCUSSION

Our prospective study in mechanically ventilated patients
provides the largest examination to date of the clinical validity
of NGS for etiologic diagnosis of index severe pneumonia.
By utilizing minimally invasive samples, we detected high
abundance of pathogenic bacteria in both culture-positive and
negative cases of pneumonia, which could allow for timely
etiologic pathogen identification and antibiotic adjustments
once technology evolves to allow rapid NGS. Our analyses
highlighted overall community structure differences associated
with culture-positivity and uncovered distinct differences in
the host immune responses to dominant bacterial taxa in the
lungs. Probabilistic graphical models that inclusively consider
the wide range of variables in our dataset provided insights
on the taxonomic and clinical variables directly linked to
respiratory culture positivity. Our results indicate that respiratory
microbiome profiles may provide clinically meaningful and
actionable information above that currently afforded by standard
microbiologic cultures.

16S sequencing provided important insights into the etiology
of both culture-positive and negative bacterial pneumonias.
In culture-positive cases, taxa concordant to clinically isolated
pathogens dominated the respective communities in the vast
majority of cases, consistent with the concept of community

collapse during infection (Dickson et al., 2014). In the few
exceptions of discordance between dominant pathogen and
culture results (cases 10–12, Figure 3A), sequencing did find the
cultured pathogen although it was not dominant and may have
uncovered co-primary or alternative pathogens not clinically
considered. Thus, even in cases of supposed diagnostic certainty,
cultures may only capture a small portion of the underlying
bacterial community and miss dominant bacteria that may have
important therapeutic implications.

Culture-negative samples represent a diagnostic “black-box”
in clinical practice, and in up to 75% of pneumonia cases no
bacterial pathogen is ever isolated (Jain et al., 2015), similar
to the culture-negative rate seen in our cohort. We found that
approximately 20% of our culture-negative samples actually
contained a predominance of pathogenic taxa similar to those
observed in culture-positive specimens (e.g., Staphylococcus or
Pseudomonas). In contrast, eighty percent of culture-negative
samples without a dominant pathogen had high oral bacteria
abundance, similar to what is often found in the lung microbiome
and suggesting ongoing micro-aspiration of oral secretions
around endotracheal tube cuffs in these patients (Kitsios and
McVerry, 2018). In general, oral-origin taxa were associated
with lower levels of host immune responses compared to
pathogenic taxa. Nevertheless, oral taxa dominance cannot be
uniformly considered as clinically innocuous, given significant
interindividual variability in host responses and absolute
bacterial load, making context-specific integration of clinical and
microbiome data necessary for clarifying the clinical importance
of individual oral bacteria.

Improvements in the etiologic diagnosis of pneumonia offered
by NGS can translate into measurable benefits as defined by
appropriate antibiotic targeting. For example, when a culprit
pathogen is identified to dominate a community, early antibiotic
tailoring against this pathogen becomes feasible and avoids
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FIGURE 6 | Alpha and beta diversity comparisons in oral and lung communities, stratified by respiratory specimen culture positivity. (A) Alpha diversity comparisons
in oral communities, showing statistically significantly lower richness and evenness in culture-positive samples compared to culture-negative ones (p = 0.002).
(B) Bray–Curtis dissimilarity indices comparison in 4 groups: red circles for oral communities of culture-positive samples, blue circles for oral communities of
culture-negative samples, red triangles for lung communities of culture-positive samples, blue triangles for lung communities of culture-negative samples. Permanova
indicates significant differences overall, but oral and lung communities are overlapping when stratified by respiratory sample culture positivity, indicating that oral
communities in culture-positive cases were taxonomically more similar to their corresponding culture-positive lung communities, rather than the oral communities of
culture-negative cases.

TABLE 2 | Associations between pathogen abundance and host-response biomarkers in unadjusted linear regression models, and in adjusted models for culture
positivity or history of COPD.

Biomarker Coefficient and p-value

Unadjusted Adjusted for culture positivity Adjusted for history of COPD

IL-6 1.02 (0.007) 0.99 (0.03) 1.07 (0.006)

sTNFR1 0.51 (0.03) 0.47 (0.1) 0.57 (0.02)

IL-8 0.30 (0.32) 0.32 (0.39) 0.30 (0.34)

RAGE 0.64 (0.02) 0.56 (0.08) 0.70 (0.009)

Procalcitonin 0.56 (0.41) 0.75 (0.38) 0.85 (0.21)

Statistically significant associations are highlighted in bold.

the hazards of empiric broad-spectrum antibiotic courses.
Furthermore, in up to 40% of culture-negative communities, no
pathogenic sequence abundance was found and communities had

high alpha diversity metrics in the range of the healthy human
lung microbiome. With no indication of bacterial pneumonia
in these patients by 16S sequencing, early discontinuation
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FIGURE 7 | Pathogen abundance in lung communities was associated with higher levels of lung epithelial injury and inflammation. Associations between plasma
biomarkers of injury (RAGE) and inflammation (IL-6, IL-8, and sTNFR1) with pathogen dominance in lung communities (relative abundance > 50%) are shown for the
entire cohort. Biomarker concentrations (pg/ml) are shown in logarithmic scale. Culture-positive and negative samples are shown with filled and open circles,
respectively. Statistically significant p-values are shown in boxes. No significant association with procalcitonin levels was found.

of antibiotics could substantially decrease their cumulative
antibiotic exposure. Nonetheless, the 16S sequencing technique
we utilized cannot yet be applied clinically and does not provide
species-level or antibiotic resistance information. The advent of
ultra-rapid sequencing devices and bioinformatics pipelines offer
the capacity for whole metagenome sequencing in a matter of
hours, theoretically allowing for bedside pathogen identification
including viruses and fungi and antibiotic resistance prediction
(Naccache et al., 2014; Judge et al., 2015; Schmidt et al., 2017).
In a recent proof-of-concept study, sequencing with a portable,
point-of-care device (Oxford Nanopore Technologies) was able
to identify the culprit pathogens before a clinical microbiology
lab, underlining that NGS may alleviate the time-consumption
problem with traditional culture techniques (Pendleton et al.,
2017). Whole metagenome sequencing techniques remain to
be optimized for pathogen detection from biological samples
containing substantial amounts of human DNA.

Apart from the technological challenges outlined above,
clinical research in the field also has to overcome the formidable
challenge of comparing a new sensitive test (NGS) against a
standard-of-care (microbiologic cultures) that is not a gold-
standard (Rutjes et al., 2007). Given that clinical cultures
can effectively grow only a subset of cultivable bacteria
(Venkataraman et al., 2015), conventional sensitivity/specificity
analyses of NGS become obsolete. To overcome such diagnostic
challenges, the clinical reference standard has to be refined, with
synthesis of multi-level data (clinical, radiographic, biomarkers
etc.) to be combined in a “construct gold-standard” for
pneumonia diagnosis with supervised (involving expert input)

or unsupervised classification methods (Rutjes et al., 2007).
Our PGM analyses highlighted sequencing variables as the
strongest predictors of culture-positivity. Through iterative
training of machine-learning algorithms comparing sequencing
profiles to “construct gold-standard” cases of pneumonia, a
diagnostic, sequencing-based classifier can be developed for
clinical use (Kitsios, 2018). Ultimately, demonstration of clinical
efficacy of NGS-based testing for improving patient outcomes in
randomized clinical trials will provide the evidentiary support
necessary for clinical adoption.

The striking similarities between the oral and lung
communities provided us with further understanding of
the bacterial topography of the intubated respiratory tract
(Kelly et al., 2016; Dickson et al., 2017; Kitsios et al., 2017).
Although not part of routine clinical screening, oral cavity
colonization by pathogenic gram-negative bacteria is a well-
known harbinger of pneumonia in hospitalized patients
(Dickson, 2016). Our analyses uncovered oral communities with
dysbiosis (very low alpha diversity) in patients with positive
sputum or BAL cultures. With cross-sectional examination of
the respiratory microbiome, we could not assess for temporal
bacterial immigration along the oro-tracheal tract. However,
the observed patterns of oral and lung co-dominance by the
same pathogens strongly indict the mouth as the originating
pool of pathogens, which notably occurred despite routine
oropharyngeal decontamination with chlorhexidine in our
ICU (Price et al., 2014). Thus, sequencing of non-invasive oral
swabs offers an attractive option for screening for pathogen
colonization and for plausible pathogen detection in patients
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FIGURE 8 | Pathogen abundance by sequencing was the strongest correlate of culture-positivity by probabilistic graphical modeling. Network analyses included
clinical (yellow), individual 16S taxa (blue), composite pathogen taxa abundance (orange) and biomarker (purple spheres) variables. First and second neighbors
around the clinically important variable of respiratory culture positivity (highlighted by a dashed square) are shown. Edges (links) between variables are shown in red
for positive and in green for negative correlations. The thickness of the edges is proportional to the stability metric of the detected associations. Respiratory culture
positivity was positively associated with the composite variable of pathogen abundance, Enterobacteriaceae, Haemophilus, Escherichia, and Enterococcus taxa, and
negatively associated with Prevotella abundance and hemoglobin levels. COPD, chronic obstructive pulmonary disease; Hgb, hemoglobin; P/F Ratio, Pa02/Fi02
ratio; BMI, body mass index.

with pneumonia when lower respiratory specimens are
unavailable.

The significant associations between sequencing-detected
abundance of pathogens and host biomarkers of injury
and inflammation (RAGE, IL-6, TNFR1) provided further
validation of the biological and clinical relevance of sequencing
profiles for pneumonia diagnosis. Consistent with other

TABLE 3 | Predictive taxa of culture positivity along with their numbers of
appearance in the 10 Markov blankets.

Taxa Number of Appearances

Staphylococcus 1

Corynebacteriaceae_unclassified 1

Escherichia 3

Haemophilus 3

Enterococcus 6

Enterobacteriaceae 8

This predictive model with a linear weighted support vector machine classifier was
able to correctly discriminate respiratory specimen culture positivity with taxonomic
information only with a mean accuracy of 82.3% (SD = 7%).

recent reports correlating lung microbiota composition with
concurrently measured plasma biomarkers in critically ill patients
(Panzer et al., 2017), our findings indicate that inter-individual
heterogeneity in patients with severe pneumonia and ARDS
may be explained on the basis of host-microbiome interactions,
offering a new avenue for identifying clinical subphenotypes for
personalized therapies (Calfee et al., 2014). Our linear regression
models identified history of COPD as a significant confounder of
host–microbiome associations, and thus COPD should be taken
into account in future statistical modeling of these associations.

Our study has several limitations. It is a single-center design
and is limited by available sample size, despite being the largest
study of its kind. Consequently, the panel of pathogenic bacteria
detected by sequencing is limited (Srinivasan et al., 2015),
and generalizing to other critically ill populations and bacteria
should be cautious (Calfee et al., 2014). Streptococcus taxa were
commonly found in our patients with oral taxa-predominant
bacterial communities, and without species-level information,
we cannot exclude that certain 16S sequences belonged to
pathogenic Streptococcus pneumoniae (albeit not recovered in
any culture). However, in sensitivity analyses in which we coded
Streptococcus sequences as “pathogens,” the associations between
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pathogen abundance and host responses were attenuated and no
longer statistically significant (data not shown), suggesting that
Streptococcus taxa detected in our samples are less likely to induce
host inflammation and injury.

Since we performed 16S sequencing in extracted DNA, we
did not consider viruses (either DNA or RNA) or fungi in
our analyses, which can be important pathogens in subgroups
of hospitalized patients (Jain et al., 2015). Sequencing of the
bacteriome is nonetheless of paramount importance, even when
a viral pathogen is identified, as the concern of bacterial super-
or co-infection is pervasive among clinicians. For practical and
ethical purposes, we did not perform BAL for microbiome
analyses, thus we could not assess for regional variability of
communities. Our approach to rely on ETAs was informed
by the recent clinical practice guidelines by the American
Thoracic Society and the Infectious Disease Society of America,
recommending non-invasive testing via ETAs over invasive
testing (with bronchoscopy or blind bronchial sampling) for
hospital-acquired or ventilator-associated pneumonia diagnosis
(Kalil et al., 2016). These recommendations are based on
evidence from five randomized clinical trials (Berton et al., 2014),
including a multicenter clinical trial (Canadian Critical Care
Trials Group, 2006) showing that there is no clinical advantage
(in terms of mortality, length of ICU stay, duration of mechanical
ventilation or antibiotic management changes) between invasive
or non-invasive sampling practices. For research purposes,
ETAs are considered minimal-risk for enrolled patients, and
represent a generally accepted “summary statement” of the
pulmonary microbiome in intubated patients (Kelly et al., 2016;
Kitsios et al., 2017; Panzer et al., 2017). Thus, we considered
a priori that our comparisons between clinical BAL samples
and research ETAs are internally valid for assessing concordance
between cultures and sequencing. Our results showing striking
concordance between dominance pathogen by sequencing with
culture positivity (Figure 4) further validated the comparability
of ETAs vs. BAL for microbiologic diagnosis. Timing differences
of sample acquisition between clinical cultures and research
ETAs may account for some of the observed sequencing-culture
discordances, although research samples were obtained within
24hrs of clinical samples in >75% cases. Finally, we did not
compare NGS against evolving techniques for rapid pathogen
identification (Zumla et al., 2014), because cultures remain the
current standard-of-care and allowed us to perform pragmatic
comparisons in clinically challenging cases.

In summary, our study provides proof-of-concept evidence
that as NGS technologies develop further, they will become
useful as pneumonia diagnostic tools in the ICU to allow
for fast and reliable etiologic pathogen identification. Our
results demonstrate the clinical relevance of comprehensive
microbial community profiling to provide information beyond

what is currently available in clinical practice by microbiologic
cultures and to directly impact clinical decision-making.
Further prospective study in larger patient cohorts will allow
for meaningful integration of sequencing output in culture-
independent definitions of pneumonia.
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