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Algae-bacteria associations occurred widely in marine habitats, however, contributions

of bacteria to macroalgal blooming were almost unknown. In this study, a potential

endophytic strain SI-3 was isolated from Ulva prolifera, the causative species for the

world’s largest green tide in the Yellow Sea, following a strict bleaching treatment

to eliminate epiphytes. The genomic sequence of SI-3 was determined in size of

4.8Mb and SI-3 was found to be mostly closed to Pseudomonas stutzeri. To evaluate

the characteristics of SI-3 as a potential endophyte, the genomes of SI-3 and other

20 P. stutzeri strains were compared. We found that SI-3 had more strain-specific

genes than most of the 20 P. stutzeri strains. Clusters of Orthologous Groups

(COGs) analysis revealed that SI-3 had a higher proportion of genes assigned to

transcriptional regulation and signal transduction compared with the 20 P. stutzeri

strains, including four rhizosphere bacteria, indicating a complicated interaction network

between SI-3 and its host. P. stutzeri is renowned for its metabolic versatility in

aromatic compounds degradation. However, significant gene loss was observed in

several aromatic compounds degradation pathways in SI-3, which may be an evolutional

adaptation that developed upon association with its host. KEGG analysis revealed that

dissimilatory nitrate reduction to ammonium (DNRA) and denitrification, two competing

dissimilatory nitrate reduction pathways, co-occurred in the genome of SI-3, like most

of the other 20 P. stutzeri strains. We speculated that DNRA of SI-3 may contribute

a competitive advantage in nitrogen acquisition of U. prolifera by conserving nitrogen

in NH+

4 form, as in the case of microalgae bloom. Collectively, these data suggest

that Pseudomonas sp. strain SI-3 was a suitable candidate for investigation of the

algae-bacteria interaction with U. prolifera and the ecological impacts on algal blooming.
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INTRODUCTION

Substance exchange is considered the fundation of the
partnership between algae and associated bacteria (Dittami
et al., 2014; Cooper and Smith, 2015; Kouzuma and Watanabe,
2015). Algae, as the primary producer in freshwater and
marine environments, provide dissolved organic nutrients to
phycosphere heterotrophic bacteria (Field et al., 1998; Kouzuma
and Watanabe, 2015). Complementarily, associated bacteria
contribute to growth, morphogenesis, spore germination and
colonization of algae by fixing nitrogen, as well as releasing
minerals, vitamins, auxins, and quorum sensing signaling
molecules (Joint et al., 2002; Croft et al., 2005; Marshall et al.,
2006; Weinberger et al., 2007; Goecke et al., 2010; Foster
et al., 2011; Singh and Reddy, 2014, 2015). Algae-associated
bacteria have the potential to stimulate the growth of algae,
similar to plant growth-promoting rhizobacteria. In addition,
algae-associated bacteria can confer the competitive advantages
to their host. Although limited in study, it has been suggested
that associated bacteria promote algae bloom in the interaction
between diatom and bacteria (Doucette, 1995).

Most, if not all, algae live with associated bacteria (Delbridge
et al., 2004; Dittami et al., 2014). It generally accepted that algae
exudates, such as polysaccharides, amino acids, proteoglycans or
glycoproteins, form a phycosphere and influence the community
structure of algae-associated bacteria (Myklestad, 1995; Sapp
et al., 2007; Sison-Mangus et al., 2014). 16S rDNA sequencing and
denaturing gradient gel electrophoresis (DGGE) fingerprinting
have revealed that algae-associated bacteria communities are
highly distinct from those of planktonic communities (Burke
et al., 2011a; Amin et al., 2012; Goecke et al., 2013). Furthermore,
algae-associated bacteria community presents host specificity.
For example, pyrosequencing of 16S rDNA genes revealed that
three species of the diatom genus Pseudo-nitzschia have different
bacterial community compositions (Sison-Mangus et al., 2014).
According to the spatial distribution of algae-associated bacteria,
they can be divided into epiphyte and endophyte. Burke et al.
(2011b) revealed the epiphytic bacterial community structure of
Ulva australis varied according to space and time. However, the
endophytic bacteria of algae are more closely associated withtheir
host. For example, the endophytic bacterial communities of
Bryopsis were found to be well-defined, even though samples
were collected several hundred kilometers apart (Hollants et al.,
2011). Additionally, the relative stability of endophytic bacterial
communities of algae was successfully used to trace the invasive
Caulerpa racemosa in Mediterranean to Australian range (Aires
et al., 2013).

Ulva prolifera is the only dominant alga that causes successive
green tides in the Yellow Sea, China (Zhao et al., 2013; Li et al.,
2016), inducing harmful ecological impacts and economic losses.

The community structures of U. prolifera associated bacteria
have also been investigated to obtain information regarding the

cause and influence of the world’s largest green tide, but these

studies were limited to communities from thalli surface and
environmental water during the algal blooming (Guo et al.,
2011; Liu et al., 2011). Moreover, the endophytic bacteria of
U. prolifera have never been studied. In the present study, we

obtained potential endophytes by treating the thalli ofU. prolifera
with ethanol plus bleach for sterilization. This method has been
extensively used to eliminate epiphytes of algae and higher plants
(Coombs and Franco, 2003; Kientz et al., 2011; Aires et al., 2012;
Baoune et al., 2018). Pseudomonas sp. strain SI-3, which is mostly
closed to P. stutzeri, was isolated from rich medium in which the
homogenate of pretreated thalli was plated, indicating that strain
SI-3 was probably an endophyte of U. prolifera.

Pseudomonas is a diverse genus that is known to occupy a
wide range of niches and metabolic versatility. As a remarkable
member of the Pseudomonas genus, P. stutzeri has received
particular attention for its ability to conduct denitrification,
degradation of aromatic compounds, and nitrogen-fixation
(Lalucat et al., 2006). Some P. stutzeri strains even associate
with plants endophytically or in the rhizosphere, stimulating
plant growth or protecting plants against pathogens (Yan et al.,
2008; Shen et al., 2013). In this study, the genome of strain
SI-3 was sequenced and compared with that of 20 other
P. stutzeri strains from diverse environments. Comparative
genomic analysis revealed distinct characteristics of strain SI-
3. Overall, the availability of genome sequence of strain SI-3
and comparative genomics results suggest that Pseudomonas sp.
strain SI-3 is a suitable candidate to further investigation of
algae-bacteria interaction with seaweed host U. prolifera.

MATERIALS AND METHODS

Isolation and Identification of
Pseudomonas sp. Strain SI-3
The protoplast of U. prolifera was prepared according to Wu
et al. (accepted). Complete cells and protoplast of U. prolifera
were observed by optical microscope to determine if endophytic
bacteria exist. The external bacteria of thalli of U. prolifera were
removed by ethanol plus bleach treatment according to Aires
et al. (2012). Briefly, U. prolifera samples were placed in 99%
ethanol for 1min and transferred to 3% bleach solution for 5min,
then immersed in 99% ethanol for about 30 s. The effect of
epiphytes removal of the treated sample was detected by scanning
electron microscopy (SEM, S-3400N, Hitachi, Tokyo, Japan)
using untreated sample as a control. The endophytic bacteria of
U. prolifera were released by grinding thoroughly, then cultured
on 2216E agar medium and cultured at 28oC. For identification,
PCR amplification was conducted using universal bacterial 16S
rRNA primers 8F and 1492R. Strain SI-3, which was identified by
16S rDNA sequencing to bemost closely related to P. stutzeri, was
used for genome sequencing.

Genome Sequencing and Characterization
The genome of strain SI-3 was sequenced using PacBio RS II
system and assembled using HGAP assembler. rRNAs and tRNAs
were predicted using Barranp 0.4.2 and tRNAscan-SE v1.3.1,
respectively. Protein coding sequences were predicted using
Glimmer 3.02 and annotated by BLASTp alignment (BLAST
2.2.28+) with the Non-redundant (Nr), string and GO databases.
Gene islands were predicted using IslandPATH-DIMOB v1.0.0
and SIGI-HMM 4.0. Carbohydrate-active enzymes (CAZymes)
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FIGURE 1 | The epiphytes removal effect of ethanol plus bleach sterilization using SEM. (A) Untreated U. prolifera. (B) Ehtanol plus bleach treated U. prolfiera.

were functional annotated using similarity searches against the
CAZy database.

Nucleotide Sequence Accession Number
The complete nucleotide genome sequence of Pseudomonas sp.
strain SI-3 has been deposited in GenBank under accession no.
CP026511.

20 P. stutzeri Strains for Comparison With
SI-3
We selected 20 P. stutzeri strains, including all 10 completely
sequenced strains by far and 10 of 14 strains with genomes that
were assembled into <100 contigs. The isolation environments
of the 20 P. stutzeri strains were diverse, including seawater and
marine sediment, rhizosphere, contaminated soil and water, and
clinical specimens (Table 1) (Yan et al., 2008; Chen et al., 2011;
Yu et al., 2011; Brunet-Galmés et al., 2012; Busquets et al., 2012,
2013; Li A. et al., 2012; Li X. et al., 2012; Chauhan et al., 2013;
Grigoryeva et al., 2013; Smith et al., 2014; Hirose et al., 2015; Hu
et al., 2015; Iyer and Damania, 2016; Wu et al., 2017).

Comparative Genomics
The genome sequence of SI-3 was compared with those of the 20
P. stutzeri above. Homologous genes were obtained by aligning
the amino acids or nucleic acids sequences of all 21 strains using
OrthoMCL v2.0.3 with an E-value<10−5. Conserved and strain-
specific genes were identified by aligning the whole genome
sequences using MUSCLE v3.7. The maximum likelihood (ML)
phylogenetic tree based on the amino acids sequences of
housekeeping gene rpoD which were aligned by MUSCLE
v3.7, was constructed using MEGA 5. RAxML was used to
construct the ML phylogenetic tree of concatenated amino
acid sequences of single-copy orthologous conserved genes of
21 strains, after alignment using MUSCLE v3.7. For Clusters
of Orthologous Groups (COGs) analysis, we used BLASTp
(BLAST 2.2.28+) alignment against the string database (v9.05)
to obtain the COG annotations of genes, then clustered them
into different COG catagories. Metabolic pathway annotation
was conducted using BLASTp (blastx/blastp 2.2.28+) against

the Kyoto Encyclopedia of Genes and Genomes (KEGG) gene
database.

RESULTS AND DISCUSSION

Isolation and Genome Features of
Pseudomonas sp. Strain SI-3
Seaweed-associated bacteria and their interactions with the hosts
have attracted the attention of many researchers worldwide.
Studies have revealed green macroalgae such as Caulerpa
and Bryopsis contain endophytic bacteria (Dawes and Lohr,
1978; Delbridge et al., 2004; Hollants et al., 2011, 2013;
Aires et al., 2013). However, the endophytic bacteria of Ulva,
the cosmopolitan green macroalgae, remain poorly studied.
We found numerous highly moving bacteria when observing
the thalli of U. prolifera by optical microscope (see the
Supplementary Video 1). In addition, the existence of highly
moving bacteria was observed in the protoplast of U. prolifera
using enzymatic digestion (Wu et al., accepted) as well by optical
microscope (see the Supplementary Video 2). This is the first
time the potential endophytic bacteria of U. prolifera have been
visualized.

To isolate potential endophytic bacteria of U. prolifera,
we eliminated the epiphytic bacteria using the ethanol plus
bleach sterilization. In this combination, ethanol serves as a
detergent/solvent to break down the phospholipid bilayer and
promote the invasion of bleach. Moreover, bleach eliminates
the epiphytes as a strong oxidant. This method has been used
to efficiently eliminate epiphytic bacteria and chloroplastidial
DNA of green alga Caulerpa taxifolia (Aires et al., 2012), remove
epiphytic bacteria to extract bioactive compounds originating
from macroalgae (Kientz et al., 2011), and isolate endophytic
actinobacteria from roots of wheat and other plants grown in
petroleum contaminated soil (Coombs and Franco, 2003; Baoune
et al., 2018). The effect of epiphytes removal of U. prolifera
was observed by SEM using the untreated sample as a control.
No bacteria were observed on the surface of the treated sample
(Figure 1), suggesting the efficient removal of epiphytic bacteria.
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TABLE 1 | General information of Pseudomonas sp. strain SI-3 and 20 P. stutzeri strains.

Strain Genome (Mb) Contigs Accession no. Characteristic of isolation site

Pseudomonas sp. strain SI-3 4.84 1 CP026511 Endophyte of Ulva prolifera

P. stutzeri 28a24 4.73 1 CP007441.1 Soil, near the Tel Aviv airport

P. stutzeri ATCC 17588 4.55 1 CP002881.1 Clinical specimen

P. stutzeri A1501 4.57 1 CP000304.1 Rice paddy soil

P. stutzeri DSM4166 4.69 1 CP002622.1 Sorghum nutans cultivar rhizosphere

P. stutzeri CCUG 29243 4.71 1 CP003677.1 Polluted marine sediments

P. stutzeri DSM10701 4.17 1 CP003725.1 Soil

P. stutzeri RCH2 4.60 1 CP003071.1 Cr(VI) contaminated well

P. stutzeri 19SMN4 4.83 1 CP007509.1 Marine, Barcelona

P. stutzeri SLG510A3-8 4.65 1 CP011854.1 Oil-contaminatd soil

P. stutzeri 273 5.03 1 CP015641.1 Sediment of East China Sea

P. stutzeri KOS6 4.95 5 AMCZ00000000.2 Wastewaters from petrol industry factory

P. stutzeri NT0124 4.59 39 JXTL00000000.1 Triticum turgidum wheat rhizosphere

P. stutzeri TS44 4.28 78 AJXE00000000.1 Arsenic-contaminated soils of metal mine

P. stutzeri T13 4.65 71 ALJB00000000.1 Activated sludge from a wastewater treatment plant

P. stutzeri B1SMN1 5.32 78 AMVM00000000.1 Wastewater sample taken at a lagooning treatment plant

P. stutzeri MF28 4.94 91 ATAR00000000.1 Oyster-associated

P. stutzeri KF716 4.19 30 BBQQ00000000.1 Soil near a biphenyls manufacturing plant

P. stutzeri ODKF13 4.59 85 LSVE00000000.1 Soil farm from Alvin Texas

P. stutzeri AR9-4 4.58 18 MDGV00000000.1 Wild caught mosquito anopheles

P. stutzeri KMS-55 4.61 53 MUEH00000000.1 Rice root, India

This result intensively implied that the isolates we obtained from
the treated thalli were endophytes.

The homogenate of treated thalli was cultured and a few
of colonies appeared, among which some hard, dry, and coral-
like colonies resembled P. stutzeri morphologically (Lalucat
et al., 2006). Phylogenetic analysis of the 16S rDNA sequence
of one isolate, designated as SI-3, showed 99% sequence
identity to about 20 P. stutzeri strains. P. stutzeri species
possess a high degree of genotypic heterogeneity, so they are
easily confused during phylogenetic classification (Wolterink
et al., 2002; Romanenko et al., 2005; Cladera et al., 2006;
Lalucat et al., 2006). Since the systematically phylogenetic
identification of strain SI-3 has not yet been completed, we
identified it as Pseudomonas sp. strain SI-3, and this strain
had been repeatedly obtained from bloomed U. prolifera
samples in different years. P. stutzeri has received particular
attention because of its metabolic versatility, such as the
ability to fix nitrogen, as well as to conduct denitrification
and degradation of aromatic compounds. In addition, some

P. stutzeri strains form intimate relationships with plants. For

example, P. stutzeri A1501 is capable of associating with or
colonizing the higher plant and promotes its growth, and has

been used as crop inoculants in China (You et al., 1995; Rediers
et al., 2003).

The genome of Pseudomonas sp. strain SI-3 was sequenced

using PacBio RS II system. A total 117394 reads were assembled
into one single contig using HGAP assembler. SI-3 had a

60.22%-GC circular chromosome of 4,838.607 bp, with no

extrachromosomal elements such as plasmid (Figure 2A). Nine

rRNAs and 58 tRNAs were predicted using Barranp 0.4.2
and tRNAscan-SE v1.3.1, respectively. In total, 4,563 protein-
coding sequences (CDSs) comprising approximately 88.1% of
the genome were predicted using Glimmer 3.02. COG analysis
assigned all genes into different functional categories, about
10% of which are functionally unknown (Figure 2B). Using
IslandPATH-DIMOB v1.0.0 and SIGI-HMM 4.0, 68 genomic
islands were predicted at least by one method in the genome of
SI-3 (Figure 2C).

General Features of Strain SI-3 Genome
Compared With Other P. stutzeri Strains
Phylogeny
We compared SI-3 with the 20 P. stutzeri strains in Table 1,
including all 10 strains that have been completely sequenced to
dateand 10 of 14 strains for which their genomes were assembled
into <100 contigs. The amino acid sequence of housekeeping
gene rpoD, which is a qualified representative of the whole
genomes for different P. stutzeri isolates (Yamamoto et al.,
2000; Cladera et al., 2004) was selected as a genetic marker to
construct a ML phylogenetic tree (Figure 3A). Moremover, a ML
phylogenetic tree was established based on 2,291 concatenated
amino acid sequences of single-copy orthologous genes from
all strains (Figure 3B). Both trees shared a similar topological
relationship and showed that SI-3 was mostly closed to P. stutzeri
273, which was isolated from sediment in a green-tide affected
sea area (Wu et al., 2017), then clustered with 28a24 and MF28,
which is a marine animal oyster-associated strain.
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FIGURE 2 | Genome features of Pseudomonas sp. strain SI-3. (A) Graphical map of chromosome of Pseudomonas sp. strain SI-3. The outer scale is marked in

0.1Mb. From the outside to the center of each circle: Circle 1 and 2, genes encoded on forward and reverse strands, respectively. Coding sequences are colored by

COG categories. Circle 3, RNA genes. Circle 4, GC content. Circle 5, GC skew (G–C/G+C). (B) COG function classification of SI-3. The ordinate axis indicates the

gene numbers in each COG functional category. (C) Genomic islands predicted by two methods. Blue lines present the genomic islands predicted by

IslandPATH-DIMOB method. Yellow lines present the genomic islands predicted by SIGI-HMM method. Red lines present the integrated genomic islands predicted by

two methods. The second circle indicates the GC content.

Pan- and Core-Genome
The pan- and core-genome of strain SI-3 and the 20 P. stutzeri
strains was analyzed to reveal unique genes of SI-3. We identified
a pan-genome of 6,468 genes and a core-genome of 2,216
genes using 21 genomes (Figure 4). Taking into consideration
of the average gene numbers of 4,282 for the 21 strains, the
2,216 genes of core-genome represent approximately 52% of
the total genome. In other words, half of the genomic regions
are conserved. P. stutzeri strains B1SMN1 and KOS6, and
strain SI-3 were ranked highest based on the presence of 705,

378, and 332 strain-specific genes, respectively (Figure 4). For
B1SMN1 and KOS6, which were both isolated from wastewater
samples (Table 1), quite a few of their strain-specific genes
encodes transporters, chemotaxis proteins, secretion systems,
motility related proteins, and transcriptional regulators, which
can contribute to the survival under extreme conditions. Thirteen
of the strain-specific genes of strain SI-3, encoded kinases,
transcriptional regulators, sensor proteins, chemotaxis proteins,
and GGDEF-domain containing proteins, which are indicative
of the need to respond to changes in the host environment
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FIGURE 3 | Phylogenetic trees of Pseudomonas sp. strain SI-3 and 20 other P. stutzeri strains. The Maximum Likelihood (ML) phylogeny trees were constructed

based on amino acid sequences of housekeeping gene rpoD (A) and concatenated amino acid sequences of single copy orthologous genes (B). The topology of the

tree was tested with 1,000 bootstrap replications and bootstrap values were shown near the horizontal branches of the trees.

(Burke et al., 2011a). Fifteen transposase genes are presented
within or around the SI-3 specific genes regions, while 71 strain-
specific genes are located in genomic islands, indicating the
strain-specific genes of SI-3 may beexogenous. Moreover, up to
82% of the strain-specific genes of SI-3 are function-unknown,
which may contribute to its survival and adaptation to unique
environment.

Enhanced Transcription and Signal
Transduction Network
We compared the functional distribution of all genes from
21 strains based on COG database. Strain SI-3 had 198 genes
assigned to transcription (COG K) category, occupying 5.81%
of the genes of all COG categories. This was the highest level
among the 20 P. stutzeri strains, including the closely related
strains 273 and 28a24 (Figure 5A). Transcriptional regulators
were overrepresented in COG K category, which regulated
transcription involved in attachment and colonization, quorum
sensing, motility, and uptake of elements (Kovacikova and
Skorupski, 1999; Cao et al., 2001; Fillat, 2014; Taw et al.,
2015), indicating a complicated regulatory network within SI-3.
In addition, genes enriched in signal transduction mechanism
category (COG T) in SI-3 occupied 8.01% of the total COG
categories genes, which was significantly higher than that of
the other 20 P. stutzeri strains (Figure 5B). There were many
homologs of the histidine kinase and GGDEF and EAL domain
proteins, which were known to be involved in osmoregulation,
chemotaxis, multidrug export, motility, and biofilm formation
(Foynes et al., 2000; Nagakubo et al., 2002; Simm et al., 2004;

Baker et al., 2006; Jenal and Malone, 2006; Yoshida et al., 2007),
and these processes were involved in the colonization steps and
interactions with other community members or the host. It is
widely accepted that the host and its metabolites affect the gene
regulation of associated bacteria (Mark et al., 2005; Pothier et al.,
2007), and that the high proportion of transduction regulators
and signal transducers could be indicative of the need of strain
SI-3 to respond to changes in the host environment (Burke et al.,
2011a). Notably, genes contributing to transcription and signal
transduction mechanism in P. stutzeri strains A1501, DSM4166,
NT0124, and KSM-55, which were isolated from rhizosphere
of higher plants, were not as abundant as that in strain SI-
3. We speculated that, as a potential endophytic bacterium,
strain SI-3 may establish a more intimate and stable relationship
with its host, than rhizosphere bacteria, therefore, they are
prone to evolution of more complicated regulation and signal
transduction networks to adapt to theire host environment.
Collectively, these data indicate that strain SI-3 has evolved
strain-specific features, which may contribute to its adaptability
in the green macroalga U. prolifera.

Loss of Most Aromatic Compounds
Degradation Genes
It is well known that genes work with other genes in a
well-organized cooperative relationship rather than functioning
individually. To evaluate their biological functions systematically,
the overall metabolic pathways of all 21 strains were analyzed
according to KEGG analysis. The gene number of each KEGG
pathway of strain SI-3 was normalized against the average
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FIGURE 4 | Venn diagram showing the pan- and core-genome of Pseudomonas sp. strain SI-3 and 20 P. stutzeri strains. The center red circle represented the

core-genome. The strain name and total gene number of each ellipse presented were marked outside. The specific genes number of each strain was marked in

corresponding ellipse.

FIGURE 5 | Enhanced transcription and signal transduction network in Pseudomonas sp. strain SI-3. The proportions of genes assigned into COG K (A) and COG T

(B) categories were normalized to the total gene number of all COG categories in each strain.

gene number of the corresponding KEGG pathway of all 21
strains. All KEGG pathways of SI-3 were ranked based on
relative gene contents and the gene numbers of most KEGG

pathways of SI-3 were close to the averages. Specifically, pathways
with relative gene contents lower than 0.8 and higher than 1.2
were presented considering the significant differences compared
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with the averages (Figure 6). Coincidentally, 8 of 11 metabolic
pathways with the relative values lower than 0.8 were involved in
degradation of benzene ring containing compounds, indicating
the compromised ability of SI-3 to degrade aromatic compounds.
The greatest gene loss was observed in pathways of xylene
degradation (PATH: ko00622), toluene degradation (PATH:
ko00623), fluorobenzoate degradation (PATH: ko00364), and
degradation of aromatic compounds (PATH: ko01220). Strain
SI-3 was found to be closely related to P. stutzeri, which is
well known for its metabolic versatility in aromatic compounds
degradation (Baggi et al., 1987; Kozlovsky et al., 1993; DiLecce
et al., 1997; Dijk et al., 2003; Lalucat et al., 2006), however,
there was no xylene degradation pathway in SI-3, indicating the
defect of SI-3 in xylene degradation. In addition, the homologs
of enzymes catalyzing the initial steps of xylene degradation
were absent in strains 28a24 and MF28, which were isolated
from soil and oyster, respectively, and closely clustered with
SI-3 (Figure 3). In contrast, as the most phylogenetic closely
related strain of SI-3, P. stutzeri 273 was isolated from a sediment
sample collected in the green-tide affected sea area, but the
complete set of xylene degradation enzymes was conserved.
P. stutzeri strains 19SMN4, B1SMN1, CCUG_29243, KF716,
KOS6, and TS44 had homologs catalyzing the xylene degradation
intermediate methylbenzoate to methylcaltechol (Figure 7A).
For the toluene degradation pathway, strain SI-3, 28a24 and
MF28 all lacked the enzymes needed to catalyze toluene and
its intermediates degradation. Strains KF716, KOS6, and TS44,
which were isolated from contaminated environments (Table 1)
all contained enzymes responsible for degradation of toluene via
2-hydroxytoluene to 3-methylcatechol. Based on KEGG analysis,
strain 273 was able to degrade toluene to benzoate. However,
other strains could not degrade toluene, but conserved enzymes
catalyzing 4-methylcatechol, the intermediate of toluene-4-
sulfonate degradation pathway (Figure 7B). Significant gene
loss in fluorobenzoate degradation pathway was observed
in strain SI-3, as well as P. stutzeri strains 28a24, KOS6,
and MF28, all of which lacked the homologs of genes
involved in fluorobenzoate degradation (Figure 7C). Hence, the
number of SI-3 genes involved in the degradation of aromatic
compounds degradation (PATH: ko01220) pathway was rather
low (Figure 7D) because the number of genes involved in
degradation of multiple benzene ring containing compounds
was below average. Collectively, these data, demonstrated that
P. stutzeri strains isolated from contaminated environments
were likely to conserve more pollutant degradation genes, while
strain SI-3, a potential endophytic bacterium of U. prolifera,
lost the majority of genes involved in aromatic compounds
degradation. Interestingly, Zhang et al. (2017) demonstrated that
sterilized host U. prolifera was capable of efficiently removing
polycyclic aromatic hydrocarbons. In contrast, enrichment of
aromatic compounds biodegradation pathways was found in
the rhizoplane microbiome by metagenomic sequencing of
root microbes of foxtail millet (Jin et al., 2017). Therefore,
we speculated that the bacterial spatial distribution and
host capacity of aromatic compounds degradation could
shape the adaptation features of the plant-associated bacterial
genome.

Co-existence of Two Competing
Dissimilatory Nitrate Reduction Pathways
in SI-3
Pseudomonas stutzeri is renowned for its specific metabolic
properties in nitrogen metabolism, such as nitrogen fixation
and denitrification. Since SI-3 was phylogenetically close to
P. stutzeri, we evaluated the nitrogen metabolism pathways of
SI-3 based on KEGG analysis. There were no homologs of nif
genes, the nitrogen fixation cluster, in strain SI-3. Homologs of
nitrogen fixation genes were only identified in P. stutzeri strains
A1501, DSM4166, KMS55, B1SMN1, and KOS6, among which
the first three were all isolated from rhizosphere (Table 1). A
complete set of denitrification genes were found in the genome
of SI-3, as well as all of the investigated P. stutzeri strains
except for strain 28a24. Moreover, genes of dissmilatory nitrate
reduction to ammonium (DNRA), a competing dissimilatory
nitrate reduction pathway of denitrification, were identified in
all strains but 28a24. DNRA and denitrification determine fates
of nitrate, with the former conserving nitrogen in a more
stable and biological preferred form, while the latter serves as
a nitrogen sink by turning nitrate into gaseous products. The
importance of DNRA in many ecosystems has been ignored until
recently (Silver et al., 2001; Rütting et al., 2011). It was proposed
that DNRA mechanism by providing NH+

4 could explain the
successive bloom of Texas Brown Tide caused by monospecific
microalga Aureomonas lagunensis (An and Gardner, 2002).
However, the role of DNRA in the bloom of macroalgae has
never been considered and studied. Additionally, the interspecific
ecological success of U. prolifera has been shown to be partially
a result of its higher uptake rate of nitrogen (Luo et al., 2012),
and NH+

4 is the preferred nitrogen form (Guo et al., 2017). Since
the nitrate concentration of the Yellow Sea presented increasing
trend in the last few decades while the concentration of NH+

4
fluctuated (Li et al., 2015, 2017), we wondered whether coupling
of DNRA from associated bacteria with the high nitrogen uptake
rate would confer U. prolifera a competitive advantages over
other seaweeds in the Yellow Sea against other seaweeds. Based
on the results of the present study, the role of bacterial DNRA in
the algae-bacteria interaction of U. prolifera is worthy of further
investigation.

Other Factors Probably Involved in
Association With U. prolifera
Substance Exchange
Substance exchange is essential to maintenance of an algae-
bacteria interaction. Pseudomonas strains can use a wide
range of nutrients (Clarke, 1982). We identified 118 CAZymes
encoded in genome of strain SI-3, including 12 α-amylases
(GH13) and five cellulases (GH5) and one β-1,4-xylosidase
(GH39), whose substrates were constituents of polysaccharide
of U. prolifera (Ray, 2006; Lahaye and Robic, 2007). In
addition, SI-3 contained 218 genes involved in transport of
diverse substrates, such as amino acids, sugars, organic acids,
lipopolysaccharide, and biopolymers and 88 genes encoding
peptidases or proteases, indicating the capacity of SI-3 to
degrade plant-derived compounds. Apart from obtaining organic
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FIGURE 6 | Relative contents (RCs) of gene numbers of KEGG metabolic pathways in Pseudomonas sp. strain SI-3. The average gene numbers for each metabolic

pathway in strain SI-3 and 20 P. stutzeri strains were set to 1, after which the gene numbers of corresponding KEGG metabolic pathways of SI-3 were normalized. All

pathways of SI-3 were ranked based on the RC of genes. The pathways with RCs between 0.8 and 1.2 were omitted to make the results clear. The embedded panel

in the upper right was the entire profile of all pathways of SI-3.

FIGURE 7 | Loss of genes involved in aromatic compounds degradation pathways in Pseudomonas sp. strain SI-3. The gene numbers in each strain were normalized

to the average gene numbers of SI-3 and 20 P. stutzeri strains in xylene degradation (A), toluene degradation (B), fluorobenzoate degradation (C), and degradation

aromatic compounds (D) pathways.

matter from their hosts, algae-associated bacteria can provide
micronutrients in return. For example, iron is essential for
most organisms, but often limited in marine environment.
The availability of iron regulates the nitrate acquisition in
Ulva (Viaroli et al., 2005) and utilization of xenosiderophores,

high-affinity ferric iron chelators, is a common advantage
for cells (Miethke and Marahiel, 2007). Strain SI-3 possessed
genes encoding non-ribosomal peptides synthetases involved in
the biogenesis of enterobactin, vibrobactin, bacillibactin, and
myxochelin precursor according to the analysis against KEGG
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database, which may contribute to maintenance of its association
with U. prolifera.

Defense
Toxic metals contamination in the margin sea are receiving
more and more attention, and numerous studies have shown
green macroalgae, such as U. linza and U. prolifera, are able
to absorb and accumulate toxic metals (Jiang et al., 2013).
Strain SI-3 contained two different copper resistance systems,
cus and cop (Cha and Cooksey, 1991; Franke et al., 2003),
the arsenic-resistance genes arsC andarsRB, nickel-resistance
proteins and multiple toxic metal efflux and transporters.
These genes may help SI-3 adapt to high metal niches of its
host. In addition to defense against toxic metals, SI-3 also
contained many genes involved in defense against oxidative
stress, such as oxidative stress response regulator OxyR, catalase
and peroxidase. Macroalgae can employ oxidative bursts, in
which rapid activation of reactive oxygen species occurs, to
defend against pathogens (Goecke et al., 2010). Obviously, the
survival and stable existence of endophytic bacteria depend on
the ability of these genes to cope with oxidative bursts from their
host.

CONCLUSION

Pseudomonas sp. strain SI-3, which was phylogenetically close

to P. stutzeri, was isolated from U. prolifera, the only dominant

alga of the world’s largest green tide. Here, we reported

the complete genome sequence of strain SI-3 and revealed

its unique genomic characteristic as a potential endophyte

based on comparison with 20 P. stutzeri strains. Stain SI-

3 contained more strain-specific genes than most of the

others, which may have facilitated its adaptationto the host
environment. The remarkably high proportion of genes assigned
to transcriptional regulation and signal transduction functional
categories indicated the extraordinary ability of SI-3 to respond
to its host environment. Loss of genes associated with aromatic
compounds degradationwas observed in SI-3, which may be
an evolutionary adaptation when associate with its host. Our
results revealed the co-existence of DNRA and denitrification,
two competing dissimilatory nitrate reduction pathways, in
strain SI-3, which was similar to most of the P. stutzeri
strains it was compared with. The role of bacterial DNRA

in algae-bacteria interaction during algal blooming process is
noteworthy. Moreover, SI-3 was found to have many genomic
traits that probably contributed to maintenance of its algae-
bacteria interaction with U. prolifera, such as the potential
to transport and degrade plant-derived compounds, providing
micronutrient to the host and resistance to toxic metals and
oxidative stress. Therefore, we suggested that Pseudomonas sp.
strain SI-3 was a suitable candidate for investigation of the
algae-bacteria interaction with macroalgae U. prolifera.
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