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Mathematical models play a central role in epidemiology. For example, models unify

heterogeneous data into a single framework, suggest experimental designs, and

generate hypotheses. Traditional methods based on deterministic assumptions, such as

ordinary differential equations (ODE), have been successful in those scenarios. However,

noise caused by random variations rather than true differences is an intrinsic feature

of the cellular/molecular/social world. Time series data from patients (in the case of

clinical science) or number of infections (in the case of epidemics) can vary due to

both intrinsic differences or incidental fluctuations. The use of traditional fitting methods

for ODEs applied to noisy problems implies that deviation from some trend can only

be due to error or parametric heterogeneity, that is noise can be wrongly classified as

parametric heterogeneity. This leads to unstable predictions and potentially misguided

policies or research programs. In this paper, we quantify the ability of ODEs under different

hypotheses (fixed or random effects) to capture individual differences in the underlying

data. We explore a simple (exactly solvable) example displaying an initial exponential

growth by comparing state-of-the-art stochastic fitting and traditional least squares

approximations. We also provide a potential approach for determining the limitations

and risks of traditional fitting methodologies. Finally, we discuss the implications of our

results for the interpretation of data from the 2014-2015 Ebola epidemic in Africa.

Keywords: stochastic, deterministic, epidemiology, panel data, random effects, fixed effects

1. INTRODUCTION

Mathematical models play an increasingly central role in the analysis of infectious disease data at
both the within-host and epidemiological levels (Perelson et al., 1996; Heesterbeek, 2000; Molina-
París and Lythe, 2011). The traditional modeling approach involves formulating a set of structural
assumptions about the processes involved, such as infection, recovery, death, etc. Often, these
structural assumptions are then implemented in terms of differential equations, predominantly
ordinary (ODE), but sometimes partial (PDE), or delayed (dODE) differential equations. The
advantage of this approach is its amenability for both analytical treatment and powerful numerical
and fitting algorithms even for non-linear problems. We will refer to those approaches collectively
as deterministic.
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However, stochasticity is an intrinsic feature of infections at
multiple levels from the cellular/molecular world to the level of
epidemics (Süel et al., 2006; Bressloff and Newby, 2013). The
deterministic framework conceptualizes all deviation from the
model prediction as error. For example, in a simple univariate
linear regression we say that the data are equal to a linear
predictor plus some error. Put another way, we can say that error
is the density of the data conditional on the model. However,
stochasticity generates intrinsic fluctuations in the underlying
dynamics of a system (for instance, in the number of secondary
cases an incident case generates), even when the process follows
the structural model envisaged. That is, stochasticity generates
noise, which we define as the set of outcomes that are consistent
with a fixed set of assumptions (i.e., a model).

One of the central challenges of using the deterministic
framework is to delineate its limitations (Roberts et al., 2015). If
the world and its data truly are stochastic, then how much of a
problem is it to conflate noise with error? Likewise, how much
information in the data are we neglecting by treating all deviation
as uninformative error? To what extent is the assumption of
deterministic dynamics plus error providing misleading results?

This question is not gratuitous as some parameters
estimated within the deterministic framework, such as the
basic reproduction number (R0), are often invoked to quantify
the aggressiveness of a pathogen and to determine the conditions
under which a pathogen will go extinct (Dietz, 1993; Heffernan
et al., 2005) or to create public health information such as risk
maps (Hartemink et al., 2011).

The potential problems in applying the deterministic
framework can become even more pronounced when we have
data that represent multiple realizations of a heterogeneous
stochastic process. For example, a set of viral load profiles
in different infected individuals (e.g., primary HIV infection;
Ribeiro et al., 2010) or epidemic curves in different regions (e.g.,
cases of Ebola in multiple counties of the same country ; Krauer
et al., 2016), that is, any data that can be represented as a panel
over discrete units. In those scenarios, an important question is
whether the variability seen between units can be attributed to a
genuine difference in the process that generated the data (e.g.,
some parameters of the dynamics are different for each unit),
simple stochastic fluctuation, or a mixture of the two, in addition
to measurement error. Given a common error model across the
units, the deterministic framework assumes that all deviation
that cannot be explained by error must be due to parametric
variability between units, that is the units are fundamentally
different from one another. For this reason, the deterministic
framework is ill-suited to tackle the question of stochastic effects.

We address in this paper two related questions regarding
modeling of panel data: (i) can we use a stochastic modeling
approach to partition variability into stochastic and parametric
components? and (ii) can we quantify the bias induced by
modeling the data by a deterministic approach with error? Put
in other words, is there a best and a good-enough fitting method

for the practitioner? In section 2.1, we consider two simple
structural models that will help us emphasize the essence of
the problem without having to invoke unnecessary complexities
that may cloud our main arguments. In section 3.1, we present

our approach to analyze those models, which will then be used
to benchmark comparisons between traditional (deterministic)
fitting methods and more sophisticated stochastic ones, that we
explore in section 3.2. As a case study, in section 4, we compare
deterministic and stochastic modeling approaches to data from
the 2014-2015 Ebola epidemic in West Africa. We use epidemic
data from multiple counties of those countries that were most
heavily affected. If one thinks of each county as a realization of
some epidemic generating process, then the relevant question
is whether differences between the counties can be accounted
for by stochastic variability or if it is possible to detect a signal
for different growth rates of the epidemic in different counties.
Finally, in section 5 we summarize our results and discuss the
implications of our work.

2. METHODS

2.1. Simulated Data
The general framework we employ is to simulate data in silico
from two structural models, birth-only or birth-death process
(see Karlin, 2014), by a discrete-time stochastic simulation and
then fit those data using both deterministic and stochastic
methods under a variety of assumptions.

The code used to generate the data and fit the models is
given in Appendix A. We simulate panel data according to the
following process

x1 :U,1 :O ← 0
a← Ŵ(µ = µA, σ = σA)
b← Ŵ(µ = µB, σ = σB)
j, k← 0
for j ≤ U do

j← j+ 1
I← 1
for k ≤ O do

φA← Poisson(Ia)
I← I + φA

I← I − Poisson(Ib)
xj,k ← φA

end for

end for

where U is the number of units in the panel, O is the number
of observations (time points) per unit, and xj,k is the number
of new infected cases in each time period k for unit j—this is
the output of the simulation used for the fits described below.
If the number of deaths exceeds the infected population size,
I, this variable is set to 0. These simple models capture both
the initial exponential growth phase when infected population
sizes are small and stochastic die out that is common in many
epidemiological processes. For simplicity, we focus only on the
early stages of the epidemic, i.e., the approximately exponential
phase in the growth of infected individuals. Note that throughout
we use arbitrary time units.

Each simulated data set is specified by 6 parameters: mean
growth rate, µA; standard deviation of the growth rate, σA; mean
death rate, µB; standard deviation of the death rate, σB; the
number of units in the panel, U; and the number of observations
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per unit,O. From this we consider 4 possible scenarios: birth-only
without parametric variability (µB = σB = σA = 0), birth-only
with parametric variability (µB = σB = 0), birth-death without
parametric variability (σA = σB = 0), and birth-death with
parametric variability. In all cases with parametric variability,
we assume a Gamma distribution for the respective parameter
(where µ and σ are the corresponding mean and standard
deviation). We chose the Gamma distribution because it can
easily be re-parameterized into its mean and standard deviation,
which makes interpreting the parameters straightforward.

We set up four sets of simulated experiments to explore
the effects of (1) model misspecification, (2) the number of
observations per unit, (3) the number of units in the panel, and
(4) the heterogeneity in parameters (growth rates) between units
(see Table 1 for reference).

In the first set of experiments, we simulate data from a
birth-only process without parametric variability (µA = 0.15),
birth-only with parametric variability (µA = 0.15, σA = 0.02),
birth-death without parametric variability (µA = 0.25, µB =

0.1), and birth-death with parametric variability (µA = 0.25,
σA = 0.02, µB = 0.1, σB = 0.01). In each case, we assume
(U =) 20 units per panel and (O =) 20 observations per unit,
at equal time intervals. We then fit each of these four data sets
using each of four possible models (birth or birth-death with and
without random effects) with both stochastic and deterministic
approaches for a total of 32 fits.

In the next three sets of experiments we use the birth-only
model with parametric variability and the default parameters
µA = 0.15, σA = 0.02, U = 20, O = 20. In the second
set of experiments, we vary the number of observations per unit
(O ∈ {10, 20, 30, 40, 50}), in the third set of experiments we vary
the number of units in the panel (U ∈ {10, 20, 30, 40, 50}), and in
the fourth set of experiments we vary the heterogeneity in growth
rates (σA ∈ {0.01, 0.02, 0.03, 0.04, 0.05}).

2.2. Parameter Inference
To infer the parameter values, we use a fitting scheme based on
simulations that can account both for the intrinsic stochasticity
of the process and the potential variation among individuals.
Here all model formulations (both stochastic and deterministic
versions) are fit using the iterated filtering method implemented

TABLE 1 | Summary of groups of numerical experiments, the aim of each

experiment and the figure summarizing the main results for each case.

Experiment # Description Model Results

1 Effect of model misspecification Birth only and

birth-death

Figure 3

2 Effect of number of observations Birth only Figure 4

3 Effect of number of units in the panel Birth only Figure 5

4 Effect of parametric variance Birth only Figure 6

In all cases (in particular in Experiment 4), we compare fitted parameters using the

stochastic and deterministic methods described in section 3.1. In all cases, we made use

of simulated data with and without random effects to account for the impact of parametric

variance.

in the R library pomp (King et al., 2016). This approach allows
us to fit all the models to the data using the same framework and
likelihood functions, such that the model fits are all comparable.
We specifically use the iterated filtering for panel data (IFPD)
formulation detailed in Romero-Severson et al. (2015). Code used
to specify the pomp process are given in Appendix A.

Models were fit using 5,000 or 15,000 particles for the
deterministic and stochastic models respectively. For stochastic
fits, the density of the number of incident cases in the kth time
period of the jth unit, xj,k, is assumed to be Poisson(xj,k|Ij,k−1α)
were Ij,k is the simulated number of extant infected cases in
the kth time period of the jth unit and α is the growth rate,
which itself may be sampled from a Gamma distribution. For the
deterministic fits, xj,k is simply xj,k = αIj,k−1.

To obtain confidence intervals (CIs) for the parameters, we
used a profile likelihood method (Romero-Severson et al., 2014)
where the parameter of interest was varied over a grid of values
and the likelihood was calculated, by refitting the data allowing
all other parameters to be free. We used the mif2method (King
et al., 2016) in pomp. A local regression (loess) curve was fitted
to the profile likelihood curve and both the MLE and CIs were
calculated from the interpolated curve (King et al., 2015, 2016).

2.3. Ebola Data and Analysis
The Ebola case count data was compiled from publicly available
datasets published by the World Health Organization (from
the “Ebola Data and Statistics” section of the WHO website).
Case counts were stratified by country and county of origin. All
descriptive analyses were done on the full data. However, to fit the
models to the data using the simulation-based method described,
we restrcited the data in the following way.

(i) For every county, we define time = 1 as the first week where
the total number of cases is larger or equal to 1.

(ii) We truncated the data at 10 weeks after that time, in order to
have homogeneous sets (same number of points) during the
approximately exponential initial growth of the epidemic.
To emphasize this latter point, we re-plot the data in linear-
log scale.

(iii) Finally, we removed those counties where the data does not
include at least 10 data points.

Note that in the simulated data, we assumed no measurement
error in time or in number of infected. However, this is not
a good assumption for real epidemiological data. Thus, for the
Ebola data, we fit amodified version of both the deterministic and
stochastic birth-only model accounting for measurement error
(e.g., missed cases and reporting delays) in a simple way, by
assuming that the number of new cases is distributed according
to a Negative Binomial, rather than a Poisson, conditional on
the simulated state of the system at the previous time. We re-
parameterize the typical NB(n, p) as NB(δ, µ

µ+δ
) where µ is the

mean of new cases and δ is an overdispersion parameter such
that limδ→∞NB(δ, µ

µ+δ
) = Poisson(µ). Therefore, the mass

of the data conditional on the simulated state of the system

is NB
(

yj,k
∣

∣δ,
xj−1,ka

xj−1,ka+δ

)

. The parameter δ controls the level of

overdispersion (smaller values, more overdispersion) in the data
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conditional on the simulated state and is free (estimated) for
each point in the likelihood profiles. This formulation puts the
stochastic and deterministic models on a level playing field in that
the deterministic model can model variance between epidemic
trajectories with increased overdispersion rather than increased
population-level heterogeneity. The deterministic and stochastic
models were fit with 5,000 and 15,000 particles, respectively, for
each value in the profiles (Figure 10).

3. RESULTS

3.1. Motivation: Noise as Parametric
Heterogeneity
Traditional inference is based on maximum likelihood estimates
of some well-defined functions. For instance, for the cases
considered here (pure birth and birth-death) an ODE-based
deterministic approximation provides differential equations that,
upon solving, can be fit to the data to determine the parameters
(µA = α and µB = γ ) that best describe the data (see Table 2,
and Appendix B for a succinct derivation for the pure birth case).
Similarly, the stochastic version of those models can be solved
and in that case one could also fit the mean and variance of a
given observable (last two rows in Table 2), and indeed higher
moments.

In these cases, as the models are linear, both deterministic
and stochastic predictions for the average are the same
(because averaging and integrating the evolution equation are
exchangeable operations). However, the latter has the benefit that
it also allows to fit the variance of the data (thus, in principle,
increasing the reliability of the inferred parameters).

The main point that we wish to address is how to interpret
different trajectories of an intrinsic stochastic process. To
illustrate this point, Figure 1 shows 100 realizations of the simple
stochastic pure birth model with rate parameter α = 0.1 time-
unit−1 measured without error at integer times. If we use a
naive deterministic approach (top of Table 2), we fit I(t) =
eαt to each trajectory (data set) and estimate α independently,
obtaining a distribution for this parameter (Figure 1, bottom

TABLE 2 | Number of infected, new cases and total cases for the birth and the

birth-death processes as defined in the deterministic (top part of the table) and

stochastic (bottom part) approaches.

Birth process Birth-death process

Differential equation
dI

dt
= αI

dI

dt
= (α − γ )I

Infected, I eαt e(α−γ )t

New cases per unit time, N αeαt αe(α−γ )t

New cases in 1t, Nt eαt (eα1t − 1)
α

α − γ
e(α−γ )t (e(α−γ )1t − 1)

Total cases, T eαt γ

α − γ
(
α

γ
e(α−γ )t − 1)

Mean of infected, 〈I〉 eαt e(α−γ )t

Variance of infected, σ2
I

eαt (eαt − 1)
α2 − γ 2

(α − γ )2
e(α−γ )t (e(α−γ )t − 1)

In all cases, the epidemic starts with one infected case, namely, I(0) = 1. Here we only

consider models without parametric variability (σA = σB = 0).

panel). If this process were observed at time 25, it would be
tempting to conclude that there is a high degree of heterogeneity
in the growth rates of these epidemics. Even by time 75, when
the expected population size is over 1,000, we still see a large
heterogeneity in the estimated rates.

If we used the stochastic version of the pure birth process
(bottom of Table 2), by definition we would assume that there
was just one value for the α parameter and could fit the mean
and variance (and possibly other moments) of the trajectories to
estimate that growth rate.

Another possible deterministic fitting approach is to allow
for random effects, where we assume an underlying distribution
(e.g., normal) for the growth rate parameter (α) and allow each
trajectory to be the realization of a pure birth process with
parameter drawn from that distribution (Gelman and Hill, 2007).
In this case, the estimation method yields the parameters of the
distribution ( i.e., the mean and variance). This is a mixed effects
approach, where we still assume no stochasticity and that all
differences are due to parametric variability.

This approach of assuming parametric variability can also
be used with the stochastic version of the model. In fact, it is
instructive to analyze in more detail such situation by calculating
analytically the distribution of the number of infected accounting
both for the stochasticity of the process and the parameter
distribution for the pure birth process.

If we assume that the growth rate, α, is distributed according
to a normal, α ∼ N (µA, σA), then the probability of having I(t)
total infected is the product of the geometric distribution for fixed
α, which is the solution of the pure birth process, (see Allen,
2010), and the normal distribution for α, namely

P(I|µA, σA, t) = P(I|α, t)P(α|µA, σA)

= [p(1− p)I−1]
e−(α−µA)

2/2σ 2
A

√

2πσ 2
A

where p = e−αt . Therefore,

P(I|µA, σA, t) =

(

1− e−αt
)I−1

e
−
(α − µA)

2

2σ 2
A

−αt

√

2πσ 2
A

, I = 1, 2, . . .

(1)

From this expression, we can obtain the mean and variance of I,
including the contributions of both stochasticity and parametric
variability (see also Appendix C)

〈I〉 = e
µAt+

σ 2
At

2

2 (2)

and

σ 2
I = eµAt+

σ2At2

2

(

eµAt+
σ2At2

2

(

2eσ
2
At

2
− 1

)

− 1

)

(3)

(These expressions reduce to the forms in Table 2, when σA = 0).
It is worth noting that both themean and the variance of I depend
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FIGURE 1 | Stochastic realizations of a pure birth process and distributions of deterministic estimation of the growth rate at different times. Top figures show 100

trajectories from a continuous time pure-birthh process with parameter α = 0.1 over two time scales. The only difference between each trajectory is intrinsic

stochastic variability. The red line shows the expected population size assuming a deterministic process, which is also the mean number of infected of the stochastic

process if there is no parametric variability. The bottom plot shows the distribution of estimated growth rates obtained by fitting a linear model to the log10 of the

population size for each of the 100 trajectories from time 0 to times 25, 75, and 125. The red dots indicate the mean of the estimated growth rates, which are all close

to the true value of 0.1.

on µA and σA, suggesting that an ODE or stochastic fit to the
mean ignoring parametric variability would estimate the growth
rate incorrectly.

These four different ways to fit the same data set (e.g.,
Figure 1) beg the question of which one is the best approach and
whether that depends on the data containing actual parametric
variability or not. On the other hand, the explicit knowledge of
the stochastic form of σI , both in the presence of parametric
variability (expression 3) and pure stochastic variability (Table 2),
suggests the definition of a quantity,R2 (analogous to a coefficient
of determination) as

R2 =
σ 2
param

σ 2
param + σ 2

noise

= 1−
σ 2
noise

σ 2
I

(4)

For the pure birth process (see Appendix C for details):

R2 =
1
2σ

2
At

2eµAt
(

6eµAt − 1
)

eµAt
(

eµAt − 1
)

+ 1
2σ

2
At

2eµAt
(

6eµAt − 1
)

(

≃
3σ 2

At
2

1+ 3σ 2
At

2

)

(5)

This expression helps us to determine (in a prescriptive way)
whether the process is governed by stochasticity (R2 → 0)
or by parametric variability (R2 → 1). Also, as it can be
expected, the variance at shorter times is governed by pure

random fluctuations but as time proceeds, parametric variance,
if present, is increasingly more relevant. We plot R2 as a function
of time in Figure 2

To analyze these issues in more detail, we now use in
silico generated data fitted in multiple ways, with and without
stochastic effects and with and without assuming parametric
variability, to assess the quality of the parameter estimation.

3.2. Comparison of Fitting Methods With
Simulated Data
In Appendix D (Tables I to IV) we summarize the fitted
parameters discussed in the Sections 3.2.1 to 3.2.4.

3.2.1. Experiment 1: Model Misspecification
We fit 4 models (birth-only and birth-death, with and without
random effects) using both deterministic and stochastic model
formulations allowing us to consider the effect of both
model structure misspecification and other model assumptions.
Parameter estimates for each data set are given in Table I in
Appendix. Also, in Figure 3 we summarize succinctly the main
conclusions of this section.

3.2.1.1. Correct model
When the data are generated without population heterogeneity
(i.e., σA = σB = 0) and fit with the correct structural model, both
the deterministic and the stochastic fits have reasonable point
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FIGURE 2 | Plot of R2 as a function of time for heterogeneous stochastic

exponential growth. Each line shows R2 for the specified level of σA assuming

µA = 0.1. The horizontal gray line indicates 90% of the variance being due to

parametric heterogeneity; the dashed vertical gray lines indicate the time at

which each line reaches 90%.

estimates and their confidence intervals (CIs) contain the true
parameter value (shown in Table I in Appendix). However, CIs
on the death rates are very broad suggesting that the incidence
data are only weakly informative. When we introduce population
heterogeneity into both the data and fits, the stochastic fit still
contains the true parameter values in its CIs; although fitting
all 4 parameters leads to very broad estimates for the mean and
standard deviation of the death rate. The deterministic model,
however, is unable to estimate either the mean or standard
deviation of the growth rates correctly.

3.2.1.2. Random effects in the model but not the data
When the fit attempts to estimate random effects when no
parametric variability is actually present, the CIs for the estimated
standard deviation of the parameters in the stochastic fits contain
0, while the deterministic CIs do not. That is, the deterministic
model finds evidence for population-level heterogeneity when
none actually exists.

3.2.1.3. Random effects in the data but not the model
When there is population-level heterogeneity in the data but the
model assumes that there is none, the stochastic fit still obtains
correct point estimates and CIs of the mean effects for both the
birth-only and birth-death models. However, in the deterministic
fits the CIs for the mean effects did not contain the true values of
the growth rates.

3.2.1.4. Death in the data but not in the model
When fitting the birth-death data with a birth-only model, we
found that, in both the stochastic and deterministic fits, the
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FIGURE 3 | Results of fits when using mismatched structural models. The

symbols correspond to the estimates of the growth rate (circles) and death

rates (diamonds) under different scenarios. In the (Left) , the data was

generated without parametric variability and in the (Right) the data was

generated with parametric variability. Top row: results of fits with a birth-death

model to data generated by a pure birth process. In each case, we used

stochastic or deterministic fits, without (“No RE”) or with (“RE”) random effects.

The horizontal dashed blue lines indicate the value µA (birth rate) and the

dot-dashed red line the value of σA used in the data generation. Bottom row:

results of fits with a pure birth model to data generated by a birth-death

process. The horizontal dashed blue lines stand for µA and the dot-dashed

green lines for µB. In all cases, the vertical whiskers are the 95% CI obtained

in the fits. Note that the estimates of the death rate for the random effects fits

(in the top panel) are off the plot, and only the bottom segments of the

whiskers are visible).

estimate of the growth rate is close to the net growth rate
(i.e., birth rate minus death rate). However, if we allow random
effects on the growth rate, the deterministic fits finds a very high
level of heterogeneity in the growth rate when none actually
exists. The CI for the standard deviation of the parameter in the
stochastic fit correctly contains 0, suggesting limited evidence for
heterogeneity in growth rates.

3.2.1.5. Death in the model but not in the data
Conversely, if there is death in the model, but not in the data,
both the fixed effects stochastic and deterministic fits the CIs for
the death rate correctly contained 0. However the deterministic
fit overestimated the growth rate while the stochastic fit did not.

3.2.2. Experiment 2: Number of Units in the Panel
Results for data generated by a pure birth process, with different
number of units in the panel, are shown in Figure 4. Using the
stochastic or the deterministic fits resulted in point estimates for
the mean growth rates that were very close to the mean value
and the CIs contain the true value for all cases. Increasing the
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FIGURE 4 | Results of fits when there is a variable number of units. The data

in all cases was generated by a pure birth process with parametric variability

and fit with a birth-only model. The top row shows the estimates for the mean

growth rate with stochastic or deterministic fits, and the bottom row the

estimate of the standard deviation of the growth rate. The horizontal dashed

blue lines indicate the parameter values used in the data generation. The

vertical whiskers are the 95% CI obtained in the fits. In each case, the number

of observations per unit was O = 20, the growth rate was α = 0.15 and the

standard deviation of the growth rate was σ = 0.02.

number of units in the panel causes slightly narrower CIs for the
mean growth rate as well. The standard deviation of the growth
rates was correctly estimated in the stochastic model for all but
one case; however, the deterministic model overestimated the
population-level heterogeneity in all cases. Also, as the number of
units in the panel increases, the CIs narrow suggesting a higher
degree of certainty in an incorrect conclusion.

3.2.3. Experiment 3: Number of Observations Per Unit
The effects of increasing the number of observations per units
was similar to increasing the number of units in the panel.
For both the stochastic and deterministic fits, the mean growth
rates where correctly estimated. As before, the deterministic
fit consistently overestimated the standard deviation in the
growth rates and increasing the number of observations per
unit led to narrower but wrong CIs. Increasing the number of
observations per unit is more efficient at improving the accuracy
of the estimation compared to increasing the number of units
in the panel for the stochastic model. Results are shown in
Figure 5.

3.2.4. Experiment 4: Increasing Heterogeneity

Between Units
We also analyzed the effect of different values for the
heterogeneity of the parametric variability. As before, the

FIGURE 5 | Results of fits when there is a variable number of observations in

each unit. The data in all cases was generated by a pure birth process with

parametric variability. The top row shows the estimates for the mean growth

rate with stochastic or deterministic fits, and the bottom row the estimate of

the standard deviation of the growth rate. The horizontal dashed blue lines

indicate the parameter values used in the data generation. The vertical

whiskers are the 95% CI obtained in the fits. In each case, the number of units

was U = 20, the growth rate was α = 0.15 and the standard deviation of the

growth rate was σ = 0.02.

deterministic fit consistently overestimated the level of
heterogeneity regardless of the actual value of the standard
deviation of the growth rate, however, these estimates became
closer to the true value with increasing heterogeneity in the
data. In the stochastic fits, when the heterogeneity was less
than 0.04, the estimated CIs included the true parameter and
increasing heterogeneity led to a narrower CI. At the highest
heterogeneity levels the CI did not contain the true value;
we found that using a stochastic fit to data with high levels
of parametric heterogeneity leads to numerical instability
making estimation of the CIs difficult. Results are shown in
Figure 6.

3.3. Quantifying Parametric Variability
With R2

As shown in Figure 6, the deterministic CIs do not include
the real value of σA, albeit the estimate of µA is accurate
enough. To test the ability of different methods to quantify
the relevance of parametric variance vs. noise (through R2),
we use the estimation of σA from the different methods with
Equation (5), at the final observation, t = 20. The results
are shown in Figure 7. Note that the stochastic prediction,
at least, is able to include the real R2 inside the whisker,
especially at low values of parametric variability. This means
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FIGURE 6 | Results of fits with increasing standard deviation for the growth

rate. The data in all cases was generated by a pure birth process with

parametric variability. The top row shows the estimates for the mean growth

rate with stochastic or deterministic fits, and the bottom row the estimate of

the standard deviation of the growth rate. The horizontal dashed blue lines

indicate the parameter values used in the data generation. The vertical

whiskers are the 95% CI obtained in the fits. In the right panels, the red empty

squares are the estimated values obtained from standard linear mixed-effect

models (regression). In each case, the number of observations per unit was

O = 20 and the numbers of units was U = 20.

FIGURE 7 | Estimated R2 with increasing standard deviation for the growth

rate. The data in all cases was generated by a pure birth process with

parametric variability. The horizontal short dashed lines indicate the parameter

values used in the data generation. The left panel corresponds to the

stochastic fits and the right panel to the deterministic fits, where the vertical

whiskers are the 95% CI obtained in the fits. The red empty squares in the right

panel stand for the value of R2 calculated with Equation (5) at time t = 20 with

parameters estimated using standard linear mixed-effect models (regression).

The empty green diamonds are an alternative way to estimate R2 using the

empirical data variance and the theoretical (stochastic) noise variance,

Equation (8). In each case, the number of observations per unit was O = 20.

that this fitting method is able to capture (in a probabilistic
way) the cases where parametric variance is not as relevant as
fluctuations.

We have used throughout simulation-based inference,
because it allows us to compare directly likelihood profiles
between stochastic and deterministic implementations of the
models. Nevertheless, it is worth remembering that traditional
methods (based, loosely speaking, on regression) are usually the
preferred way to estimate parameters from the data. This is not
a matter of taste but of computational efficiency. Even for the
simple models in the present work, simulation-based inference
is computationally expensive (and, as such, not suitable as of
writing for models with many parameters). Thus, for the sake
of completeness we discuss briefly the role of regression-based
methods in our framework and fit the data in Experiment 4 using
a standard linear mixed-effect model (Gelman and Hill, 2007).
We find that this fit results in a systematic underestimation
of the mean, µA (red squares in Figure 6 top), and in an
overestimation of the standard deviation σA (red squares in
Figure 6 bottom).

While Equation (5) was derived under the assumption of
an unerlying stochastic process, and traditional methods ignore
the stochasticity of the underlying process, we can still use
hybrid information to obtain a rough estimate the relative
weight between noise and parametric variance. We can mix
both approaches (linear mixed-effect models and stochatic
predictions) in two ways: In the first one (corresponding to the
red empty squares in Figure 7) we use µA and σA from the linear
mixed-effects model fit to the data in Equation (5). The second
method, consists in calculating the empirical variance of the data
and the expected value of the noise variance from Equation (8)
and calculate R2 using Equation (4). Remarkably, inspection of
Figure 7 (green empty diamonds) suggest that using this second
method, the estimated value of R2 is sometimes closer to the
original one.

In summary, combining standard methods with analytical
results coming from the exact solution of the stochastic process
might be useful to estimate the level of noise in the data.
Notwithstanding, in all cases, this hybrid method used to
calculate R2 also overestimates the true value.

4. CASE STUDY: THE 2014-15 EBOLA
EPIDEMIC

4.1. Heterogeneity of Epidemic Spread of
Ebola
In Figure 8 we show the total number of cases reported for the
2014-15 Ebola epidemic in Guinea, Liberia and Sierra Leone. In
each case, the solid line is the fit of an exponential function to the
data for the first 29 weeks. Despite the fluctuations (specially in
the first days) the fit provides an (apparently) accurate account
for the growth during those early weeks. Note that the estimated
slopes are highly variable among countries. Since for simple
models, the slope in the exponential fit (α) is proportional to
the basic reproductive number minus one (R0 − 1) (Heffernan
et al., 2005), with this approach one would conclude that the
severity of Ebola in different countries is highly variable. Indeed,
this variability has been reported for the 2014-15 epidemic (with
R0 ranging between 1.51 and 2.53), see (Althaus, 2014; Kucharski
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FIGURE 8 | Number of Ebola cases (logarithmic scale) of the 2014-15 Ebola epidemic. (Top left) total number of cases in the three countries: Guinea (Top right),

Liberia (Bottom left), and Sierra Leone (Bottom right). The solid line represents the fit of an exponential function to the data in each panel over the first 200 days

(∼ 29weeks).

et al., 2015; Krauer et al., 2016) , as well as for earlier outbreaks
(Chowell et al., 2004).

From a traditional deterministic approach we might come
to two conclusions: (1) The Ebola epidemic is well described
by a deterministic model that predicts accurately the initial
exponential growth and (2) the epidemic was more aggressive
in Guinea, followed by Sierra Leone and Liberia. However, a
closer inspection of the data (collected by counties) before the
aggregation shows a different picture. In Figure 9, we plot the
same dataset (for Liberia and Sierra Leone) but separately for the
different counties.

Now, the conclusions that can be drawn are more nuanced
and perhaps contrary to the picture of uniform growth suggested
by Figure 8. On the one hand, the starting dates of the epidemic
in different counties are highly variable, and the initial slopes
(the plot is in logarithmic scale) also display a large variability.
This suggests that assigning a simple value per country (and,
consequently a single R0) can be misleading and lead to
erroneous interpretations and, more importantly, interventions
or policies. On the other hand, and this is what we are interested
in, this fine grained view of the data begs for a stochastic approach
to fitting. Even when the data is aggregated (which tends to
smooth the underlying stochasticity), the initial part of the curves
are reminiscent of the trajectories in Figure 1 (left panel).

4.2. Ebola Model Fits
We fitted both deterministic and stochastic versions of a birth-
only model with random effects to the Ebola data, allowing for
negative binomial measurement error (see section 2.3 for details).
The stochastic model was, in terms of the likelihood values,
objectively better than the deterministic model (−556.4 vs.
−565.0) despite being identical in all respects except stochasticity.
The estimate of the mean growth rate was nearly identical
in both models, 0.62, with CI (0.53, 0.73) deterministic and
0.59, with CI (0.52, 0.67) stochastic (Figure 10). However, the
deterministic model found a very high level of heterogeneity,
0.16 CI (0.11, 0.25), while the stochastic model found low levels
of heterogeneity, 0.03 CI(0, 0.15). In the stochastic model, the
profile likelihood for the standard deviation in growth rates,
σA, suggests that the likelihood surface is virtually flat around
very small values of σA (see Figure 10 right). However, in
the deterministic model—even when we allow variable levels
of overdispersion—the likelihood rapidly drops off as the
heterogeneity decreases from the MLE.

Overall, these results show that, while deterministic fitting is
as good as stochastic fitting to estimate the mean growth rates,
it performs poorly as a predictor of the parametric variability.
Specifically, using our definition of R2, and the MLE of σA =

0.03, obtained with the stochastic method, we can estimate the
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FIGURE 9 | Top: Total number of cases (logarithmic scale) per county in (A) Liberia and (B) Sierra Leone. Bottom: The same but aligning week 1 to the date of the first

event with I ≥ 1 and restricting to the first 10 observations (see text for details); (C) Liberia and (D) Sierra Leone.

contribution of parametric variability to overall variability in the
data. Using Equation (5) results in R2 ≃ 0.21. This analysis
would suggest that, in the case of Ebola, 10 weeks after the start
of the epidemic, around 79% of the measured variability could be
attributed to noise rather than to inter-county differences. Taking
into account that, as we showed in Figure 7, this empirical way
to calculate R2 overestimates the true coefficient, the conclusion
is even more substantiated. Doing the same calculation with the
value obtained in the deterministic fitting, σA = 0.16, we get
R2 ≃ 0.88, so we would conclude that 88% of the variability is
due to true differences among counties.

5. DISCUSSION AND CONCLUSIONS

The aim of modeling is not to capture every specific feature
of the system under consideration but, rather, to describe
succinctly the main mechanisms of the process and, ideally, to
be able to differentiate among competing hypotheses (Ganusov,
2016). The art of modeling involves balancing multiple levels of
complexity to achieve predictability, accuracy, and tractability.
In this context, here we have added another concern: is the

methodological approach suitable? Following an approach of
keeping things simple, we have shown that even for the most
basic cases, deterministic fitting methods, which assume that
all variability is either error or parametric, provide misleading
results. Although, not all aspects of the models were sensitive to
the assumption of determinism, since for example the mean of a
parameter was usually reasonably estimated.

This study is not a purely academic exercise on the role of
fluctuations for small populations because our results point to
important practical implications. A case in point is our example
of the initial spread of the Ebola epidemic. Although different
counties seem to have different growth rates, our fitting indicates
that the variability is also well explained by stochastic (i.e., non-
systematic) differences among the counties. This does not mean
that there are no differences in epidemic spread among the
counties, only that stochasticity alone is a statistically better and
more parsimonious explanation. That is, when stochasticity is
taken into account the evidence for differences in early growth
rates is negligible.

The ability to accurately detect and measure heterogeneity is
an important topic with practical implications. Take, for example,
the expanding field of personalized medicine, where individual
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FIGURE 10 | Profile likelihood plots for the parameter estimates for the Ebola data. The plot on the left shows the profile likelihood for the mean growth rate, µA, while

the plot on the right shows the profile likelihood for the standard deviation of growth rates over counties, σA. Horizontal dashed lines indicate the MLE and 95% CIs for

the parameter estimates. The overdispersion parameter was free to vary in the calculation of each point along the profile.

treatment plans may be designed under the potentially faulty
assumption that there is heterogeneity in response to treatment
regimes. Likewise, scientific resources may be wasted in a quest
to search for individual-level correlates of heterogeneity that may
not exist. Our results suggest that measuring heterogeneity in
panel data time series is prone to bias and misinterpretation and
that including more data in terms of additional observations per
unit or increasing the number of units will not alleviate this bias
caused by methodological misspecification.

In this regard, it is important to note that the simulation-based
stochastic fits, generally speaking, appropriately partitioned
variability into stochastic and parametric components even with
relatively short time series. This means that such methods should
be preferred for fitting data. However, there are practical issues
with implementing stochastic fitting methods when the models
are complex (e.g., multiple populations or many parameters)
or the populations involved are large. This is because the
computational resources needed and the time to fit a given model
would be, in most cases, prohibitive. As an alternative, if a fully
stochastic model is not possible, one could explore the possibility
of using stochastic models for a limited time window (for
instance, early on). Although, this will need the development of
hybrid fitting methodologies. Generally, one should be cautious
when interpreting the fit of deterministic models to panel
data, since the observation of parametric heterogeneity or even
structural heterogeneity in terms of model selection may be
the result of overfitting stochastic fluctuation. Also, the term
R2 can be estimated numerically for a given model to provide
a warning of potential problems based on deterministic model
fits.

In summary, here we analyzed the effect of neglecting
stochastic noise (i.e., in addition to the error term) in panel data

of biological time series. We found that deterministic approaches
usually overestimate the parametric variability, although (at least
in our simple models) the parameter average is less difficult
to estimate. On the other hand, stochastic fitting, in general,
did a good job of dividing variability between stochastic and
parametric.
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