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In physics, it is customary to represent the fluctuations of a stochastic system at steady

state in terms of linear response to small random perturbations. Previous work has shown

that the same framework describes effectively the trade-off between cell-to-cell variability

and correction in the control of cell division of single E. coli cells. However, previous

analyses were motivated by specific models and limited to a subset of the measured

variables. For example, most analyses neglected the role of growth rate variability. Here,

we take a comprehensive approach and consider several sets of available data from both

microcolonies and microfluidic devices in different growth conditions. We evaluate all the

coupling coefficients between the three main measured variables (interdivision times, cell

sizes and individual-cell growth rates). The linear-response framework correctly predicts

consistency relations between a priori independent experimental measurements, which

confirms its validity. Additionally, the couplings between the cell-specific growth rate

and the other variables are typically non zero. Finally, we use the framework to detect

signatures of mechanisms in experimental data involving growth rate fluctuations, finding

that (1) noise-generating coupling between size and growth rate is a consequence of

inter-generation growth rate correlations and (2) the correlation patterns agree with a

near-adder model where the added size has a dependence on the single-cell growth rate.

Our findings define relevant constraints that any theoretical description should reproduce,

andwill help future studies aiming to falsify some of the competingmodels of the cell cycle

existing today in the literature.

Keywords: linear response theory, single-cell growth and division, fluctuation patterns, control of cell division,

models, theoretical, data interpretation, statistical

1. INTRODUCTION

Today, dynamically tracked data of many dividing cells offer the possibility to analyze with great
precision and detail the decision process leading to cell division (Osella et al., 2017).While such data
are starting to be abundant, measurements of many single cells yield a complex tangle of correlation
patterns between growth-related variables, which is often difficult to grasp. Consequently, new
theoretical and data-analysis tools need to be developed in order to extract from such data the
relevant information to understand the control of cell-cycle progression, cell division and their
impact on cell proliferation.
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Specifically, one can restrict the question to the control of cell
size, where some general principles are emerging from empirical
data. E. coli cells grow with a cell-specific growth rate, they are
born with a cell-specific size, and they divide with a cell-specific
cell-cycle time. A cell that deviates from average behavior in
size or growth rate can correct by a compensatory deviation in
doubling time. A “near-adder” control of cell division (Campos
et al., 2014; Taheri-Araghi et al., 2015), whereby the differential
size extension in a single cell cycle is independent of the initial
size of the cell, is an effective principle governing cell division.
Additionally, the distributions of interdivision times and cell sizes
across conditions (Iyer-Biswas et al., 2014b; Kennard et al., 2016)
show a clear link between average values and the variability of
these variables from cell to cell, thus suggesting a “universal”
shape of the size distribution. However, we still understand
relatively little regarding how these simple principles emerge (Ho
and Amir, 2015; Harris and Theriot, 2016; Wallden et al., 2016;
Osella et al., 2017). For example, there is a debate on whether
near-adder behavior could emerge from specific mechanisms
or molecular circuits (Taheri-Araghi et al., 2015; Harris and
Theriot, 2016), as a byproduct of chekpoint control of cell-cycle
progression (Adiciptaningrum et al., 2015; Wallden et al., 2016),
or as a consequence of external constraints or trade-offs (Osella
et al., 2017).

Comprehensive and precise quantitative methods are
necessary in both data analysis and theory to deal with the new
data. Broadly, the open question is how much a mechanism
can be isolated and specified with available data. The simplest
theoretical framework for cell-cycle control describes the cell
cycle as a discrete-time process, relating the measured variables
(size, interdivision times, etc.) across generations (Amir, 2014;
Campos et al., 2014; Taheri-Araghi et al., 2015; Grilli et al.,
2017). We have recently shown the general existing equivalence
between this simple discrete-time formalism to more detailed
continuous-time models describing the division process by
a division rate varying with cell state and time (Grilli et al.,
2017). In the limit where deviations around the mean initial
size (or interdivision time) are small (as first proposed in Amir,
2014), we have shown explicitly how the resulting “linear-
response” framework describes a wide range of division control
mechanisms and characterizes with remarkable precision the
available experimental data. These results make the linear-
response framework perfectly suitable to model cell-cycle control
in E. coli given the available datasets.

However, studies are usually restricted to a subset of the
measured variables. Most importantly, while single-cell growth
rate clearly fluctuates (Wang et al., 2010), very few studies
have addressed the consequences of these fluctuations on cell
division control, and the studies that did started from very
specific assumptions (Osella et al., 2014; Wallden et al., 2016;
Logsdon et al., 2017).More specifically, previous studies adopting
the linear-response framework typically neglected cell-to-cell
variability in growth rates.

Here, we extend this linear-response framework to
incorporate growth rate fluctuations, and we show how it
can be used in general to evaluate exhaustively all the possible
correlations and fluctuations in the data. We use this systematic

approach to evaluate jointly all the homeostatic and noise-
generating couplings measured in different experimental studies,
and to connect correlation patterns with possible mechanisms
underlying cell division.

2. DATA SETS

We tested our theoretical considerations and their implications
on the analysis of empirical data with E. coli single-cell growth
division data fromKiviet et al. (2014), Taheri-Araghi et al. (2015),
Kennard et al. (2016), and Wallden et al. (2016). Scripts and
formatted data are available with the authors. A detailed list of the
growth conditions is available in the Supplementary Information
of Cadart et al. (2017).

3. LINEAR-RESPONSE FRAMEWORK FOR
CELL GROWTH-DIVISION FLUCTUATIONS

3.1. General Features of Fluctuations of
Cell Size and Growth Rate
This section describes the main model assumptions and
definitions. We assume exponential growth (Campos et al., 2014;
Iyer-Biswas et al., 2014b; Osella et al., 2014; Taheri-Araghi et al.,
2015) of cell size V(t) = V(0) exp(αt), where α is the single-cell
growth rate. A cell divides at size Vf = V0 exp(ατd), where V0

is the size at birth and τd is the division time. We neglect the
fluctuations around binary fission or the process of filamentation
and recovery (Osella et al., 2014), thus cell size at division Vf

is equally partitioned between the two daughter cells in our
description. Given the assumption of exponential growth, it is
useful to introduce the logarithmic size q(t) = log(V(t)/V∗).
With this notation, the exponential growth translates into a
linear relationship q(t) = q(0) + αt. In the definition of q, we
introduced a size scale V∗, which in principle can be an arbitrary
scale, to make the argument of the logarithm dimensionless. A
particularly useful choice is to define V∗ = 〈V0〉 , so that, at
least in the small noise limit, 〈q(0)〉 = 0 independently of the
condition (Grilli et al., 2017).

The distribution of cell size at birth gives a static picture of cell-
size fluctuations. It is well accepted (Taheri-Araghi et al., 2015;
Kennard et al., 2016; Grilli et al., 2017) that the distributions
of size at birth (or, equivalently, at division) obtained for
different strains and conditions collapse when rescaled by their
average. This collapse is the consequence of the existence of
a unique size-scale parameter of cell size control that varies
across conditions (Kennard et al., 2016; Grilli et al., 2017).
A consequence of the collapse is that the expectation of any
function of the rescaled size at birth V0/〈V0〉 is constant across
conditions. Figure 1 shows that the variance of logV0/〈V0〉

(which is by definition equal to σ 2
q ) is constant across conditions,

as predicted by the collapse of the size distribution.
Growth rates fluctuations are usually neglected. Contrarily to

the well accepted collapse of the size distributions (Giometto
et al., 2013; Taheri-Araghi et al., 2015; Kennard et al., 2016; Grilli
et al., 2017), there is no consensus on whether the distribution of
the single-cell growth rates collapse when rescaled by the average
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FIGURE 1 | Scaling of size fluctuations, quantified by log-initial size log V0, and single-cell growth rate α for different datasets (symbols and colors) and conditions.

Each symbol represents an average over all single cells available in the dataset (defined by shape and color) for a specific strain in a specific condition. (A) Shows that

the standard deviation of the rescaled log-initial size log(V0/〈V0〉), is constant across conditions and experiments, and does not depend on the average log-initial size

〈log V0〉. This fact is a consequence of the collapse of initial size distribution (Taheri-Araghi et al., 2015; Kennard et al., 2016; Grilli et al., 2017), since the standard

deviation log(V0/〈V0〉) is a function of the coefficient of variation of the initial size only (Grilli et al., 2017). (B) Shows the standard deviation of the rescaled growth rate

α/〈α〉 (which corresponds to the coefficient of variation of α). This quantity is approximately constant for some datasets (e.g., Taheri-Araghi et al., 2015, blue squares),

suggesting a collapse of the growth rate distribution (Taheri-Araghi et al., 2015), while it shows a decreasing trend in others (e.g., Kennard et al., 2016, green circles).

growth rate, with some studies reporting the collapse (Taheri-
Araghi et al., 2015) and others showing the opposite (Kennard
et al., 2016). Figure 1 shows that the coefficient of variation
of the growth rate appears to be constant, independently of
the condition and the average growth rate (consistently with
the collapse hypothesis) for some datasets (Taheri-Araghi et al.,
2015), while it shows a decreasing trend for others (Kiviet
et al., 2014; Kennard et al., 2016; Wallden et al., 2016).
A possible explanation of these differences could lay in the
growth mode of the different experiments (microcolonies in
agar or polyacrylamide, wide microfluidics channels, single-file
microfluidics channels, etc). Theoretical efforts to provide a
rationale of growth rate distributions are available (Iyer-Biswas
et al., 2014b; Pugatch, 2015; De Martino et al., 2016; De Martino
et al., 2017).

Independently of the controversy about the collapse of
the growth rate distributions, it is clear from Figure 1, that
the fluctuations of the growth rates are not negligible. The
coefficients of variation are in the range 0.1–0.3, which is
comparable with the typical fluctuations of the sizes at birth,
whose CVs are of the order of 0.2 (Amir, 2014; Grilli et al., 2017).

3.2. Linear-Response Framework in
Presence of Growth Rate Fluctuations
Since the coefficient of variation of both sizes and growth
rates are around 0.2, it is reasonable to assume that the size-
control mechanism can be expanded around the average size and
average growth rate (Amir, 2014; Grilli et al., 2017). This maps
the problem into a discrete-time linear response framework.
This section generalizes the usual linear response approach
to include single-cell growth rates fluctuations, with the goal
of disentangling how size and growth rate fluctuations are
connected.

We use a discrete-time description, focusing on a single-cell

at a given generation i. This cell has initial size V
(i)
0 , which

corresponds to a log-size at birth q
(i)
0 , a growth rate α(i) and

divides at a log-size q
(i)
f

after a time τ
(i)
d
. These variables are

connected by the relation

q
(i)
f

= q
(i)
0 + α(i)τ

(i)
d

. (1)

We also indicate the net logarithmic multiplicative growth
(sometimes referred to as elongation) by

G(i) = α(i)τ
(i)
d

= log(V(i)
f

/V
(i)
b
) = q

(i)
f

− q
(i)
0 .

Here, α(i) is a random variable with mean 〈α〉 (which depends
on the condition) and variance σ 2

α . We assume that individual
cells maintain the same growth rate for a whole cell cycle (this
approximation corresponds to how growth rate distributions
are often evaluated in empirical data). The growth rates of
subsequent generations are drawn from a common (Gaussian)
distribution, but may be correlated across generations, with
Pearson correlation coefficient ρ. An alternative approach to
model growth fluctuations would consist in modeling the
stochastic fluctuations of α(i) in continuous time (Iyer-Biswas
et al., 2014a,b). The more minimalistic discrete-time approach
that we employ can be seen as a coarse-graining of an
appropriate continuous-time model. We also note that the
discrete-time modeling approach is equivalent to a continuous-
time description for single-exponential growth (Grilli et al.,
2017; Ho et al., 2018), but in presence of a growth rate
fluctuating in continuous time, this equivalence does not hold
anymore. For the small fluctuations observed in the data, the two
approaches are qualitatively equivalent and likely quantitatively
not distinguishable given the available statistical power.

We introduce the variable fluctuations

δG(i)
: = G(i) − 〈G〉

δτ
(i)
d

: = τ
(i)
d

− 〈τ 〉

δα(i)
: = α(i) − 〈α〉

δq
(i)
0 : = q

(i)
0 − 〈q0〉 .

(2)
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Under the above assumptions, the evolution equations for the
fluctuations of the three main variables can be written as

δG(i)

σG
= −λGq

δq
(i)
0

σq
− λGα

δα(i)

σα

+ ν
(i)
G

δτ
(i)
d

στ

= −λτq
δq

(i)
0

σq
− λτα

δα(i)

σα

+ ν(i)τ ,

(3)

where λXY are linear coupling parameters (analogous to
“susceptibilities”) between measured variables. Such linear
couplings are central in comparing this theory to experimental

data. ν(i)τ and ν
(i)
G are zero-mean random variables representing

cell-to-cell variability (“noise”). Previous approaches neglecting
cell size fluctuations assume δα = 0. In order to be solved,
Equation 3 requires the specification of how the fluctuations δα(i)

are related to the fluctuations of logarithmic size δq
(i)
0 . We assume

that generally the individual growth rate may depend on the
initial size, i.e., within a linear-response framework,

δα(i)

σα

= −λαq
δq

(i)
0

σq
+ ν(i)α . (4)

The values of these coupling constants can be associated to
specific mechanisms of size control (Amir, 2014; Grilli et al.,
2017). For instance a timer corresponds to λτq = 0 and λτα = 0,
while a sizer mechanism implies λGqσG/σq = 1 and λGα = 0. A
standard adder corresponds instead to λGqσG/σq = 1/2 (Amir,
2014; Grilli et al., 2017).

This general framework can be used to evaluate the direct
couplings between fluctuations of birth size, growth rate and
division time. In particular, all the couplings λs can be evaluated
from the Pearson correlations of these variables or from the
slope of conditional averages. The two methods are equivalent
if the slopes are estimated using least-squares method. Indeed,
assuming a relationship y = β ∗ x + noise , and performing
a linear regression, the least-square estimate of beta is β =

cov(x, y)/var(x). Any discrepancy of the values of the coupling
parameters obtained in these two different ways should be
considered as a signature of the violation of the linear-response
regime (Cadart et al., 2017). For instance, by multiplying
both sides of Equation (4) by δq0/σq and averaging over the
fluctuations, it is easy to obtain (see Supplementary Information)

cαq = −λαq , (5)

where cαq is the Pearson correlation between the growth rate α

and the log-size q. Similarly, multiplying by δq/σq Equation (3)
and averaging gives

cτq = −λτq − λταcαq = −λτq + λταλαq . (6)

Finally, multiplying the same equation by δα/σα and averaging
over fluctuations gives

cτα = −λτqcαq − λτα = −λτα + λτqλαq . (7)

A detailed comparison between the two ways to evaluate the
couplings in empirical data is shown in the Supplementary
Information of Cadart et al. (2017). The very small discrepancies
found reinforce the ideas that the linear-response framework is
effective.

The last two equations clearly show that the presence of a
non-zero coupling between single-cell growth rate and birth size
induces a non-trivial dependence of the correlations from all the
coupling parameters. In other words, when the coupling between
division time and cell size is estimated uniquely from cτq (Amir,
2014; Grilli et al., 2017), one is measuring a combination of two
different effects: the direct coupling between division time and
size at birth and an indirect coupling mediated by growth rate
fluctuations.

Direct and indirect effects can be disentangled by solving
Equations (6) and (7) to calculate λτq and λτα in terms of
measurable covariances,

λτq = −
cτq − cαqcτα

1− c2αq
, (8)

and

λτα = −
cτα − cαqcτq

1− c2αq
. (9)

Figure 2 illustrates this procedure over one example dataset.
The main assumption of the above modeling framework is

that all the relations between the variables are linear. Deviations
from linear response are not captured, but in the data these are
fairly small (see Figure 2). Additionally, it is difficult to evaluate
precisely the non-linear behavior from data because the statistics
decreases radically for large fluctuations where such non-linear
trends are stronger. Given the statistical power available from
existing datasets, it is typically not possible to discriminate non-
linear terms from stochastic fluctuations (Grilli et al., 2017).

It has previously been noted that measured Pearson
correlations between observed variables in such experiments are
very sensitive to (experimental and biological) noise (Eun et al.,
2018), so that it is not simple to reconstruct mechanisms from
correlations. Our approach, which directly tackles this issue,
has two main advantages. First, it subtracts the contributions of
indirect correlations and only measures direct couplings. Second,
the coupling constants are insensitive to noise, because they are
defined as linear slopes of conditional averages, and therefore
robust to experimental noise. This is supported by the analysis of
Cadart et al. (2017) mentioned above, verifying the equivalence
between theory coupling constants measured directly and their
expressions in terms of covariances. Indeed, this equivalence not
only supports the validity of the linear regime, but also reinforces
the idea that scatter in the data (due e.g., to experimental noise)
does not bias too much the coupling constants, when they are
estimated from the covariances.

We also note that the choice of parameters in Equations (3)
and (4) is not unique. There are several alternative (equivalent)
choices of fluctuating variables, linked by the condition that G =
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FIGURE 2 | Illustration of the linear-response framework of size control, including growth rate fluctuations. (A,B) Show the dependency of the interdivision time

fluctuations from fluctuations of logarithmic initial size and growth rate for one dataset (Wallden et al., 2016 intermediate growth rate). Since growth rate and size

fluctuations are not independent (C), the slopes observed in (A,B) are determined by a combination of the coupling between size fluctuation and interdivision time

(with strength λτq, see Equation 2) and the effect of growth rate fluctuation on interdivision time (with strength λτα , see Equation 2). The method described in the text

disentangles direct and indirect effect on the slopes of (A–C) to obtain the direct couplings between τ , α, and q, which are shown in (D–F), for different datasets

(symbols and colors) and conditions. Interestingly, all the possible couplings are non-zero. Current models do not describe these nontrivial correlations, which poses a

challenge to future models.

ατ : α, τ , q; α,G, q; G, τ , q. Each triplet carries a set of linear-
response coupling constants between pairs of variables that can
be mapped to the ones defined above.

4. RESULTS

4.1. All the Possible Couplings Between
Measured Variables Are Non-zero in
Empirical Datasets
One might expect that not all the possible couplings are
different from zero, supporting the simplifying assumptions
made by most studies. Figure 2 shows instead that all the
independent couplings λτq, λτα , and λαq are in fact not
negligible.

The existence of nonzero couplings between division time
and growth rate λτα or, equivalently, elongation and growth
rate λGα (see next section and Figure 3) suggests that cell size
control depends in a non-trivial way on growth rate fluctuations.
Moreover, the existence of a coupling between growth rates
and cell size (measured by the coefficient λαq), affects the
observed correlation between division time and size at birth
cτq (see Equation 6), or, equivalently, the slope of the size-
growth plot cGq (Skotheim, 2013), which is normally used to
evaluate the strength of the size control. Different values of
these correlations are associated with different strengths of cell
size control (Skotheim, 2013; Osella et al., 2014), and, more
indirectly, to different cell size control mechanisms (Amir, 2014;
Grilli et al., 2017). The presence of non-zero couplings between
interdivision time and growth rate and between growth rate
and size effectively reduces or increases the observed strength
of homeostasis, and might be a signature of the mechanisms
effecting such control.

4.2. The Linear-Response Framework
Allows to Define Consistency Relations
As discussed above, the framework provides equivalent
alternative descriptions for the interdivision time τ or the net
growth G as state variables. These two parameter settings are
equivalent under the linear-control assumption. This section
deals with the mapping between these parametrizations, and
reports consistency tests defined by the expected relations using
empirical data.

The consistency relations can be obtained from the relation
G(i) = α(i)τ (i), which, under the linearization assumption
reduces to (see Supplementary Information)

δG(i) = 〈τ 〉δα(i) + 〈α〉δτ (i) . (10)

Using this relation together with Equation (3), one obtains (see
Supplementary Information)

λGq = 〈α〉λτq
στ

σG
(11)

and

λGα = 〈α〉λτα

στ

σG
+ 〈τ 〉

σα

σG
. (12)

An important consequence of Equation (12) is that a nonzero λGα

(or λτα) could appear even if the corresponding coupling λτα

(or λGα) was null. For instance, if the coupling λτα is negligible,
indicating that the interdivision time is independent from the
single-cell growth rate, one would still observe a nonzero λGα .
In fact, in that case, the division time would be independent
of the growth rate and therefore, in the same amount of time,
cells growing faster would grow more than slow-growing cells.
Interestingly, this is not the case. Both λτα (see Figure 2) and λGα
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FIGURE 3 | Alternative parameterizations of cell-size control linear response

are consistent across different experimental datasets and conditions (symbols

and colors are the same as in Figure 1). One can parametrize the effect of

size and growth rate fluctuations on interdivision time, or, alternatively, their

effect on the final size (or the elongation G). (A,C) Show the effect of log-size

fluctuation on elongation (with strength λGq, see Equation 3) and the effect of

growth rate fluctuation on interdivision time (with strength λGα ). The linear

framework predicts consistency relations between the alternative

parameterizations (B,D), which are verified across datasets and conditions in

the plots in the right panel.

are in fact different from zero (see Figure 2), suggesting that some
specific mechanism must be at play in determining their value.

Figure 3 shows that these consistency relations are verified
in the data. This result shows that the generalization of the
linear-response framework to include growth rate fluctuations
can correctly describe the data. As previously discussed, small
deviations from these relations could be due to the presence
of non-linearities that cannot be captured by the theoretical
framework. However, non-linearities can be appreciated only
in presence of large fluctuations (Grilli et al., 2017). Also note
that while these deviations could be the signature of not-yet-
understood biological mechanisms, they could also come from
measurement, segmentation or tracking errors associated to
specific experimental and image-analysis protocols.

4.3. Growth Rate Fluctuations Can
Confound Standard Tests of Division
Control Mechanisms, the Case of “Grower”
vs. “Timer”
A standard simple analysis to understand what kind of
cell division control is in place is based on size-growth
plots (Skotheim, 2013) and more generally on measures of
correlation between cell elongation and initial size. Since growth
rate fluctuations are typically neglected, a value of λGq = 0, i.e.,
no correlation between elongation and size at birth (Figure 4A),
is usually interpreted as the signature of a “timer.” However, in
presence of growth rate fluctuations the value of this coupling
parameter alone is not enough to pinpoint a single mechanism.
In fact, λGq = 0 can be the actual result of a timer, i.e., λτq = 0

which then requires that λτα = 0 (Figure 4B). However, the
relevant variable that is actually uncoupled to size could be the
net growth (elongation) itself, rather than the doubling time and
the growth rate. In this case, one has a “grower” (Figure 4C),
for which again λGq = 0 and λGα = 0. For a grower,
λτq = 0, but λτα = −〈τ 〉σα/(〈α〉στ ). Importantly, if λαq 6=

0, then the correlation between τ and q (cτq) is also different
from zero in a grower. This illustrative example emphasizes the
importance of keeping into account growth rate fluctuations in
order to correctly interpret empirical correlations patterns. It also
shows how the linear-response framework proposed here can
be used to delineate the correct interpretation. A more general
decomposition of contribution of growth vs. timing coupling to
size control is discussed in Cadart et al. (2017).

We now proceed to describe two situations where our
analysis points directly to specific mechanisms contributing to
the complexity of the observed correlation patterns.

4.4. Mother-Daughter Growth Rate
Correlations Explain the Prevalent
Negative Coupling Between Growth Rates
and Cell Size Observed in Data
Since the framework describes exhaustively the measured
correlations in the datasets, it can be used to explore signatures
of mechanisms by which division is coupled to size. This section
provides a rationale for the emergence of a non-zero coupling
between single-cell growth rate and size at birth λαq observed
in most datasets. In particular, we show that a negative λαq may
emerge from the presence of a correlation between the growth
rates across generations.

Figure 5 shows the Pearson correlation ρ between the mother
and the daughter(s) growth rates in several data sets. We
computed the correlation using both the daughters (when
available in the dataset). Some previous studies have reported,
or assumed, small mother-daughter correlations in growth
rate (Wang et al., 2010; Eun et al., 2018), while others have found
larger ones (Wallden et al., 2016). An important result of the
present analysis is that this correlation is never negligible in the
analyzed data sets and appears very conserved across conditions
and experimental setup. Specifically, all the datasets considered
here show a significantly positive correlation, which does not
seem to depend strongly on the condition and takes values
around 0.3. Variations of single-cell growth rates can be both due
to an external origin (e.g., local variation of nutrients in an agar
experiment) or inherent to the mechanisms of growth (e.g., from
fluctuations in gene expression Iyer-Biswas et al., 2014a). In both
cases, one may expect the presence of positive correlation across
generations.

We can model mother-daughter correlations in growth rate
as a linear constraint on the single-cell growth rates over
generations

δα(i+1) = ρδα(i) + σαν(i)α . (13)

This equation substitutes Equation (4), and must be considered
together with Equation 3. The question we address is whether
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FIGURE 4 | A grower is not a timer. The absence of a correlation between elongation and initial size (A) does not necessarily imply a timer (B), where the interdivision

time is independent of the initial size. (C) Shows the alternative scenario (the grower), where the growth rate depends on the initial size. This correlation, together with

the independence of the elongation from the growth rate, implies a dependence of the interdivision time on both initial size and growth rate. Both panels are obtained

from numerical simulations of the corresponding linearized model with σα/〈α〉 = 0.2 and σ2
q = 0.2.

inter-generational correlations give rise to a non-zero coupling
λαq between single-cell growth rate and size.

Since we are considering a fully linear framework, a non-zero
coupling λαq can be directly mapped into a non-zero correlation
between single-cell growth rate and size cαq via Equation (5). We
find that a non-zero correlation cαq emerges in presence of a non-
zero correlation of growth rate across generation and a non-zero
coupling λGα . In the Supplementary Information we obtain the
relation

λαq = −cαq = ρ
λGα

1− ρ(1− λGq

√

σ 2
G

σ 2
q
)

√

σ 2
G

σ 2
q

. (14)

From the above equation we observe that, for positive ρ

and negative λGα (the case of empirical data) only negative
couplings λαq can emerge. Hence, mother-daughter growth rate
correlations provide a rationale for this widespread negative
coupling.

Figure 5 shows that the prediction of Equation (14)
quantitatively reproduces the values of λαq for the datasets that
display negative values of this coupling. On the other hand, some
datasets have weakly positive couplings λαq, which cannot be
reproduced via this mechanism. This suggests that some other
unknownmechanisms might play a role in coupling growth rates
and sizes.

4.5. An Adder Model Captures the
Experimental Correlation Patterns Only If
Added Size Depends on Single-Cell
Growth Rate
This section explores how the observed negative values for the
coupling λGα emerge from a simple extension of the adder model
that explicitly includes growth rate fluctuations. According to the

adder model (Amir, 2014; Taheri-Araghi et al., 2015), the size at
division Vf is given by

Vf = (V0 + 1)eν , (15)

where 1 is the added size and ν is a noise term. We also know
that the average size 〈V0〉 has an exponential dependence on the
average growth rate 〈α〉, which is often referred to as Schaechter’s
law (Schaechter et al., 1958; Taheri-Araghi et al., 2015; Kennard
et al., 2016; Si et al., 2017). Since for steadily dividing cells the
average size at birth is equal to the added size, the exponential
dependence of the average size on the average growth rate also
implies that the average added size must have an exponential
dependence on the average growth rate.

Equation (15) does not take into account fluctuations of
the growth rate, and there are several possibilities to extend it.
Schaechter’s law can be seen as a constraint, as the added size
averaged over fluctuations of the growth rate has to scale nearly
exponentially with the average growth rate. Two possible extreme
scenarios can be disentangled with the data. The first scenario
assumes that in a given growth condition the added size does not
depend on the fluctuation of the growth rate, i.e.,

1 = S0 exp(〈α〉T) . (16)

In such case, two cells with different individual growth rates, but
growing in the same condition, will add (on average) the same
size. In the opposite extreme scenario, the added size depends
on the single-cell growth rate, following Schaecter’s law even for
small fluctuations

1 = S0 exp(αT) . (17)

In this second scenario, cells in the same growth conditions
growing at different growth rates will add on average different
sizes. Conversely, cells growing under different conditions but
having the same growth rate due to single-cell fluctuations will

Frontiers in Microbiology | www.frontiersin.org 7 July 2018 | Volume 9 | Article 1541

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Grilli et al. Fluctuation Patterns in E. coli

FIGURE 5 | Mother-daughter correlations in growth rate induce negative values of λαq. (A) Shows the correlation between mother and daughter growth rate across

datasets (symbols and colors, see Figure 1) and conditions. All the datasets display a significant positive correlation. Panel shows the value of λαq predicted from our

theory assuming the empirical mother-daughter growth rate correlations (see Equation 14), compared to the empirical ones for negative values of λαq. The assumed

mechanism correctly predicts negative values of λαq, but the prediction cannot capture the datasets with positive values of λαq, which are shown in (C) (not visible in

B).

add (on average) the same size. Since fluctuations of α are small,
in both cases the average added size 〈1〉 will scale exponentially
with the average growth rate.

This question was approached in Kennard et al. (2016), but
the linear-response theoretical framework gives us the tools to
reformulate it more precisely. Figure 6 shows how we proceed
to test the two scenarios. For each dataset we estimated the
parameter T (which can be related to the duration of the
replication/segregation (“C+D”) period Donachie, 1968; Zheng
et al., 2016; Si et al., 2017) from 〈log1〉 averaged across cells
within each condition. Note that for both Equations (16) and
(17), the slope of 〈log1〉 vs 〈α〉 is T. For each condition, one
can then compare the relation between the (logarithmic) added
size and the individual growth rate. Under the first scenario, the
relation should show no dependency (a flat slope). Under the
second scenario, one should instead expect a linear relation with
slope T (where T is the mean timing from replication initiation
to division, assumed to be nearly constant across conditions).

Under the assumption that fluctuations are small, one can
linearize the models and compare the coupling coefficients. In
the first case, one obtains λGα = 0, while in the second case a
non-trivial coupling arises with value

λGα =
σα

σG
−

T

2
. (18)

Figure 6 compares this prediction with the empirical values of
this coupling parameter measured across datasets, obtaining a
remarkable agreement. It is important to stress that the parameter
T, which in turn determines the value of λGα , has been measured
only using the dependence of average added size on the average
growth rate across different conditions, without considering
single-cell data. This procedure assumes that the parameters
S0 and T are constant within each dataset across different
conditions (Donachie, 1968; Si et al., 2017). Variation around
Schaecter’s law, which could arise for many reasons (Zheng
et al., 2016; Si et al., 2017), can affect the values of these
parameters. Precise estimates, ormeasurements ofT can improve
the prediction of Equation (18). Moreover, the variability around

FIGURE 6 | Dependency of added size on single-cell growth rates and effect

on the values of λGα . (A) Shows that the average logarithmic added size is

linear when plotted against the average growth rate (for all the conditions

from Wallden et al., 2016). We consider two extreme scenarios for the

logaritmic added size of individual cells: it could depend only on the average

growth rate (gold line) or it could linearly grow with the single-cell growth rate

(purple line), with the same slope observed in (A). (B) Shows the results of the

two scenarios for one condition (intermediate growth rate data set from

Wallden et al., 2016). These two scenarios translate into two different

predictions for the value of λGα , which are reported in panel (C) and tested in

panel (D). The non-zero values of λGα are therefore a consequences of the

dependence of the added size on the the single-cell growth rate.

the adder mechanism (visible in the values of λGq plotted in
Figure 3) also affects the predictions.

5. DISCUSSION AND CONCLUSIONS

With a long list of recent published studies, the current
literature on cell division control remains fragmented in terms of
conceptual tools and conclusions on the data (Osella et al., 2017).

This work proposes an extension of the linear-response
framework to include growth rate fluctuations, and at the same
time provides a comparative meta-analysis of different datasets.
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As such, we hope it could be useful to the community. The
results lead us to propose the linear-response model as a basic
common data-analysis framework for the recent (and future)
growth division data obtained on bacteria.

Analyzing the experimental data, we found two important
results. First, the linear response framework including growth
rate fluctuations provides a remarkably good description of the
data. Couplings are in all cases only moderately nonlinear (Grilli
et al., 2017), and all the predicted self-consistency relations are
verified to a satisfactory degree. This carries the important lesson
that models where nonlinear couplings are involved might be
true, but they would be hard to test with the currently available
data. Second, we show that the linear correlation patterns store
a wealth of information that is not yet fully appreciated. In
particular, single-cell growth rates seem to have a complex effect
on cell cycle progression and cell-division control.

The study of the linear coupling parameters between
growth rate and size reveals an unexpected variability across
experiments. This variability depends on the growth conditions
and on the measured mother-daughter correlations in growth
rate. Thus, the effect of growth rate fluctuations on cell size
varies from one experiment to the other and appears, in some
cases, to contribute to size correction. In contrast, the near-
adder correlation for the net growth G and the dependency
of interdivision time on initial size are robustly observed
in all datasets, although quantitatively, they also vary across
conditions.

Since all these linear-response effects are clearly testable, we
believe that future efforts should be funneled into explaining
these patterns comprehensively. Each particular model for a size
control mechanism carries a set of constraints for the linear-
coupling parameters, which are easily testable in the data. Such
testing involves all the measured variables and correlations.
Hence, our framework provides a comprehensive and stringent
tool to test proposed mechanisms.

The question of specifying the mechanisms for cell division
and cell-cycle progression remains largely open, and therefore
could benefit from such a systematic tool. One main limitation
of current studies is that they discard relevant information
and only consider a subset of correlation patterns. Conversely,
linear-coupling parameters allow to control all the measured
correlations at once. In this work, we provided a proof of
principle that this plan of action can be effective by studying
two simple examples: (i) the role of mother-daughter correlations
in size control, and (ii) the role of growth rate fluctuation in
determining the added size.

In particular, we find that growth rate fluctuations are not
consistent with an adder model where the added size does not
depend on the single-cell growth rate. This could be an important
clue on the mechanism underlying the adder behavior and could

help selecting one of the currently proposed models (Ho and
Amir, 2015; Taheri-Araghi et al., 2015; Harris and Theriot, 2016;
Wallden et al., 2016).

Finally, we address the coherence between different
experimental data sets. The discrepancies we found could
be due to biological factors, but also to possible sources of
experimental noise and systematic errors in the data. Current
experimental and data-analysis pipelines are different in both
the segmentation and tracking steps. This problem is largely
disregarded and in particular we know very little about possible
induced biases in the measured correlations, which would lead to
different conclusions on the mechanistic aspects. As end-users of
the data, we propose our pipeline, i.e., comparing all measurable
linear correlations as a useful testing ground for different
datasets. In our analysis, we have noticed different trends
depending on the experimental laboratory, and growth device,
as well as outlier points where possibly the growth conditions
were not steady or the analysis had problems. Interestingly, while
some observations are robust, others are more erratic across
datasets. Beyond this, we can just encourage the experimentalists
to adopt common protocols and shared comparison pipelines
in future studies. It would be sufficient to define a well defined
“reference experiment” with fixed strain, growth device, and
growth conditions that each data set needs to share, in order to
make precise comparisons possible.
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