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A human body hosts a relatively independent microbiome including five major regional

biomes (i.e., airway, oral, gut, skin, and urogenital). Each of them may possess different

regional characteristics with important implications to our health and diseases (i.e.,

so-termed microbiome associated diseases). Nevertheless, these regional microbiomes

are connected with each other through diffusions and migrations. Here, we investigate

the within-body (intra-individual) distribution feature of microbiome diversity via diversity

area relationship (DAR) modeling, which, to the best of our knowledge, has not been

systematically studied previously. We utilized the Hill numbers for measuring alpha

and beta-diversities and built 1,200 within-body DAR models with to date the most

comprehensive human microbiome datasets of 18 sites from the human microbiome

project (HMP) cohort. We established the intra-DAR profile (z-q pattern: the diversity

scaling parameter z of the power law (PL) at diversity order q= 0–3), intra-PDO (pair-wise

diversity overlap) profile (g-q), and intra-MAD (maximal accrual diversity) profile (Dmax-q)

for the within-body biogeography of the humanmicrobiome. These profiles constitute the

“maps” of the within-body biogeography, and offer important insights on the within-body

distribution of the human microbiome. Furthermore, we investigated the heterogeneity

among individuals in their biogeography parameters and found that there is not an

“average Joe” that can represent majority of individuals in a cohort or population. For

example, we found that most individuals in the HMP cohort have relatively lower maximal

accrual diversity (MAD) or in the “long tail” of the so-termed power law distribution.

In the meantime, there are a small number of individuals in the cohort who possess

disproportionally higher MAD values. These findings may have important implications

for personalized medicine of the human microbiome associated diseases in practice,

besides their theoretical significance in microbiome research such as establishing the

baseline for the conservation of human microbiome.

Keywords: diversity area relationship (DAR), within-body microbiome biogeography, power law, scale invariance,

self-similarity, diversity area relationship (DAR) profile, maximal accrual diversity (MAD) profile, pair-wise diversity
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INTRODUCTION

The diversity-area relationship (DAR) (Ma, 2017) is a natural
extension of the traditional species area relationship (SAR).
The latter is well regarded as one of the few laws in
ecology and biogeography and have been extensively studied in
macro-ecology (e.g., Preston, 1960; Connor and McCoy, 1979;
Rosenzweig, 1995; Lomolino, 2000; He and Legendre, 2002;
Tjørve, 2003, 2009; Drakare et al., 2006; Tjørve and Tjørve, 2008;
Harte et al., 2009; He and Hubbell, 2011; Sizling et al., 2011; Ma
et al., 2012; Storch et al., 2012; Triantis et al., 2012; Whittaker
and Triantis, 2012; Helmus et al., 2014). The expansion of
SAR to microbial ecology (e.g., Green et al., 2004; Horner-
Devin et al., 2004; Bell et al., 2005; Noguez et al., 2005; Peay
et al., 2007; van der Gast et al., 2008; Lyons et al., 2010; Jones
et al., 2012; Oliver et al., 2012; Pop Ristova et al., 2014; Zinger
et al., 2014) was made possible largely by the high-throughput
DNA sequencing technology, although less powerful molecular
technologies such as FISH (Langendijk et al., 1995) T-RFLP (Liu
et al., 1997), which were widely used for characterizing microbial
communities before the NGS (next generation sequencing)
technologies became readily accessible, also played a role in early
days.

The later development of SAR in microbial world was
because majority of bacteria in nature are still uncultivable
and consequently they are not detectable without resorting to
the sequencing technology or other lesser powerful molecular
marking technologies such as FISH and T-RFLP. It is the
metagenomics technology, which can efficiently sequence
the genomes of nearly all species in a microbial community
sample, that made it possible for the US NIH and European
Union to launch the human microbiome project (HMP)
and MetaHIT (Metagenomics of the Human Intestinal)
respectively a decade ago (Turnbaugh et al., 2007; Human
Microbiome Project, 2012a,b; Lozupone et al., 2012; http://
metahit.eu/). HMP and MetaHIT generated unprecedented
opportunities and datasets to test some of the most important
ecological theories and laws for the first time in the world
of human microbiome, arguably the closest ecosystem to the
humans.

In the most important application field of SAR—the
biogeography, significant advances have been made in the study
of microbial biogeography during the past decade. The existence
of biogeographic patterns of microorganisms has been firmly
established, and the research focus is shifting to identifying the
mechanisms that shape the discovered patterns (see excellent
perspectives and reviews by Martiny et al., 2006; also see Peay
et al., 2007; Fierer, 2008; van der Gast et al., 2008; Costello et al.,
2012; Hanson et al., 2012; van der Gast, 2013, 2015; Barberán
et al., 2014; Helmus et al., 2014). For example, regarding the
patterns, the traditional view that “everything is everywhere, but,
the environment selects,” suggested by Bass-Becking (1934) has
been revised as “Some things are everywhere and some things
are not. Sometimes the environment selects and sometimes it
doesn’t.” by van der Gast (2013, 2015). For another example,
regarding the mechanisms, Hanson et al. (2012) proposed that
selection, drift, dispersal and mutation govern the formation

and maintenance of the microbial biogeographic patterns on
ecological and evolutionary scales that are hardly separable.

Among those studies that established the microbial
biogeography theory, the distance-decay relationship and
accompanying SAR/STR patterns have certainly played a
critical role. Nevertheless, the study on the biogeography of
human microbiome is lagging behind the general microbial
biogeography, although several pioneering studies have been
conducted (Costello et al., 2009, 2012; Nasidze et al., 2009; Stearns
et al., 2011; Ma et al., 2012; Zhou et al., 2013; Barberán et al., 2014;
O’Doherty et al., 2014; Oh et al., 2014; Whiteson et al., 2014;
Dickson et al., 2015). To the best of our knowledge, the within-
body (intra-individual) SAR or DAR of the human microbiome
from biogeography perspective has not been addressed yet. The
present study is aimed at filling the current gap.

Specifically, we apply the recently extendedDAR (Ma, 2017) to
approach the within-body distribution ofmicrobiome diversity—
one of the most important aspects of the human microbiome
biogeography. Compared with the traditional SAR approach, our
approach has the following three unique features: (i) We adopted
the Hill numbers, which are considered as the most appropriate
metrics currently available for measuring the alpha diversity and
for partitioning the beta diversity (Jost, 2007; Ellison, 2010; Chao
et al., 2012, 2014) to assess and interpret the scaling of diversity
with areas. The traditional SAR only studies the scaling of species
richness with areas. (ii) The adoption of the Hill numbers allows
us to investigate both alpha- and beta-diversity scaling with
a unified approach. (iii) We establish the DAR profile, i.e., z-
q pattern, where z is the diversity scaling parameter of DAR
power law model, which is similar to the scaling parameter (z)
of the traditional SAR but not limited to the scaling of species
richness, and q is the diversity (Hill numbers) order, the PDO
profile (g-q pattern), i.e., the pair-wise diversity overlap (PDO or
g) at different diversity order (q), and the MAD profile (Dmax-
q pattern), i.e., the maximal accrual diversity (MAD or Dmax)
at different diversity order (q). We utilized to date the most
comprehensive human microbiome distribution dataset, which
sampled 18 major human microbiome sites covering the five
primary human microbiome habitats or locations (i.e., airway,
oral, gut, skin, and urological) of 242 individuals (www.hmpdacc.
org) to draw the “maps” of the within-body biogeography of
the human microbiome by establishing the previously described
three profiles.

We expect that the findings from the present study
should possess three important implications. First, the study
demonstrated, for the first time, the within-body or intra-body
biogeography of human bacterial diversity can be quantitatively
described with DARmodels and we further obtained the baseline
parameters of the intra-DAR models. The baseline parameters
refer to the DAR models constructed with the microbiome
samples from healthy human individuals. If the samples are
sufficiently large, the range or distribution of which should be
rather stable. Second, it is expected than significant changes in
host environment, such as the occurrence of humanmicrobiome-
associated diseases or dysbiosis, may significantly influence the
intra-DAR parameters. Therefore, by monitoring the change
of intra-DAR parameter, impacted by disease, can be helpful
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for personalized diagnosis and treatment assessment. Third, the
intra-DAR approach demonstrated in this paper can be applied to
other ecosystems or environments, for examples, the altitudinal
scaling of biodiversity of Mount Everest or the underwater
diversity scaling of oceanmicrobiome. Hopefully, monitoring the
changes of DAR parameters in those environments/ecosystem
may shed light on the environmental or ecosystem changes.

MATERIALS AND METHODS

Microbial Species Abundance Data of the
Human Microbiome
We use the 16s-rRNA datasets (V1-V3 region) from the NIH
HMP (www.hmpdacc.org), a cross-sectional study that sampled
18 body sites distributed over five locations of 242 individuals.
One mission of the HMP was to, for the first time in the
human history, to collect and establish the “baselines” of
human microbial communities (microbiotas) as well as the
microbial genes they carry (i.e., human metagenome). The OTU
(operational taxonomic unit) table, equivalent to the species
abundance data of a community in macro ecology, was calculated
from the 16s rRNA sequence data with 97% similarity cutoff
via the QIIME software pipeline (Caporaso et al., 2010). We
use the terms “OTU table,” “HMP dataset,” and “HMP cohort”
interchangeably hereafter. It is noted that, among 242 individuals,
we selected 150 individuals who were sampled at least in 5
microbiome sites to investigate their within-body DAR for
obvious reason. It is also noted that the usage of the term “species”
in this article is loose to be consistent with the usage in classic
SAR (species area relationship). Obviously, in the context of
microbiome diversity, OTU is a more appropriate term.

Computational Procedures for DAR
Analysis
The following definitions and procedures are adopted to design,
perform and interpret intra-DAR analysis for the HMP datasets.
Detailed descriptions on some of the procedures are provided in
the online Supplementary Information to save page space.

Definitions of Alpha and Beta Diversities
The Hill’s numbers (Hill, 1973) for measuring biodiversity were
reintroduced into ecology by Jost (2007) and Chao et al. (2012)
in recent years, and are defined as:

qD =

(

S
∑

i=1

p
q
i

)1/(1−q)

(1)

where S is the number of species, pi is the relative abundance
of species i, q is the order number of diversity. The parameter
q determines the sensitivity of the Hill numbers to the relative
frequencies of species abundances. When q = 0, the species
abundances do not count at all and 0D = S, i.e., species richness.
When q = 1, 1D is equal to the exponential of Shannon entropy,
and is interpreted as the number of typical or common species
in the community. When q = 2, 2D is equal to the reciprocal of
Simpson index. In general, qD (diversity of order q) is equivalent

to the diversity of a community with x =
qD equally abundant

species.
The Hill numbers have also been utilized to define beta

diversity. Some recent advances (e.g., Jost, 2007; Ellison, 2010;
Chao et al., 2012; Gotelli and Chao, 2013) have suggested
that, compared with existing diversity indexes, Hill numbers
are the most appropriate measure for alpha diversity, and the
multiplicatively partitioned Hill numbers provide a better beta-
diversity measure than most existing methods for partitioning
and measuring beta-diversity. Beta diversity can be defined as:

qDβ =
qDγ /qDα . (2)

where (qDα) and (qDγ )are alpha diversity and gamma diversity
(equivalent to alpha diversity of the meta-community), both
measured in the Hill numbers. Obviously, Equation (2) is
multiplicatively partitioned beta diversity. This beta diversity
(qDβ ) derived from the above partition takes the value of 1 if
all communities are identical, the value of N (the number of
communities) when all the communities are completely different
from each other (i.e., no shared species).

The unit of Hill numbers is species equivalents when applied
to alpha and gamma diversities. When Hill numbers are
used for measuring beta diversity, the unit is instead the
number of distinct communities. With Jost (2007) words, the
multiplicatively partitioned beta diversity measures “the effective
number of completely distinct communities.” The exact formulae,
which consider the pooling of local communities to form
meta-community, to compute gamma and beta diversities, are
provided in the online Supplementary Information.

A series of the Hill numbers corresponding to different
diversity order q was defined as diversity profile (Jost, 2007;
Chao et al., 2012). Ma (2017) extended the concept “profile” to
describe other concepts/measures derived from the Hill numbers
including DAR profile, MAD (maximal accrual diversity) profile
and PDO (pair-wise diversity overlap) profile, all of which can
be estimated for the HMP datasets later in this study. The three
profiles together constitute our best efforts to construct the “map”
of within-body or intra-individual biogeography of the human
microbiome diversity.

Fitting the DAR Models and Quantifying the
DAR Profiles
Ma (2017) postulated that Hill numbers should follow the same
or similar pattern of SAR since all Hill numbers are in units
of species (referred to as the effective number of species or
as species equivalents in the literature), and further tested and
suggested two models traditionally used in SAR studies for the
DAR analysis.

The first DAR model is the traditional power law (PL) model,
i.e.,

qD = cAz , (3)

where qD represents for diversity measured in the q-th order
Hill numbers, A for area, z is termed the scaling parameter
or slope of the power law (as further explained below), c is a
parameter that is strongly influenced by the choice of the first
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unit of area to accrue in DARmodeling. Theoretically, parameter
c of PL is the number of species equivalents of diversity in one
unit of area (qD = cAz

= cwhen A = 1), but not per unit of area
since the scaling is nonlinear.

The second DARmodel Ma (2017) suggested is the power law
with exponential cutoff (PLEC), which was originally introduced
to the modeling of SAR by Plotkin et al. (2000) and Ulrich and
Buszko (2003), respectively (also see Tjørve, 2009). It has the
form:

qD = cAz exp(dA), (4)

where d is a third parameter that should usually be negative in
DAR modeling. The PLEC model is essentially an extension to
parameter c of the PL, rather than to z, i.e., c(x) = c exp(dx),
respectively. Therefore, z in PLEC is assumed to be with the
similar interpretation as in the basic PL model (Equation 3).
The newly added item exp(dA) can cause the exponential decay,
which eventually overwhelms the seemingly unlimited growth of
PL at very large value of A.

The log-linear transformation below can transform the fitting
of non-linear Equations (3,4) into simple linear regressions
(Equations 5, 6):

ln(D) = ln(c)+ z ln(A) (5)

ln(D) = ln(c)+ z ln(A)+ dA (6)

Similar to the interpretation of z in the traditional SAR, the z of
PL-DAR equals the ratio of diversity accrual rate to area increase
rate. When PL is fitted with the above log-transformed linear
regression, z is the slope or tangent of the PLmodel. Nevertheless,
if the PL is directly fitted with non-linear optimization such
as Marquardt’s algorithm or Simplex method (Ma, 1992), the
slope or tangent of the PL is reliant on both z and c. This is an
advantage of fitting the DAR models with the above log-linear
transformation, besides being computationally simple.

To actually fit the above models to the HMP datasets,
besides adopting the linear-transformation above, there are two
remaining issues. One is the accrual of areas, i.e., the accrual of
the 18 microbiome sites in the case of HMP datasets, and another
is the accrual of the corresponding diversity (Hill numbers).
We further describe the accrual schemes below to complete the
computational procedures for constructing the DAR models for
the within-body (intra-individual) biogeography.

As explained previously, the sequence (order) of accruing
areas may strongly affect the estimation of parameter c. To
remedy the random noise from arbitrarily setting the accrual
order of areas, we (i) randomly permutate the orders of 18 human
microbiome sites for within-body DAR modeling, (ii) randomly
select 100 orders from the total permutations, (iii) fit the DAR
models (PL & PLEC) to each of the 100 selected orders and obtain
100 set of DAR models, and (iv) take the average parameters
of 100 times of re-sampling from the total permutations as the
DAR model for an individual in the HMP cohort. Note that the
100 times of re-sampling should also help to deal with issues in

diversity estimations such as discussed in Haegeman et al. (2013,
2014) and Chiu and Chao (2015).

The accrual of diversity is more complex than the accrual of
species in traditional SAR since there may be more than one
way to accrue diversity. Ma (2017) summarized three principles
to uniquely define the accrual scheme for diversity accrual. The
first principle is to use the Hill numbers, or what Jost (2007)
called the true diversity; the second is to follow the essential idea
of SAR, as captured by the word “accumulation” or “aggregate,”
i.e., diversity (the Hill numbers or species equivalents) are
accumulated for the accrued areas; the third is that the diversity
scaling model should be useful for predicting diversity at different
levels of areas accumulated. These three principles are the
essential axioms to follow for extending the SAR to DAR. A
detailed description on implementing the three principles for
diversity accrual is provided in the section of “the scheme to
accrue diversity” of the online Supplementary Information.

Inspired by the concept of diversity profile (Chao et al., 2012,
2014), Ma (2017) defined the relationship between DAR model
parameter (z) of the traditional PL-DAR model and the diversity
order (q), or z-q pattern (trend), as the DAR profile. We will
quantify the DAR profile for the within-body DAR profiles
of the human microbiome with the HMP datasets mentioned
previously in the results and discussion section.

Quantifying the PDO (Pair-Wise Diversity
Overlap) Profiles
Inspired by Tjørve and Tjørve’s (2008) work on SAR based on the
self-similarity principle, Ma (2017) derived the pair-wise diversity
overlap (g) (PDO) of two bordering areas (A & 2A) of the same
size as:

g = (2DA − D2A)/DA = 2− 2z (7)

where z is the scaling parameter of the PL-DAR model, DA and
D2A are the diversity of two bordering areas respectively but
they are not needed to estimate the PDO as indicated obviously
in Equation (7). When z = 1, then g = 0, there is no overlap;
and when z = 0, g = 1, there is total overlap. In reality, g
should usually be between 0 and 1. The PDO is essentially the
proportion of the new diversity in the second area of the pair of
two bordering areas, and it is therefore also a similarity measure
of a pair of bordering areas. Similar to previous DAR profile, the
pair-wise diversity overlap (PDO) profile, i.e., g-q pattern (trend)
or the PDO (g) at different diversity order (q) can be quantified
for the within-body biogeography of the human microbiome
diversity as shown in the results and discussion section. In this
case, PDO profile can be harnessed to measure the similarity
between two bordering sites in the microbiome diversity within a
human body.

Quantifying the MAD (Maximal Accrual
Diversity) Profiles
Similar to the role of SAR model in the global biodiversity
conservation, we expect the DAR models built in this study will
find biomedical applications in studying the within-body baseline
of the human microbiome diversity scaling.
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Ma (2017) derived themaximal accrual diversity (MAD) based
on the PLEC DAR model: that is, when

Amax = −z/d (z > 0, d < 0) (8)

qDmay have a maximum in the following form:

Dmax = Max(qD) = c(−
z

d
)
z
exp(−z) = cAz

max exp(−z) (9)

Equations (8, 9) can be used to estimate the theoretical MAD
of the human microbiome, whether it is alpha- or beta-
diversity. Similar to the DAR profile and PDO profile introduced
previously, the relationship between theDmax and diversity order
(q), i.e., Dmax-q pattern (trend) is then termed the MAD profile,
which will be quantified for the within-body biogeography of the
human microbiome diversity later in this article.

Note that when z < 0 and d > 0, the extreme value is
a local minimum rather than maximum. The principles and
measures to deal with such complications are further discussed
in the section of “Signs of DAR parameters” in the online
Supplementary Information.

Statistical Distribution of DAR/PDO/MAD
Profile Parameters
We analyzed the statistical distributions of the intra-DAR
scaling parameters by fitting two contrastingly different statistical
distributions: the normal distribution and power-law distribution
(Clauset et al., 2009; Gotelli and Ellison, 2013). The former
describes a largely symmetric distribution of the scaling
parameters across individuals, and the latter describes an
asymmetric (long-tail) probability distribution that has some
unique properties not possessed by the normal distribution. This
analysis was motivated to shed light on the nature of individual
heterogeneity (personal difference) in microbiome.

Since the information on the normal distribution can be
readily found in standard statistics textbook (e.g., Gotelli and
Ellison, 2013), we only list some basic information about the
power law distribution below. Power law distribution has a
probability density function as follows:

p(x) = K−1
xmin

(

x
xmin

)−K
(10)

where x is the random variable (i.e., the DAR/PDO/MAD profile
parameters in this study), xmin is the minimum value of x,
and K is the exponent of the power law distribution, which
has rich information about heterogeneity of the distribution.
A comprehensive discussion on the power law distribution,
including its fitting to data, can be found in Clauset et al. (2009).

RESULTS AND DISCUSSION

We investigate the within-body (intra-individual) biogeography
of the human microbiome by fitting two selected DAR models
(PL and PLEC) to each of the 150 individuals in the HMP
cohort, for both alpha- and beta-diversity scaling respectively.
We further established the intra-DAR profile (z-q pattern), the
intra-PDO profile (g-q pattern), and the intra-MAD profile

(Dmax-q pattern) again for both alpha- and beta-diversity scaling,
respectively. The intra- prefix is omitted hereafter when there
is not ambiguity (i.e., not to be confused with the inter-
individual DAR or inter-DAR analyses for short, which are
discussed elsewhere but may be compared with the intra-DAR
below occasionally). In addition, we use the terms “within-body”
and “intra-individual” interchangeably, although the formal is
a more accurate description for what we study, but the latter
is more intuitive in the context of comparing with the inter-
individual DAR.

The Performance of DAR Models (PL-DAR
and PLEC-DAR)
The DAR models were constructed by accruing diversities across
all the sites (up to 18) of an individual sampled in the HMP
cohort. The intra-DAR model hence reflects the biogeography of
the human microbiome within a human body, rather than across
individuals within a human population (cohort) as discussed
elsewhere (Ma, 2017 submitted). Furthermore, we distinguish
between the alpha and beta version of DAR, i.e., alpha-DAR
and beta-DAR. The results, a pair of PL & PLEC models for
alpha-DAR and beta-DAR, respectively, for each individual in
the HMP cohort, respectively, are listed in Tables 1, 2 (brief
version) and Tables S1, S2 (full version), included in the online
Supplementary Information that also contains the full results of
the statistical distribution testing for the major parameters of the
DAR models in Tables S1, S2.

In Tables 1, 2 and Tables S1, S2, listed are the columns of
diversity order (q), subject number (in the HMP cohort), the
parameters of the PL model and PLEC respectively. Listed
parameters of the PLmodel include z (scaling parameter), ln(c), R
(correlation coefficient), p-value, g (pair-wise diversity overlap),
and N∗ (the number of successful fittings). Similarly, listed
parameters of the PLEC model include z (scaling parameter),
ln(c), d (exponential cutoff parameter), R, p-value, N∗, Amax (the
number of accrued individuals corresponding to MAD), and
Dmax (the maximal accrual diversity, i.e., MAD). We use three
parameters (R, p-value, and N∗) to judge the performance or
goodness-of-fitting of DAR models to the HMP dataset. Note
that N∗ is the number of successful fittings out of maximal 100
times of re-sampling from the randomly permutated orders of
the 18 sites within an individual. We built one DAR model for
each of the randomly permutated order and took the averages
of the parameters from 100 times of re-sampling. Therefore, we
consider some failures are tolerable as long as we can get the
average parameters with large sample (>50). Since the model
fitting we used is linear regression, either R or p-value alone
is sufficient to determine the success of failure. Although the
average p-value in Tables 1, 2 does not reflect goodness of
individual model-fitting, it does demonstrate the performance of
a model to the population. As shown in Tables 1, 2, the average
p-values are<0.01, which demonstrate the fine suitability of both
the PL and PLEC models to the intra-DAR analysis of the HMP
datasets.

In summary, from pure statistical fitting, the PLEC model
fitted to the datasets slightly better than the PL model. From
ecological perspective, PL model is simple but with established
ecological interpretations inherited from SAR (species area
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TABLE 1 | The intra-individual alpha-DAR modeling for the HMP dataset (Demon version, Full version in Table S1).

Order Subject number Power law (PL) PL with exponential cutoff (PLEC)

z ln(c) R p-value g N* z d ln(c) R p-value N* Amax Dmax

q = 0 132902142 1.061 6.170 0.947 0.000 −0.162 100 1.896 −0.213 6.077 0.979 0.000 100 9 4146.7

147406386 0.776 6.723 0.988 0.000 0.282 100 1.020 −0.045 6.632 0.996 0.000 100 23 6552.0

158013734 0.827 6.359 0.977 0.000 0.213 100 1.167 −0.057 6.205 0.990 0.000 100 20 5200.5

158114885 0.776 6.641 0.974 0.000 0.271 100 1.120 −0.055 6.471 0.989 0.000 100 20 6124.7

158155345 0.730 6.742 0.992 0.000 0.340 100 0.909 −0.033 6.676 0.997 0.000 100 27 6474.3

**...

Mean 0.860 6.473 0.972 0.000 0.151 100 1.301 −0.093 6.346 0.989 0.000 100. 19 6068.2

Std. Err. 0.068 0.128 0.009 0.000 0.106 0 0.201 0.040 0.126 0.004 0.000 0 0 145.8

q = 1 132902142 0.930 4.704 0.900 0.001 0.019 100 1.994 −0.271 4.585 0.960 0.001 100 7 715.5

147406386 0.617 5.058 0.892 0.001 0.440 100 1.121 −0.094 4.871 0.950 0.000 100 12 686.6

158013734 0.704 4.944 0.910 0.000 0.343 100 1.237 −0.090 4.701 0.956 0.000 100 14 820.7

158114885 0.633 5.099 0.822 0.002 0.400 96 1.193 −0.090 4.820 0.903 0.001 96 13 820.8

158155345 0.523 5.267 0.869 0.001 0.539 98 0.854 −0.063 5.159 0.923 0.001 100 14 685.3

**...

Mean 0.721 4.951 0.881 0.001 0.301 99 1.386 −0.136 4.744 0.942 0.001 99 12 790.7

Std. Err. 0.072 0.089 0.020 0.000 0.096 1 0.204 0.045 0.064 0.013 0.000 1 0 26.6

q = 2 132902142 0.950 3.053 0.867 0.004 0.012 75 2.009 −0.273 2.965 0.943 0.003 76 7 143.4

147406386 0.526 3.141 0.738 0.008 0.526 54 1.218 −0.157 3.244 0.848 0.004 79 8 91.6

158013734 0.685 3.675 0.913 0.000 0.369 93 1.111 −0.073 3.491 0.950 0.001 94 15 223.8

158114885 0.566 3.299 0.795 0.004 0.454 67 0.995 −0.084 3.296 0.867 0.003 77 12 116.1

158155345 0.645 3.112 0.836 0.005 0.399 45 0.823 −0.072 3.453 0.862 0.007 63 11 102.7

**...

Mean 0.682 3.292 0.828 0.004 0.340 72 1.333 −0.147 3.249 0.902 0.003 82 10 158.0

Std. Err. 0.096 0.138 0.039 0.002 0.114 8 0.230 0.046 0.109 0.026 0.001 4 0 9.3

q = 3 132902142 0.903 2.346 0.883 0.004 0.102 63 1.675 −0.217 2.422 0.936 0.003 70 8 64.8

147406386 0.269 2.876 0.699 0.013 0.740 52 1.033 −0.154 2.807 0.821 0.007 80 7 42.1

158013734 0.670 3.178 0.929 0.000 0.390 93 0.951 −0.049 3.072 0.947 0.001 95 19 139.2

158114885 0.429 2.874 0.790 0.005 0.588 70 0.757 −0.064 2.853 0.859 0.004 79 12 52.7

158155345 0.403 2.955 0.790 0.009 0.613 49 0.696 −0.070 3.000 0.853 0.007 63 10 49.6

**...

Mean 0.568 2.818 0.825 0.006 0.455 70 1.104 −0.121 2.789 0.891 0.004 81 12 81.5

Std. Err. 0.139 0.173 0.051 0.003 0.138 9 0.199 0.039 0.135 0.030 0.001 5 2 5.0

**Only the alpha-DAR models for five individuals are listed here to save page space, and the full results are presented in Table S1.

relationship), and PLEC has an advantage of predicting maximal
accrual diversity (MAD). Both the models are complementary to
each other in our DAR analysis: the PL model is harnessed to
establish DAR profiles (z-q pattern), and PDO profiles (g-q), and
the PLEC model to establish MAD profiles (Dmax-q).

The DAR Profiles of 150 Individuals in the
HMP Cohort
Figures 1A,B show the alpha-DAR and beta-DAR profiles,
respectively, of 150 individuals in the HMP cohort. The apparent
irregularity in the z-values of the DAR profiles is primarily due to
the strong variability (heterogeneity) among individuals. When
z is averaged across individuals, the heterogeneity is hidden
as shown in Figure 2, but the trend of average DAR profiles
is obvious in Figure 2. The average DAR profile alpha-z is

monotonically decreasing (0.860, 0.721, 0.682, 0.568) for q = 0–
3, and average beta-z is (0.733, 0.594, 0.612, 0.635) for q = 0–3,
respectively. As to the inter-individual heterogeneity in z of the
DAR profiles, we postpone its discussion to a later discussion
after we analyzed all three types of the profiles.

The PDO Profiles of 150 Individuals in the
HMP Cohort
Figures 3A,B shows the alpha-PDO profiles and beta-PDO
profiles respectively, of 150 individuals. Similar to the DAR
profiles of the 150 individuals, the PDO profiles show strong
inter-individual heterogeneity, which we further discuss in a later
section. By taking the average g (PDO) of 150 individuals, the
trend of PDO profile becomes clear as shown in Figure 2. The
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TABLE 2 | The intra-individual beta-DAR modeling for the HMP dataset (Demon version, Full version in Table S2).

Order Subject number Power law (PL) PL with exponential cutoff (PLEC)

z ln(c) R p-value g N* z d ln(c) R p-value N* A max Dmax

q = 0 132902142 0.731 0.168 0.987 0.000 0.338 100 1.060 −0.066 0.012 0.993 0.000 100 16 6.6

147406386 0.721 0.184 0.994 0.000 0.351 100 0.908 −0.028 0.051 0.997 0.000 100 32 9.9

158013734 0.714 0.227 0.992 0.000 0.360 100 0.940 −0.031 0.051 0.997 0.000 100 30 10.1

158114885 0.681 0.211 0.991 0.000 0.396 100 0.886 −0.027 0.044 0.996 0.000 100 33 9.4

158155345 0.684 0.203 0.993 0.000 0.393 100 0.898 −0.033 0.052 0.997 0.000 100 28 8.5

**...

Mean 0.733 0.192 0.992 0.000 0.337 100 0.964 −0.038 0.041 0.997 0.001 99 28 9.6

Std. Err. 0.004 0.003 0.000 0.000 0.004 0 0.007 0.002 0.002 0.000 0.000 0 1 0.1

q = 1 132902142 0.617 0.239 0.956 0.000 0.461 100 1.136 −0.104 −0.007 0.978 0.000 100 11 4.8

147406386 0.544 0.314 0.970 0.000 0.540 100 0.886 −0.052 0.073 0.987 0.000 100 17 5.5

158013734 0.594 0.319 0.972 0.000 0.488 100 0.939 −0.048 0.050 0.988 0.000 100 20 6.8

158114885 0.528 0.341 0.961 0.000 0.556 100 0.891 −0.048 0.045 0.985 0.000 100 18 5.8

158155345 0.546 0.310 0.967 0.000 0.537 100 0.897 −0.053 0.062 0.986 0.000 100 17 5.5

**...

Mean 0.594 0.305 0.963 0.001 0.486 99 1.024 −0.073 0.032 0.985 0.001 98 16 6.1

Std. Err. 0.006 0.006 0.001 0.000 0.007 1 0.019 0.006 0.005 0.001 0.000 1 0 0.1

q = 2 132902142 0.733 0.156 0.967 0.000 0.333 100 1.183 −0.090 −0.057 0.983 0.000 100 13 6.1

147406386 0.397 0.489 0.829 0.002 0.680 100 0.964 −0.086 0.088 0.914 0.001 99 11 4.3

158013734 0.671 0.263 0.968 0.000 0.404 100 1.021 −0.048 −0.010 0.982 0.000 100 21 8.0

158114885 0.532 0.429 0.899 0.000 0.551 100 1.062 −0.070 −0.003 0.948 0.000 100 15 6.2

158155345 0.631 0.317 0.933 0.000 0.446 100 1.184 −0.084 −0.072 0.968 0.000 100 14 6.6

**...

Mean 0.612 0.315 0.920 0.001 0.460 98 1.151 −0.088 −0.038 0.960 0.001 97 15 6.8

Std. Err. 0.010 0.012 0.004 0.000 0.011 1 0.018 0.005 0.007 0.002 0.000 1 1 0.3

q = 3 132902142 0.809 0.109 0.970 0.000 0.243 100 1.180 −0.074 −0.066 0.982 0.001 100 16 7.5

147406386 0.380 0.538 0.772 0.006 0.694 100 1.058 −0.101 0.051 0.895 0.002 94 10 4.4

158013734 0.732 0.216 0.973 0.000 0.335 100 1.055 −0.045 −0.036 0.983 0.000 100 24 9.4

158114885 0.533 0.471 0.868 0.000 0.550 100 1.130 −0.079 −0.016 0.929 0.000 100 14 6.4

158155345 0.649 0.337 0.911 0.000 0.427 100 1.317 −0.101 −0.134 0.956 0.000 100 13 6.9

**...

Mean 0.635 0.311 0.902 0.002 0.433 97 1.207 −0.093 −0.064 0.948 0.002 97 17 7.8

Std. Err. 0.012 0.014 0.006 0.000 0.014 1 0.019 0.005 0.008 0.003 0.000 1 1 0.4

**Only the beta-DAR models for five individuals are listed here to save page space, and the full results are presented in Table S2.

average alpha-PDO profile is monotonically increasing [alpha-
g = (0.151, 0.301, 0.340, 0.455)], and the average beta-PDO
profile is mountain-shaped [beta-g = (0.337, 0.486, 0.460,0.433)].
Figure 2 also reveals another interesting observation, that
is, the patterns of DAR profile (z-q) and PDO profile (g-
q) are reciprocal. For example, while alpha-DAR profile is
monotonically decreasing, alpha-PDO profile is monotonically
increasing.

The MAD Profiles of 150 Individuals in the
HMP Cohort
Similar to DAR profiles and PDO profiles, we used the
average Dmax of 150 individuals (MAD profiles) to demonstrate
the general pattern of MAD profile. The alpha-MAD is

monotonically decreasing [alpha-Dmax = (6068, 790.7, 158.0,
81.5)] (Figure 4A) and beta-MAD is valley-shaped [beta-Dmax =

(9.6, 6.1, 6.8, 7.8)] (Figure 4B). We further illustrate the MAD
profiles of 150 individuals in Figure 5A (alpha-MAD profiles)
and Figure 5B (beta-MAD profiles).

The Inter-individual Heterogeneity of the
Intra-DAR, Intra-PDO, and Intra-MAD
Profiles
In previous sections, we established DAR, PDO and MAD
profiles for each of the 150 individuals in the HMP cohort. Here
we address a follow-up question about those profiles, that is, are
individuals have the same or similar intra-individual (or within-
body) DAR, PDO and MAD profiles? This question is of both
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FIGURE 1 | The alpha-DAR profiles (A) and beta-DAR profiles (B) of 150 individuals in the HMP cohort: x-axis should be the subject IDs of the individuals but omitted

to avoid overcrowded labeling, and y-axis is the DAR profile parameter z at four different diversity orders (q = 0–3). Therefore, every four points corresponding to each

ID on x-axis is the DAR profile of that specific individual, and the four curves constitute the DAR profiles of 150 the individuals in the HMP cohort. Inter-individual

heterogeneity in the DAR profile is also obvious, which is further described with the power law statistical distribution (see Table 4, Figure 6).

FIGURE 2 | The intra-DAR profile and intra-PDO profile for the alpha- and

beta-diversity scaling, respectively: (i) the alpha-DAR profile monotonically

decreases with q, and its counterpart PDO profile monotonically increases with

q; (ii) the beta-DAR profile is valley-shaped, and its counterpart PDO profile is

mountain-shaped; (iii) the difference between alpha and beta profiles seems

largest at diversity order q = 0–1, and smallest at q = 3.

important theoretical and practical significance. Theoretically,
the variability or heterogeneity of the intra-DAR/PDO/MAD
parameters (z, g, Dmax) reflects the evolutionary and ecological
properties of the microbiome diversity distribution within a
human body. Practically, the heterogeneity may reflect the
inherent difference among individual differences due to genetic
and/or environmental backgrounds. The differences may have
important clinical implications for the personalized diagnosis
and treatments of the so-termedmicrobiome-associated diseases.

The approach we used to assess the inter-individual
heterogeneity is to fit the two contrastingly difference statistical
distributions in terms of the skewness, the normal distribution
and power law distribution. We are particularly interested in

skewness because it can reveal the nature of cohort heterogeneity.
The normal distribution has zero skewness, and is symmetrical.
The power law distribution has long tail is highly skewed.

As shown in Table 4, among 64 test cases, the normal
distribution succeeded only in four cases of ln(c), and one
case in beta-Dmax. As interpreted previously, ln(c) has limited
ecological significance and is largely due to random sampling
effect. In contrast, only five cases failed to fit the power law
distribution, and all of the five failures occurred in the cases of
parameter d of the PLEC-DAR model. Parameter d (exponential
cutoff parameter) of PLEC is the usually a rather small and of
little differences among individuals (see Tables S1, S2). This may
explain its failure to fit to the power law distribution. Therefore,
majority (92%) of the DAR/PDO/MAD parameters satisfied with
the power law distribution. Figure 6 shows one example of fitting
the power law distribution to the alpha-DAR scaling parameter z
at q = 0, and the highly skewed, long-tail feature is obvious. The
poor fitting of the normal distribution to the same data is also
displayed in Figure 6.

The wide suitability of the power law distribution indicates
that most of the intra-DAR parameters are highly heterogeneous
among individuals and the heterogeneity is highly skewed. The
so-called “no average” property of the power law distribution
implies that there is not an “average Joe” in a population
(or cohort) that can represent the population (cohort). In
other words, the average of a population is a rather poor
representative of the majority in the population. The high-
skewness, long-tail property predicts that in the cohort,
most individuals should have rather small scaling parameter
(long tail) values, while a handful of individuals may have
disproportionally large values. If microbiome data follow the
power law distribution, rather than the normal distribution,
many statistical methods that assume the normal distribution
should not be applied to analyze the data to ensure the
validity of statistical analysis. We argue that the message from
the power law distribution is critical for understanding the
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FIGURE 3 | The alpha-PDO profiles (A) and beta-PDO profiles (B) of 150 individuals in the HMP cohort: x-axis should be the subject ID of individuals but omitted to

avoid overcrowded labeling, and y-axis is the PDO profile parameter (g) at four different diversity orders (q = 0–3). Therefore, the four points corresponding to each

subject ID on the x-axis is the PDO profile of that specific individual, and the four curves constitute the PDO profiles of 150 individuals in the cohort. Inter-individual

heterogeneity in the PDO profile is also obvious, which is further described with the power law statistical distribution (see Table 4, Figure 6).

FIGURE 4 | The average MAD profiles of 150 individuals in the HMP cohort: (A) for alpha-MAD monotonically decreases with diversity order (q), and (B) for beta-MAD

is valley-shaped. The average Dmax is calculated from the Dmax values of 150 MAD profiles for each diversity order q (the x-axis).

biogeography of the human microbiome, which may also imply
that personalized medicine is not only necessary but also
challenging for microbiome-associated diseases because the lack
of an “average Joe.”

DISCUSSION

In a previous study, we investigate the inter-individual DAR
with the same HMP datasets by building the DAR models
for each of the 18 microbiome sites across individuals in the
HMP cohort (Ma, in revision). Table 3 summarized the DAR-
PDO- and MAD profile parameters of both the inter-DAR
and intra-DAR analyses. To simplify the comparison, we used
average parameters in both the inter-DAR and intra-DAR results.
The inter-DAR averages were from averaging the parameters
of 18 sites, and the intra-DAR averages were form the 150
individuals in the cohort. From Table 3, we can see that the

patterns of intra-DAR/PDO/MAD are similar with their inter-
DAR/PDO/MAD counterparts. However, there are differences,
which we summarize below.

The scaling parameter z of intra-DAR profile is significantly
larger than the z of the inter-DAR profile, i.e., comparing
the series of intra-DAR z-q with inter-DAR z-q for each q
respectively. The intra-PDO profile is significantly smaller that
the inter-PDO profile, which can be explained by the relationship
between z and g (Equation 7). Since PDO profile is a measure
of similarity (PDO: pair-wise diversity overlap), the smaller PDO
indicates larger similarity. Equation (7) shows that DAR-profile
z is inversely related to PDO-profile g. That is, higher z or
lower gmeans higher dissimilarity (difference) or lower similarity
(overlap) and vice versa.

The intra-z is approximately 170–470% larger than the inter-
z in the case of alpha-DAR. The difference is slightly smaller in
the case of beta-DAR than in alpha-DAR (165–270%). The big
difference between the intra-DAR vs. inter-DAR differences in
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FIGURE 5 | The alpha-MAD profiles (A) and beta-MAD profiles (B) of 150 individuals in the HMP cohort: x-axis should be the subject ID of the individuals in the HMP

cohort but omitted to avoid overcrowded labeling, y-axis is the diversity order (q = 0–3), and z-axis is the alpha- or beta-Dmax corresponding to each diversity order (q:

y-axis) of each individual (x-axis). In the case of alpha-MAD (A), along the diversity order (q) axis, each individual has a monotonically decreasing curve (fold lines). In

contrast, in the case of beta-MAD (B), the fold lines are valley-shaped.

TABLE 3 | Summary of the DAR profile (z-q), PDO profile (g-q) and MAD profile (Dmax-q) of both inter-DAR* and intra-DAR** analyses.

Profile definitions q = 0 q = 1 q = 2 q = 3 Pattern description

DAR Profile (z-q) Alpha Inter-DAR* 0.502 0.253 0.154 0.121 Monotonically decreasing

Intra-DAR 0.860 0.721 0.682 0.568 Monotonically decreasing

Beta Inter-DAR 0.445 0.232 0.229 0.283 Valley-shaped

Intra-DAR 0.733 0.594 0.612 0.635 Valley-shaped

PDO Profile (g-q) Alpha Inter-DAR 0.580 0.805 0.882 0.907 Monotonically increasing

Intra-DAR 0.151 0.301 0.340 0.455 Monotonically increasing

Beta Inter-DAR 0.637 0.824 0.824 0.774 Mountain-shaped

Intra-DAR 0.337 0.486 0.460 0.433 Mountain-shaped

MAD Profile (Dmax-q) Alpha Inter-DAR 11990.1 876.5 175.3 87.6 Monotonically decreasing

Intra-DAR 6068 790.7 158.0 81.5 Monotonically decreasing

Beta Inter-DAR 17.8 7.1 8.2 11.2 Valley-shaped

Intra-DAR 9.6 6.1 6.8 7.8 Valley-shaped

*The inter-DAR results are obtained from Ma (2017), and the parameters are based on the average of 18 sites (each site has a set of inter-individual DAR models).

**The intra-DAR parameters are based on the averages of 150 intra-individual (within-body) DAR models (one set of model for each individual in the HMP cohort).

both alpha- and beta-diversity scaling should be anticipated if we
recognize that, for example, skin and gut are two very different
microbiome habitats and they should exert very different
selective forces shaping the microbiome in their respective
environments. In contrast, the inter-individual difference of one
specific site in terms of the microbiome habitat should obviously
be lesser profound. With an analogy, in the case of intra-DAR
scaling, we are possibly comparing lake and forest (gut vs. skin
of the same individual), and in the case of inter-DAR scaling,
we are comparing two lakes (gut of one individual vs. gut of
another individual). Obviously, the huge difference between the
intra-DAR scaling parameter and inter-DAR scaling parameter
is because the intra-DAR is about the scaling of biodiversity

across different microbiome habitats or human organs (tissues)
of one individual, while the inter-DAR is about the scaling of
biodiversity across the same type of microbiome habitat of a
population of individuals. The finding therefore suggests that the
diversity difference (heterogeneity) among microbiome habitats
is larger than the inter-individual difference of the same habitat
type.

The intra-MAD (Dmax) is smaller than the inter-MAD (Dmax),
but the magnitude of difference is slightly smaller than the
differences in the DAR and PDO profiles. Nevertheless, the
difference revealed by MAD is certainly interesting. For example,
the difference in MAD at q = 0 (i.e., OTU richness) is (intra
= 6,068 vs. inter = 11,990. This suggests that, on average, the
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TABLE 4 | The distribution fitting results for the parameters of PL and PLEC models of the intra-subject-DAR.

Diversity order (q) and fitted distribution PL-DAR PLEC-DAR

z ln(c) g z d ln(c) Amax Dmax

q = 0 Alpha-DAR Normal (p-value) 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000

Power law (p-value) 0.999 1.000 1.000 0.784 NA 0.042 0.641 0.989

Power law (K) 9.649 38.074 31.169 5.778 NA 21.473 10.023 7.353

Beta-DAR Normal (p-value) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002

Power law (p-value) 0.978 0.888 0.407 0.145 NA 0.908 0.694 0.749

Power law (K) 20.810 13.540 13.401 18.730 NA 6.247 10.014 9.598

q = 1 Alpha-DAR Normal (p-value) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Power law (p-value) 0.991 1.000 0.581 0.950 0.820 1.000 0.422 NA

Power law (K) 7.523 37.834 7.890 6.167 1.796 38.271 8.963 NA

Beta-DAR Normal (p-value) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.248

Power law (p-value) 0.832 0.140 0.179 0.211 NA 0.883 0.871 0.868

Power law (K) 10.303 9.004 13.274 9.182 NA 5.200 11.043 9.199

q = 2 Alpha-DAR Normal (p-value) 0.000 0.928 0.000 0.000 0.000 0.900 0.651 0.000

Power law (p-value) 0.297 0.584 0.999 0.959 0.925 0.388 0.071 0.993

Power law (K) 6.261 9.685 5.868 6.285 1.860 9.616 5.040 4.037

Beta-DAR Normal (p-value) 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Power law (p-value) 0.774 0.944 0.348 0.983 NA 0.457 0.966 NA

Power law (K) 8.687 17.611 9.192 9.093 NA 3.005 5.075 NA

q = 3 Alpha-DAR Normal (p-value) 0.000 0.548 0.000 0.000 0.000 0.528 0.000 0.000

Power law (p-value) 0.890 0.853 0.964 0.997 0.983 0.656 0.137 0.986

Power law (K) 8.367 10.098 5.042 7.049 2.759 10.333 3.435 3.415

Beta-DAR Normal (p-value) 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Power law (p-value) 0.829 0.852 0.519 0.945 NA 0.996 0.709 NA

Power law (K) 7.641 14.572 10.466 8.536 NA 4.838 3.604 NA

maximal number of OTUs (at the species equivalent level or 97%
level of similarity) hosted by an individual is approximately ½
of that hosted by a human population. We caution to extend
this number to the humankind, since although the sample size
of the HMP datasets we adopted to establish the MAD profiles
and make the prediction, is to date the largest, the number may
change in future when larger human microbiome datasets are
collected.

The HMP, MetaHIT, and other follow-up similar projects
open a new era in biomedical research. In fact, apart from the
growing list of the so-termed microbiome-associated diseases
including obesity, diabetes, IBD (inflammatory bowel disease),
bacterial vaginosis, rectal cancer, HIV, gout, infertility, mastitis,
and periodontitis, the call for the conservation of human
microbiome for the benefits of our health has begun to receive
increasing attention in recent years (O’Doherty et al., 2014),
which could have been perceived as heresy not long ago in
clinical medicine, where bacteria were either treated as human
enemies (pathogens) or simply ignored (non-pathogens). In
clinical applications, fecal microbiotica transplantation (FMT)
or stool transplantation, designed to restore proper gut
microbiome biodiversity, is a treatment for diarrhea caused
by the Clostridium difficile bacteria infection (CDI), and is

now recommended as the most effective therapy for relapsing
CDI. Other ongoing investigations related to GI dysbiosis
include IBD, irritable bowel syndrome, obesity, diabetes mellitus
and even Parkinson’s disease (Borody et al., 2013). In those
medical interventions requiring the personalized assessment
and prediction of the microbial diversities as well as their
biogeography, we suggest that the intra-DAR model may find
important applications. This will require comparative analysis
between the healthy and diseased microbiome samples, for
example, by comparing the DAR parameters between the healthy
and diseased treatments. However, at this stage, few appropriate
datasets exist in the literature to demonstrate the application of
intra-DAR in personalized medicine, although there are indeed
suitable datasets for comparing inter-DAR parameters (i.e., the
DAR models built with cross-individual microbiome samples)
between the healthy and diseased cohorts and we are working
their potential diagnostic applications. Still, we expect that the
intra-DAR should be more useful given its individualized nature
given that the intra-DAR model is built from multi-site samples
taken from a single individual (i.e., each individual has his or her
own intra-DAR model parameters).

The modern life style and industrialized food production
have exerted significant impacts on the diversity of our gut
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FIGURE 6 | Fitting the power law statistical distribution (Equation 10) and

normal distribution to the alpha-DAR scaling parameter z (at diversity order q

= 0) of 150 individuals in the HMP cohort: the power law distribution

successfully fitted to z-values (p = 0.999), but the normal distribution failed to

fit (p = 0.000) (also see Table 4).

microbiome, which has been confirmed by several high-profile
studies during the last few years (e.g., Yatsunenko et al., 2012;
Ordiz et al., 2015; Bahrndorff et al., 2016). It is expected that
conserving the biodiversity of human microbiome should be
put on the agenda of public health, much similar to public
awareness of the need to conserve the biodiversity on the earth
planet. Indeed, the classic SAR (species-area relationship) has
been playing a critical role in the conservation of plants and
animals and is a fundamental theory in conservation biology. We
believe that DAR, as a general extension to the SAR, should have
a similar role to play in the conservation of microbiome diversity.

Obviously, the potential applications of intra-DAR are not
limited to the human microbiome. For example, imagine that
we wish to investigate the altitudinal scaling of biodiversity of
Mount Everest. By taking diversity samples at different altitudes,
an intra-DAR model may be built for the mountain. Similarly,
onemay build intra-DARmodels for biodiversity scaling of ocean
microbiome by taking samples from different sea depth.

Finally, we would like to discuss some possible issues and
remedies in DAR modeling and applications, which were rightly
pointed out by two anonymous expert reviewers. Here we devote
the remainder of this section to discuss them.

(i) The first issue is the current lack of appropriate data to
demonstrate the potential applications of intra-DAR, as
already discussed in the previous paragraphs.

(ii) Second, some of the recent post-OTU clustering approaches
such as DADA2 (Callahan et al., 2016), DEBLUR (Amir
et al., 2017), should improve the quality of OTU binning and
abundance estimations, and ultimately make the estimates
of Hill numbers and DAR parameters more reliable.

(iii) Third, the issue of possible uneven sequencing depth
among samples may influence the estimates of DAR
parameters, although this was not an issue with the HMP
datasets we utilized in this article. When the sequencing

depth is uneven, theoretically, there may not be a perfect
solution. Nevertheless, three measures should be helpful for
remedying the problem. One remedy measure is to use the
rarefaction approach, which has already been developed by
Chao et al. (2016) for the estimation of Hill numbers. A
second approach is to adopt the random permutations of
samples before accumulating the samples for building DAR
models. In our study, we generated 100 times of random
permutations of the samples from 15 to 18 body sites of an
individual subject, and built one intra-DAR model for each
of the 100 permutations. The average parameters from the
100 intra-DARmodels were adopted as the final DARmodel
parameters for an individual. In this study, the measure was
taken for illuminating the influence of arbitrarily ordering
the accumulation sequences, but it should also be helpful
for alleviating the effect of uneven sequencing depth among
samples. A third possible approach could be to control the
numbers of reads for all samples being approximately equal,
e.g., all samples are normalized to 5,000 reads by various
schemes such as random sampling.

(iv) Since the characterization of the microbial communities is
complex and often depends on DNA extraction, marker
gene, sequencing platform and bioinformatics pipelines,
the MAD values are not absolute truth. In other words,
MAD could be variable in practice. Ideally, when DNA
sequencing technologies and bioinformatics pipelines are
standardized, the DAR parameters should be rather stable.
Accordingly, MAD should be microbiome-specific to a
large extent. In the case of intra-DAR (i.e., within-
body DAR), MAD should be individual-specific. From its
calculation formula, three parameters determine the value
of MAD. Parameter z should be community (microbiome)
specific (invariant theoretically). Parameter c should also
be rather stable. The DAR parameter with potentially
highest variability should be parameter a. From the
experience with power law modeling (e.g., Ma, 2015),
parameter a may be influenced by “sampling effects,”
referring to the reality that we are sequencing microbiome
sampled from microbiome habitats. The sampling effects
are primarily determined by sequencing platform including
bioinformatics pipelines. Resolving sampling effects may
ultimately depend on the standardization of sequencing
platforms.

Host environment, particularly, the health status of host or
the impact of human microbiome-associated diseases, may
influence DAR parameters, including MAD. Indeed, MAD
may be strongly influenced by health status or occurrence of
disease. However, as explained previously, at this stage, we
do not have datasets available that can test the hypothesis
because collecting the datasets for intra-DAR modeling
(which requires sampling both the healthy and diseased
individuals at multiple sites simultaneously), though not
necessarily very difficult, is not a common practice yet
in human microbiome research. We hope this study will
motivate investigators to pursue such data collections in
future.
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