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Unconventional oil and gas (UOG) extraction, also known as hydraulic fracturing,
is becoming more prevalent with the increasing use and demand for natural gas;
however, the full extent of its environmental impacts is still unknown. Here we measured
physicochemical properties and bacterial community composition of sediment samples
taken from twenty-eight streams within the Marcellus shale formation in northeastern
Pennsylvania differentially impacted by hydraulic fracturing activities. Fourteen of the
streams were classified as UOG+, and thirteen were classified as UOG− based on the
presence of UOG extraction in their respective watersheds. One stream was located in
a watershed that previously had UOG extraction activities but was recently abandoned.
We utilized high-throughput sequencing of the 16S rRNA gene to infer differences in
sediment aquatic bacterial community structure between UOG+ and UOG− streams,
as well as correlate bacterial community structure to physicochemical water parameters.
Although overall alpha and beta diversity differences were not observed, there were a
plethora of significantly enriched operational taxonomic units (OTUs) within UOG+ and
UOG− samples. Our biomarker analysis revealed many of the bacterial taxa enriched
in UOG+ streams can live in saline conditions, such as Rubrobacteraceae. In addition,
several bacterial taxa capable of hydrocarbon degradation were also enriched in UOG+
samples, including Oceanospirillaceae. Methanotrophic taxa, such as Methylococcales,
were significantly enriched as well. Several taxa that were identified as enriched in these
samples were enriched in samples taken from different streams in 2014; moreover,
partial least squares discriminant analysis (PLS-DA) revealed clustering between streams
from the different studies based on the presence of hydraulic fracturing along the
second axis. This study revealed significant differences between bacterial assemblages
within stream sediments of UOG+ and UOG− streams and identified several potential
biomarkers for evaluating and monitoring the response of autochthonous bacterial
communities to potential hydraulic fracturing impacts.

Keywords: hydraulic fracturing, fracking, Marcellus shale, 16S rRNA gene sequencing, microbial communities,
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INTRODUCTION

Over the past several years, the rapid increased use of natural
gas in the United States (Lieskovsky et al., 2014; Laurenzi et al.,
2016; U.S. EIA, 2017a) has been driven by horizontal drilling and
hydraulic fracturing (Brittingham et al., 2014; Jackson et al., 2014;
Burden et al., 2016). During hydraulic fracturing, a mixture of
water, proppants, and chemicals is injected into a rock formation
to create fractures, allowing natural gas to flow to the surface
(Jackson et al., 2014; Silva et al., 2014). Hydraulic fracturing will
become more prevalent as the use and demand for natural gas
increases. By 2050, the use of natural gas is predicted to increase
more than any other fuel source in the United States (U.S. EIA,
2017a). In the EIA’s reference case, natural gas consumption
increases by 6.4 quadrillion BTUs to 32.27 quadrillion BTUs from
2015 to 2050 in the United States (U.S. EIA, 2017a), and by 90.8
quadrillion BTUs from 2014 to 2050 to 218.2 quadrillion BTUs
globally (U.S. EIA, 2017b). In the United States, the Marcellus
and Utica formations are predicted to be the primary drivers of
this growth (U.S. EIA, 2017a).

Technological advances in natural gas extraction have far
outpaced our ability to evaluate the potential environmental
impacts of this process. Recent research has indicated possible
contamination of water resources by nascent hydraulic fracturing
activities (Rahm and Riha, 2012; Jackson et al., 2013; DiGiulio
and Jackson, 2016). Hydraulic fracturing produces a large amount
of saline wastewater (Veil et al., 2004; Cluff et al., 2014; Silva
et al., 2014); wastewater can enter nearby groundwater or surface
water via faulty well casings, leaks in holding ponds, or spills
(Vidic et al., 2013). This could be especially problematic as
high salinities can inhibit the biodegradation of potentially
harmful chemicals in hydraulic fracturing fluid (Kekacs et al.,
2015), several of which have been found in produced water
(Burden et al., 2016). Furthermore, there have been over 4,000
violations of environmental health and safety regulations for
hydraulic fracturing operations in Pennsylvania since 2009 (PA
DEP, 2017a). Additionally, changes in land use can also impact
adjacent streams, as each well pad needs between 1.2 and 2.7
acres of land on average (Brittingham et al., 2014). Increased
overland flow due to forest disturbance has been found to affect
water quality (Schelker et al., 2012; Palviainen et al., 2014).
Undoubtedly then, hydraulic fracturing has the potential to affect
nearby water resources. This issue is especially pertinent to
Pennsylvania, which overlies the Marcellus shale formation and
has around 10,000 active hydraulic fracturing wells (PA DEP,
2017b). Furthermore, it is currently the second largest producer
of natural gas in the United States (U.S. EIA, 2017c).

Stream ecosystems are particularly sensitive to disturbances
within their watershed (Allan, 2004; Luke et al., 2017) and can
impact both local and regional water quality and biodiversity
(Meyer et al., 2007). Therefore, it is important to understand
how hydraulic fracturing, unconventional oil and gas (UOG)
extraction, impacts nearby streams. Sediments in streams are
especially important to examine due to their ability to accumulate
pollutants, making them excellent long-term indicators of
stream health (Sekabira et al., 2010; Schmeller et al., 2018).
Within sediments, microbial communities can serve as further

indicators of stream quality, as microbes can quickly respond
to disturbances (Hunt and Ward, 2015). In addition, microbes
are the most abundant organisms in aquatic communities, by
concentration and often even by biomass (Hunt and Ward, 2015).
As a result, they play an important role in cycling energy and
nutrients. Microbial communities have been found to change
in response to anthropogenic activities, such as agriculture,
industry, and mining (Wassel and Mills, 1983; Essahale et al.,
2010; Stutter and Cains, 2017).

Recent work has found streams near hydraulic fracturing
experience drastic shifts in certain bacterial assemblages
(Acetobacteraceae, Methylocystaceae, and Phenylobacterium)
and had lower observed bacterial diversity (Trexler et al., 2014).
However, a study done in the Fayetteville shale formation
did not find any significant difference in alpha diversity
based on proximity to hydraulic fracturing, but it too noted
an increased abundance of specific taxa (Microcystis and
Synechoccophycideae) in streams near hydraulic fracturing
operations (Johnson et al., 2017). Furthermore, that study noted
little work has been done on evaluating the impact of hydraulic
fracturing on streams. This is especially surprising considering
their importance and sensitivity to environmental disturbances.
More recently, specific bacteria, including the aptly named
Frackibacter, have been found to be associated with hydraulic
fracturing (Daly et al., 2016; Mouser et al., 2016). Here we utilized
bacterial community profiling to address the aquatic bacterial
response (n = 31 streams) to potential hydraulic fracturing
inputs in Pennsylvania, which is experiencing the most rapid
development in UOG in the United States (U.S. EIA, 2016). We
hypothesized that the alpha and beta diversity of UOG+ and
UOG− streams would differ significantly and certain OTUs and
pathways would be enriched based on proximity to hydraulic
fracturing. High-throughput sequencing of the 16S rRNA gene
and random forest modeling enabled the identification of several
bacterial taxa that were enriched and predictive of UOG status of
a given stream. The data generated in this study can potentially
be used and combined with future aquatic microbial ecology
studies to generate more comprehensive spatial and temporal
biomarkers of UOG activity.

MATERIALS AND METHODS

Site Description and Sampling
Sediment samples were taken from thirty-one streams in
northeastern Pennsylvania (Figure 1) during the summer of
2016. Of these, fourteen were classified as UOG− (no well
pads with active wells present in the watershed) sixteen were
classified as UOG+ (at least one well pad with at least one active
well present in the watershed), and one was classified as UOG
abandoned (no UOG activity in the watershed within two and a
half years prior to sampling); all wells present in the watershed
(active, plugged, and regulatory inactive) were included in the
well count number for UOG+ streams and the UOG abandoned
stream (Supplementary Table 1).

Site selection of northeastern PA streams was done from
a larger sub-set of potential streams using ArcGis 10.4 (Esri).
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FIGURE 1 | Map of Stream Sites made with ArcGIS (Esri, 2016). Stream sites (n = 31) were located across Bradford, Cameron, Lycoming, Potter, and Sullivan
counties of northeastern Pennsylvania. Red represents UOG+, green represents UOG−, and blue represents UOG_abandoned.

Watershed boundaries were delineated using the watershed pour
method to determine the size and boundary of the watershed
from the sample site location. UOG gas wells’ layers and
information were obtained from PA DEP (PASDA) and overlaid
onto watersheds. Google Earth imagery was used to verify
existence of well pads in each watershed. Because DEP data only
gave a singular point for each well and not a polygon, well pads
were then digitized and overlaid into the watershed layer to
create a polygon of well pads. If any portion of a well pad was
in the watershed then it was considered part of the watershed
due to the likelihood of spills and contaminants spilling across
that well pad area. Final sampling sites were determined based
upon presence of UOG gas wells and ability for access (either
public lands or permission obtained from private landowners).
In order to determine that sample sites were comparable site
specific information was analyzed in ArcGis 10.4 to determine
in which EPA ecoregion sample sites were located. In addition,
a detailed land use analysis was performed for each watershed
in ArcGis 10.4 using the National Land Cover Database (Homer
et al., 2015) to determine if there were differences among land use
in UOG− and UOG+ sample sites.

All sampling sites were located in valleys in the North Central
Appalachian or the Northern Allegheny Plateau ecoregion
(Supplementary Table 2). None of the streams were in state
parks. Land use and % vegetation composition were determined
for our sampling sites (Supplementary Table 2). Sites were
determined to be comparable stream order as well, with most
streams being first order (Supplementary Table 2). Water
quality (alkalinity, conductivity, pH, and temperature) was also
measured (Supplementary Table 1). Because the data were not

normal, Kruskal–Wallis and Wilcoxon Rank Sum tests were
used to determine if those factors differed significantly between
UOG+ and UOG− streams. Of the factors tested, only percent
of woody wetlands vegetation differed significantly (p < 0.05)
between UOG+ and UOG− streams (Supplementary Table 3).

Two fine sediment samples were collected from each stream as
described in Trexler et al. (2014). Briefly, for each stream, a sterile
scoop was used to collect a fine sediment sample. Fine sediment
was collected at a depth of 0–1 cm from pool habitat (from either
main channel or side channel pools), and subsequently placed
in a sterile 50 mL conical tube, before being stored on ice in a
cooler until the samples were returned to the laboratory, where
they were stored at −80◦C. A YSI Pro Plus probe was used to
measure conductivity, pH, and temperature at each sampling
site. Alkalinity was measured by field titrating using standard
methods. Water quality parameters were measured to evaluate
abiotic conditions in streams at the time of sampling. Because
water and sediments in streams are exposed to similar conditions,
long term trends in water quality parameters should parallel
those in sediments, as previously described (Bauch et al., 2009;
McDaniel et al., 2009; Reed and Martiny, 2013).

DNA Extraction and 16S rRNA Library
Preparation
DNA extractions were performed on the sediment samples
(n = 31) using a Mo Bio PowerSoil DNA Isolation Kit according
to the manufacturer’s instructions (QIAGEN, Germantown, MD,
United States). The resulting extracts were quantified with
Qubit 2.0 fluorometer double-stranded DNA (dsDNA) high
sensitivity DNA kit according to the manufacturer’s instructions
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(Invitrogen, Carlsbad, CA, United States) and then stored in a
−80◦C freezer.

Illumina tag PCR mixtures for each sample consisted of
2.5 µL of 10x PCR buffer, 0.8 mM of dinucleoside triphosphates
(dNTPs), 0.2 µM of 515F forward primer, 0.2 µM of Illumina
806R reverse barcoded primer, 0.625 U of Taq polymerase, 25 µM
of Betaine, and various amounts of DNA to optimize yield for
a total volume of 25 µL per sample. The reactions were run
on a MJ Research PTC-200 thermocycler (Bio-Rad, Hercules,
CA, United States), with the conditions being 94◦C for 3 min.,
then 95 cycles of 94◦C for 45 s, 53◦C for 60 s, and 72◦C
for 90 s, terminating at 72◦C for 4 min. and then holding at
4◦C. The PCR products were checked on a 2% agarose safe
E-Gel that was pre-stained with SYBR (Invitrogen, Carlsbad, CA,
United States) for PCR products of target length (∼390 bp).
PCR products were pooled in equimolar ratios and were gel
purified using a 2% agarose gel and a QIAquick Gel Extraction Kit
per the manufacturer’s protocols (QIAGEN, Germantown, MD,
United States).

The purified libraries were then analyzed using an Agilent
Bioanalyzer (Agilent, Santa Clara, CA, United States).
Afterwards, the libraries were stored at −20◦C until they
were shipped on dry ice to California State University (Los
Angeles, CA, United States) where they were sequenced on the
Illumina Miseq with v2 300 cycle chemistry (Illumina, San Diego,
CA, United States) to produce 250 bp paired-end reads.

Bioinformatics and Statistical Analysis
A total of 31 samples were successfully sequenced, encompassing
3,519,171 reads. The raw sequence data that were used for
analysis can be found in NCBI’s Short Read Archive under
accession number SRP139372. Due to the poor quality of the
reverse reads, forward and reverse reads could not be adequately
paired, and analysis was done using only forward reads (average
Q-score = 34.6), as this method has been shown to produce robust
taxonomic classification (Liu et al., 2007; Caporaso et al., 2011).
Sequences were filtered for quality with a max expected error of
0.500 and a truncation length of 246 bp, using USEARCH version
7 (Edgar, 2010). QIIME 1.9.1 (Caporaso et al., 2010) was then
used to analyze the filtered sequences. Operational taxonomic
units (OTUs) were determined using the UPARSE algorithm
de novo method, with sequences that were 97% similar being
classified as an OTU. Data analyses mainly focused on taxa at the
family level due to an inability to classify many OTUs at the genus
level (Supplementary Figure 1). Taxonomy was assigned using the
Greengenes 16S rRNA database (13–8 release). Singletons were
removed and three samples were discarded due to having less
than 1,000 sequences; the remaining 28 samples (13 UOG−, 14
UOG+, 1 UOG abandoned) all had at least 21,000 sequences,
comprising 17,308 OTUs and 2,402,378 sequences.

Alpha diversity was analyzed with QIIME 1.9.1, using an
OTU table rarefied to a minimum depth of 200 sequences and
a maximum of 21,590 sequences with a step size of 100 and
20 iterations. The alpha diversity metrics used included Chao1,
Heip’s evenness, observed, and phylogenetic distance (PD) whole
tree species richness metrics to investigate differences in alpha
diversity between UOG+ and UOG− samples. A nonparametric

two-sample t-test was conducted to compare sample types, using
999 Monte Carlo permutations.

Weighted UniFrac distances were determined using the OTU
table after it had undergone cumulative sum scaling (CSS)
normalization to show beta diversity. A principle component
analysis (PCoA) Emperor plot (Vázquez-Baeza et al., 2013) was
created with QIIME to examine potential clustering among the
samples based on UOG drilling presence, wells, and water quality
measurements (alkalinity, conductivity, pH, and temperature),
using a weighted UniFrac distance matrix. This analysis was
performed to determine if samples clustered similarly based
on proximity to hydraulic fracturing as they did with water
quality measurements expected to differ based on proximity to
hydraulic fracturing, namely conductivity and pH. ANOSIM and
PERMANOVA tests were performed on the weighted UniFrac
distance matrix to see if samples differed significantly based on
UOG drilling presence, UOG+ or UOG−. Adonis tests were
performed on the same matrix as well to measure how much
variation could be explained by UOG drilling presence, number
of wells, and water quality measurements. Kruskal–Wallis and
Wilcoxon rank sum tests were used to detect significant
differences in water quality data, which were not normally
distributed. All statistical tests were considered significant at
α = 0.05.

Linear discriminant analysis (LDA) effect size, LEfSe, (Segata
et al., 2011) was performed to see if any OTUs were enriched
based on UOG drilling status. A Kruskal–Wallis test and pairwise
Wilcoxon rank sum test correction were used to determine
if OTUs differed significantly in abundance between UOG+
and UOG− samples using relative abundances from the CSS
normalized OTU table at the family level. Both tests were
performed with α = 0.05. LDA was then used to determine the
effect sizes of the enriched OTUs. A LEfSe plot and cladogram
were created to show the results.

Random forest modeling was done with R (R Core Team,
2017) using CSS normalized relative abundances of enriched
families to see how accurately UOG+ and UOG− sites could
be classified based on those enriched OTUs. The caret package
(Kuhn, 2017) was used to partition 80% of the data for a training
set and the remainder for a test set. It also decided how many
OTUs were considered at each step. The random forest package
(Liaw et al., 2002) was then used to create a list of predictors and
their GINI decreases based on 66% of the training set data, with
the remainder of that data being used for an out-of-bag error
estimate. Those predictors were used to classify the sites in the test
set as UOG+ or UOG− to validate the model. After repeating this
process 1,000 times, the percent of sites correctly classified were
averaged to see how well the random forest model performed, and
the OTUs’ GINI decreases were averaged to see which OTUs were
most important for classifying sites. A GINI score is a measure
of impurity, with higher scores reflecting greater group impurity.
Accordingly, the decreases in GINI score, denote the strength
with which a given OTU could differentiate UOG+ samples from
UOG−.

Two co-occurrence networks were created for UOG+ and
UOG− sites using Cytoscape 3.3.0 (Shannon et al., 2003) with
the CoNet plugin (Faust and Raes, 2016) to examine correlations
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among OTUs in sediment samples. OTU tables showing relative
abundances at the genus level were used. OTUs were only
considered if they appeared in at least half of the sampling sites
(n = 7), were identified to at least class and had a Spearman’s rho
of at least 0.9. Spearman correlation, Bray–Curtis dissimilarity,
and Kullback–Leibler dissimilarity were used for determining
correlations among the taxa. Benjamin–Hochberg multiple test
correction was used to adjust p-values and Brown’s method was
used to merge p-values in cases where multiple edges connected
the same pair of nodes. The networks were then juxtaposed and
compared using CytoGEDEVO (Malek et al., 2016). Nodes for
the same OTUs were matched with a null pairing penalty of 0,
revealing which OTUs were present in both networks and which
were exclusive to one. Nodes were then moved so that labels
would not overlap. Nodes with only one edge were removed from
the final network as they did not meaningfully impact the overall
networks (See Supplementary Figure 2 for the original combined
network).

PICRUSt analysis (Huttenhower et al., 2013) was done on
a closed-reference OTU table, made using QIIME 1.9.1 and
normalized by copy number, to predict the functional capabilities
of the bacteria in our samples. OTUs were determined based
on 97% similarity. RDP classifier was used to assign taxonomy
(Wang et al., 2007) based on the Greengenes 16S rRNA
database (13–8 release). Significant differences in functional
pathway abundance between UOG+ and UOG− samples were
determined using LEfSe analysis as previously described, except
the LDA threshold was lowered to 1. The results were then
plotted.

Partial least squares discriminant analysis (PLS-DA) was
performed within R using the mixOmics package (Cao et al.,
2017) to compare aquatic microbial communities in this study
(northeastern PA) to previously collected stream sediments in
2014 (central PA) (Supplementary Figure 3). Samples from
the previous study were classified as HF+ or HF−, based on
proximity to hydraulic fracturing. Sequence data from sediment
samples from Ulrich et al. (2018) and this study were merged
and quality filtered at an average expected error of 0.5 and
truncation length of 150 bp. All downstream steps for filtering,
OTU clustering, and normalization were performed as described
above. Data were fitted to three components to generate the
PLS-DA model (Supplementary Figure 4). The model was
assessed with 10-fold cross-validation repeated ten times.

RESULTS

Stream Parameters
None of the water quality measures differed significantly between
UOG+ and UOG− streams (Kruskal–Wallis and Wilcoxon rank
sum tests p > 0.05). Additionally, none of the land use or
ecological features we measured differed significantly, except for
percent of woody wetland vegetation (Supplementary Table 3).
However, percent of woody wetland vegetation did not explain a
significant amount of variation among our bacterial communities
(Adonis, p > 0.05). The number of wells in UOG+ watersheds
ranged from 1 to 22. Chemical and physical parameters collected

(Alkalinity, Conductivity, pH, and Temperature) had a relatively
weak correlation with bacterial community structure (BIOENV,
R = 0.2064). Of the measured parameters, temperature and pH
(α = 0.05) explained the most variation in bacterial community
composition (Adonis, R2 = 0.0977 and 0.0650 respectively).
Additionally, pH appears to be associated in part with geography
(HUC10 watershed) (Kruskal–Wallis, p = 0.0110), but HUC10
watershed did not significantly explain differences among the
samples’ bacterial communities (adonis and PERMANOVA,
p > 0.05, and Supplementary Figure 5). HUC8 watershed and
the EPA ecoregion classifications also did not significantly explain
differences among the samples’ bacterial communities (adonis
and PERMANOVA, p > 0.05).

Bacterial Community Diversity
On average, stream sediment samples yielded 85,799 sequences
per sample after quality filtering. UOG+ samples had an average
of 3,442 ± 661 OTUs, and UOG− samples had an average of
3,121± 807 OTUs. The UOG abandoned sample had 3710 OTUs.
None of the measures of alpha diversity (Chao1, Heip’s evenness,
observed, and PD whole tree) were found to differ significantly
among the sampling sites based on UOG drilling presence
(p > 0.05). Beta diversity analyses also revealed that samples
did not cluster based on UOG drilling presence, nor was there a
significant difference between UOG+ and UOG− communities
(Adonis, p = 0.259; ANOSIM, p = 0.2970; PERMANOVA,
p = 0.2920). While we only obtained one UOG abandoned
sample, it did not appear to meaningfully differ from the UOG+
and UOG− samples with respect to beta diversity or taxonomic
composition, as it falls near several UOG+ and UOG− samples
within the beta diversity plots (Supplementary Figure 6). Number
of wells within a watershed also did not significantly explain
variation between samples (Adonis, p = 0.207). Therefore, UOG
drilling presence does not appear to have significantly affected the
overall alpha or beta diversity of sediment bacterial communities
from streams sampled in this study.

Although overall alpha and beta diversity did not differ
significantly with respect to UOG status, multiple OTUs were
significantly correlated with the number of wells drilled in a given
watershed after CSS normalization (Figure 2). Several of these
taxa were also enriched based on UOG status (Figure 3 and
Supplementary Figure 7). LEfSe analysis revealed 34 enriched
taxa for UOG− sites and 22 for UOG+ sites (LEfSe, α = 0.05;
LDA score ≥ 2). EB1003, one of the taxa enriched in UOG−
samples, had a negative correlation with number of wells
drilled (Spearman, R = −0.4330, p = 0.0306) and conductivity
(Spearman, R = −0.3842, p = 0.0435), while Flammeovirgaceae
and Shewanellaceae, two of the taxa enriched in UOG+
samples, had positive correlations with conductivity (Spearman,
R = 0.4857 and 0.4128, p = 0.0102 and 0.0324). Leptospirillaceae,
Methanobacteriaceae, Rubrobacteraceae, and Shewanellaceae
were enriched in UOG+ samples (Figure 3) and had positive
correlations with the number of wells (Supplementary Table 4).
LEfSe analysis also revealed that there are significant differences
between the communities of UOG+ and UOG− samples even
though they do not differ significantly in overall alpha and
beta diversity. Furthermore, using a table with CSS normalized
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FIGURE 2 | Correlogram showing significant Spearman correlations (α = 0.05) among metadata parameters and bacterial families enriched based on UOG drilling
presence. Color indicates whether the correlation is positive (blue) or negative (red). Size and darkness of the circles indicate the strength of the correlations, with
stronger correlations being larger and darker than weaker ones. The R packages Hmisc (Harrell, 2017) and corrplot (Wei and Simko, 2017) were used to calculate
Spearman correlations and generate the correlogram.

relative abundances of these enriched taxa, our random forest
model had an average accuracy of 82.025% when classifying
samples as UOG+/−. Methanobacteriaceae and EB1003 were
especially important predictors, as they had the first and second
greatest mean GINI decreases (1.1907 and 0.7787). However, it
should be noted that some bacteria enriched based on UOG
drilling presence were also enriched based on HUC10 watershed
groupings (Supplementary Figure 8). A total of twelve bacterial
families were significantly correlated with percent of woody
wetland vegetation as well (Supplementary Table 5). Percent of
woody wetland vegetation correlated with conductivity, and six
of the twelve enriched bacterial families were also correlated with
conductivity, including Shewanellaceae and EB1003, possibly
suggesting the differences in their abundance may have
been driven mainly by conductivity. Still, given these shared
correlations, it is difficult to determine which factor had the
greater effect on their abundances. Regardless, Shewanellaceae
and EB1003’s correlations with the number of wells indicate that
their abundance was affected, at least in part, by the presence of
hydraulic fracturing. Moreover, when clustering was examined
using PLS-DA, bacterial communities were determined not to
cluster by HUC10 watershed (Supplementary Figure 5).

In addition to changes in abundance of certain OTUs,
interactions between OTUs also differed based on UOG drilling
presence (Figure 4). The UOG− network had more nodes
(149) and edges (138) than the UOG+ network (58 nodes
and 45 edges). Most nodes were exclusive to one network. For
example, Caulobacteraceae, Flammeovirgaceae, and Nostocaceae
were only present in the UOG+ network, and Acetobacteraceae,
Pedosphaeraceae, and Solibacteraceae were only present in the
UOG− network. The UOG− network had a clustering coefficient
of 0.193, a network centralization of 0.035, and a network
density of 0.013. The UOG+ network had a lower clustering
coefficient (0.052) but a higher network centralization (0.081)
and network density (0.027). Altogether, the network modeling
of these stream sediments indicates a more connected and robust
bacterial community in UOG− samples as compared to UOG+
samples.

Metagenome functional content was predicted from 16S
rRNA marker gene sequences using PICRUSt. The predicted
functional underpinnings of UOG+ and UOG− stream sediment
bacterial communities differs, as several predicted pathways
were found to be enriched based on PICRUSt’s predictions
(Figure 5). Using PICRUSt’s predictions, LEfSe identified six
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FIGURE 3 | Cladogram showing differentially enriched families between UOG+ and UOG– samples. UOG+ enriched taxa are indicated in red, and UOG– enriched
taxa are indicated in green. A Kruskal–Wallis test was used to identify enriched taxa (α = 0.05). Effect sizes for the enriched taxa were determined using linear
discriminant analysis (LDA). Taxa with LDA scores ≥2 are shown.

enriched pathways for UOG− and seven for UOG+ samples
(LEfSe, α = 0.05; LDA score ≥ 1). Therefore, the prevalence
of these pathways may have changed in response to hydraulic
fracturing, likely being driven by the enrichment of certain
bacteria. Within the enriched biosynthesis and biodegradation
of secondary metabolites pathway, the genes K06219, K10531,
K08977, K03932, K01865, and K00675 were more abundant in
UOG+ samples than UOG− samples. Likewise, the enrichment
of the linolenic acid metabolism pathway was driven largely by
K00232 and K01058 and the enrichment of the clavulanic acid
metabolism pathway was driven by K12675. Our NSTI values
indicate the database was able to assign taxonomy to at least the
order level accuracy, as they ranged from 0.1279 to 0.2040 for our
samples (Supplementary Table 6).

PLS-DA revealed clustering based on potential geographic
differences in bacterial community structure along the X-variate
1 axis, while samples appeared to be differentiated along the
X-variate 2 axis based on the presence of hydraulic fracturing
(Figure 6). In addition, there was more observed overlap
in aquatic bacterial communities in non-impacted samples
as compared to aquatic bacterial communities from streams
impacted by hydraulic fracturing. A comparison of LEfSe analysis
indicated some enriched taxa were present in both datasets.
PAUC37f, EB1003, MND1, RB41, iii1_15, Nitrospiraceae,
CCU21, and A21b were enriched in streams not near hydraulic
fracturing for both studies while Methanobacteriaceae were

enriched in streams near hydraulic fracturing for both studies
(Supplementary Figures 3, 7). The consistent enrichment of these
bacteria indicates they may be strongly impacted by the presence
of hydraulic fracturing.

DISCUSSION

Here we assessed the potential impacts of UOG development
on stream sediment bacterial communities in 28 streams in
northeastern PA. To that end, data from high throughput
sequencing of the 16S rRNA gene was used to compare bacterial
communities in UOG+ and UOG− samples. Water quality data
and 16S rRNA gene datasets were integrated to better understand
how abiotic factors might correlate to shifts in bacterial
communities within UOG+ and UOG− stream sediments. Deep
sequencing coverage revealed diverse bacterial communities
existed in both UOG+ and UOG− streams, as samples in
both classifications had an average of over 3,000 different OTUs
present. Interestingly, several bacterial assemblages differentiated
UOG+ sites from UOG− sites. Furthermore, co-occurrence
network models revealed a more robust and connected bacterial
ecosystem within UOG− stream sediments, as compared to
the disjointed bacterial community within the UOG+ stream
sediment network (Figure 5), suggesting the sediment bacterial
communities in those streams may have been disturbed. Previous
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FIGURE 4 | Co-occurrence network for UOG– (A) and UOG+ (B) sites. Nodes for OTUs exclusive to UOG– sites have a green border, and nodes for OTUs exclusive
to UOG+ sites have a red border. OTUs present in both have a grey border. Nodes are labeled by class and colored by phylum; their size reflects their relative
abundance, with larger nodes representing more abundant taxa. Pairs of nodes that were only connected to each other were excluded from the comparison
network. See Supplemental Figure 2 for the unaltered network.

FIGURE 5 | Predictive metagenomics using PICRUSt analysis. The functional capabilities of the bacterial communities in our samples were predicted with PICRUSt.
LEfSe analysis was utilized to identify potentially enriched pathways. Pathways with a LDA score ≥1 are shown.

literature has indicated land disturbances decrease the number
of correlations among bacteria (Eldridge et al., 2015; Sun et al.,
2017).

There were no significant differences in alpha diversity
(Chao1, Heip’s evenness, observed, and PD whole tree) between
UOG+ and UOG− streams assessed in this study, which
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FIGURE 6 | PLS-DA of stream sediments collected from our study (northeastern PA) and a previous study conducted in central PA. The PLS-DA was constructed
using CSS normalized relative abundances of family level OTUs. Ellipses show the area where there is a 95% chance that samples in the group will be found.
PLS-DA analysis was performed in R, using the mixOmics package (Cao et al., 2017).

is consistent with Johnson et al. (2017), in which there
was no association between alpha diversity (Chao1, observed,
Shannon evenness, and Shannon Entropy) and proximity to
hydraulic fracturing activity. Trexler et al. (2014) observed a
significant reduction in alpha diversity (Chao1, Heip’s evenness,
observed, and PD whole tree) and pH in streams near
Marcellus shale activity (UOG development). The decreased
levels of alpha diversity in streams proximal to hydraulic
fracturing may have been driven by pH, which is one of
the main determinants of bacterial community composition
(Dean et al., 2016). It should be noted that pH explained
much less of the variation in bacterial community structure of
streams assessed in this study as compared to Trexler et al.
(2014).

While no measured water quality parameters were statistically
significantly different between UOG+ and UOG− streams, we
observed that samples with the highest conductivities were from
UOG+ streams. This finding is consistent with Johnson et al.
(2017); in which they report streams near hydraulic fracturing
had higher conductivities than the streams not adjacent to
hydraulic fracturing. Because flowback and produced water are
typically saline (Olmstead et al., 2013; Lautz et al., 2014; Mouser
et al., 2016), it would be expected that streams near UOG
extraction could be more saline if they are being impacted by
these fluids. An increase in water salinity would likely lead to
an increase in salinity in underlying sediments, which would
absorb the additional salts in the overlaying water. Shifts in the
abundances of several bacterial populations have been observed
in response to small increases in salinity (Wu et al., 2006;
Campbell and Kirchman, 2013; Klier et al., 2018). Furthermore,
recent work has shown that halotolerant and halophilic OTUs
have been found to be highly abundant in fracking fluids (Mouser
et al., 2016).

Stream conductivity significantly positively correlated with
61 different bacterial families, many of which are enriched in
UOG+ samples and can live in saline conditions. For example,
Cyclobacteriaceae has been successfully cultured on saline
media, indicating it is at least halotolerant (Remmas et al.,
2017). Members of the Rubrobacteraceae have been observed
to be halophilic, as they have been found in relatively high
abundances in samples derived from saline sediment (Kutovaya
et al., 2015). Acidaminobacteraceae, Flammeovirgaceae,
Methanobacteriaceae, Oceanospirillaceae, Shewanellaceae
include bacteria found in marine environments (Cho et al., 2004;
Mason et al., 2012; Bendall et al., 2013; Koo et al., 2015; Campeão
et al., 2017; Dong et al., 2017), showing they can tolerate and
thrive in high salinity environments. Furthermore, several
enriched UOG+ OTUs included taxa encompassing known
halophilic hydrocarbon degraders, such as Cyclobacteriaceae
(Wang et al., 2014), Oceanospirallaceae (Lofthus et al., 2018),
and Shewanellaceae (Bayat et al., 2015). Overall, the increased
abundance of several halophilic taxa in UOG+ samples
(Supplementary Figure 9) potentially suggests those streams
may have been impacted by hydraulic fracturing. In order to
determine a more definitive linkage, future work should include
studies that investigate measurements both pre- and post-UOG
development. Moreover, additional chemical measurements
(e.g., 87S/86S isotopic ratios) of source fluids and stream samples
would aid in classifying streams as impacted.

Increased concentrations of methane could potentially be
indicative of streams impacted by hydraulic fracturing, as
methane can enter underground water bodies due to hydraulic
fracturing (Jackson et al., 2014; Burden et al., 2016) and can
eventually contaminate surface water, potentially enriching taxa
that use it as a carbon source. Two bacterial OTUs enriched
in UOG+ sediments, Ignavibacteriaceae and Methylococcales,
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can both utilize methane (Wattam et al., 2014; Hestetun
et al., 2016). Enrichment of these methanotrophs, could suggest
these taxa are responding to increased methane concentrations
within these samples. However, methane gases were not directly
measured in these samples. Consequently, enrichment of these
methanotrophs does not definitively indicate the streams have
been impacted by methane as a result of hydraulic fracturing.
Future work should directly measure methane gas within aquatic
samples and use stable isotope probing, to determine if the source
of this methane is from natural gas stores.

The enrichment of several different bacterial assemblages
(i.e., halophiles, hydrocarbon degraders, methanotrophs, etc) in
addition to the results of a more accurate random forest model,
indicates these OTUs could serve as biomarkers for streams
impacted by hydraulic fracturing. Interestingly, the three most
important predictors for our model (Supplementary Figure 10)
were all significantly correlated with the number of wells
developed within a given watershed (Figure 2), suggesting they
may be especially good indicators for strongly impacted streams.
Our random forest results also suggest examining the abundances
of taxa that differentiate the presence of hydraulic fracturing
could serve as accurate indicators for streams impacted by
hydraulic fracturing, however, the geo-spatial impacts on aquatic
bacterial communities must be considered. PLS-DA of bacterial
communities from this study and a previous study performed
in central PA revealed that geographical location drives some
of the differences observed in bacterial community structure
(Figure 6). However, it was also observed that UOG+ (our study)
and HF+ (previous study) bacterial communities differentiated
from the more overlapping UOG−/HF− bacterial communities.
Altogether, comparing these two sets of streams indicates that
geographical factors may influence how hydraulic fracturing
impacts nearby streams. Thus, future work is necessary to better
understand the spatial and temporal stability of these potential
biomarkers and their predictive power in correctly identifying
other streams impacted by hydraulic fracturing activities.

Functional metagenomic predictions based on the 16S
rRNA gene data provided additional evidence of the projected
metabolic response of aquatic bacterial communities to potential
hydraulic fracturing inputs. For example, genes involved in
mechanisms of antibiotic resistance were enriched in UOG+
sites (K01058 and K12675). More specifically, genes within the
UOG+ enriched linolenic metabolism pathway enable bacteria to
resist antibiotics by reducing membrane permeability (Pedrotta
and Witholt, 1999). Membrane permeability and efflux pumps
have been shown, in the context of hydraulic fracturing, to
be involved in a functional response to biocide compounds
(Vikram et al., 2014, 2015). Biocides in hydraulic fracturing
are often used at sublethal concentrations, which has been
shown to select for resistance to these biocides, as multiple
studies show diverse and active microbial communities associated
with fracking-related fluids (Struchtemeyer and Elshahed, 2012;
Vikram et al., 2016). The enrichment of these pathways could
be a hallmark of the bacterial community responding to
higher osmotic stress in UOG+ waters. Predictive metagenomics
analysis also revealed the UOG+ bacterial communities were
enriched in functions mapping to biodegradation pathways.

For example, benzene (K10531) and nitrobenzene (K01865)
degradation were enriched in UOG+ samples. Interestingly,
benzene has been found in produced waters (Burden et al., 2016).
Although predictive metagenomics was useful in generating
some mechanistic hypotheses about the role of enriched taxa in
this environmental scenario, tools like PICRUSt are constrained
by reference databases. Accordingly, future work should utilize
shotgun metagenomics and metatranscriptomics to quantify
genetic potential and expression of microbial communities under
varied hydraulic fracturing impacts.

Altogether, our study revealed that despite similar overall
bacterial diversity between UOG+ and UOG− communities,
UOG drilling status was associated with differential bacterial
assemblages within surrounding stream ecosystems. Most
notably, stream sediment bacterial communities in UOG+
streams were enriched in methanotrophic, salt-tolerant, and
hydrocarbon-degrading taxa. Our random forest model indicated
several of these enriched taxa could be effective biomarkers
for determining if a stream has been impacted by hydraulic
fracturing, and future longitudinal studies could even shed light
on the natural attenuation and recovery of these ecosystems.
Furthermore, our data suggest certain metabolic pathways could
be indicative of impacts associated with hydraulic fracturing
in streams in close proximity to UOG extraction. Future
utilization of matched metagenomics and metatranscriptomics
sequencing will provide a more robust understanding of the
functional response of bacterial communities to hydraulic
fracturing impacts on proximal streams. Additionally, future
studies should include samples from hydraulic fracturing
flowback and produced water and characteristic chemical
properties of that wastewater to better establish a link
between hydraulic fracturing and its direct impact on proximal
streams.

Unfortunately, confounding factors due to differences
between streams unrelated to hydraulic fracturing, such as the
amount of organic matter in the streams or the influence of
other anthropogenic factors due to runoff, such as road salts,
cannot be completely ruled out and could have impacted our
results. Thus, microcosm studies under controlled conditions,
similar to Campa et al. (2018), could also be useful to
pinpoint hydraulic fracturing’s impact on aquatic microbial
communities. Despite these limitations, our study contributes
to the growing knowledge about hydraulic fracturing’s impact
on the environment and highlights the need for additional
research to further understand its potential environmental
impacts.
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