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Hexabromocyclododecane (HBCD) stereoisomers may exhibit substantial differences in
physicochemical, biological, and toxicological properties. However, there remains a lack
of knowledge about stereoisomer-specific toxicity, metabolism, and environmental fate
of HBCD. In this study, the biotransformation of (±)α-, (±)β-, and (±)γ-HBCD contained
in technical HBCD by a mixed culture containing the organohalide-respiring bacterium
Dehalococcoides mccartyi strain 195 was investigated. Results showed that the mixed
culture was able to efficiently biotransform the technical HBCD mixture, with 75% of
the initial HBCD (∼12 µM) in the growth medium being removed within 42 days. Based
on the metabolites analysis, HBCD might be sequentially debrominated via dibromo
elimination reaction to form tetrabromocyclododecene, dibromocyclododecadiene, and
1,5,9-cyclododecatriene. The biotransformation of the technical HBCD was likely
diastereoisomer-specific. The transformation rates of α-, β-, and γ-HBCD were in the
following order: α-HBCD > β-HBCD > γ-HBCD. The enantiomer fractions of (±)α-,
(±)β-, and (±)γ-HBCD were maintained at about 0.5 during the 28 days of incubation,
indicating a lack of enantioselective biotransformation of these diastereoisomers.
Additionally, the amendment of another halogenated substrate tetrachloroethene (PCE),
which supports the growth of strain 195, had a negligible impact on the transformation
patterns of HBCD diastereoisomers and enantiomers. This study provided new insights
into the stereoisomer-specific transformation patterns of HBCD by anaerobic microbes
and has important implications for microbial remediation of anoxic environments
contaminated by HBCD using the mixed culture containing Dehalococcoides.
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INTRODUCTION

Hexabromocyclododecane (HBCD) is a widely used cyclic
aliphatic brominated flame retardant found in polymers,
textiles, electronic, and electric products. Due to its persistence
in the environment and the associated environmental and
human health risks (Marvin et al., 2011; Koch et al., 2015),
HBCD has been included in the Annex A as a persistent
organic pollutant (POP) by the Stockholm Convention (United
Nations Environment Programme [UNEP], 2013). Currently,
the production and use of HBCD have been banned in many
countries (United Nations Environment Programme [UNEP],
2013). It is necessary to better understand the fate of HBCD
released to the environment and to develop effective methods to
remediate sites contaminated by HBCD.

Technical-grade HBCD is synthesized by bromination of
1,5,9-cyclododecatriene (Heeb et al., 2005), which theoretically
leads to a mixture of three major diastereomeric pairs of
enantiomers, i.e., (±)α-, (±)β-, and (±)γ-HBCD. The structures
of (±)α-, (±)β-, and (±)γ-HBCD are shown in Figure 1.
Different physiochemical properties (e.g., polarity, water
solubility, and dipole moment) of these HBCD stereoisomers
may lead to substantial differences in their toxicity, metabolism,

FIGURE 1 | Structure of (±)α-, (±)β-, and (±)γ-HBCD.

and environmental fate (Hakk et al., 2012). Indeed, there
is increasing evidence for the diastereoisomer- and/or
enantiomer-specific distribution and accumulation in various
environmental media (Yu et al., 2008; Haukås et al., 2009; Gao
et al., 2011; Zhang et al., 2011; Wu et al., 2014), biota (Janák et al.,
2005; Zheng et al., 2017), and even in human body (Shi et al.,
2009).

Due to its highly hydrophobic nature (log Kow = 5.6), HBCD
released to aquatic environments tends to partition to and be
accumulated in anoxic sediments (Davis et al., 2005; Law et al.,
2014). Anaerobic transformation and degradation is considered
as a key pathway of natural attenuation of HBCD under anoxic
conditions (Davis et al., 2005, 2006; Gerecke et al., 2006; Stiborova
et al., 2015). Experiments with river sediments have shown
faster rates of HBCD transformation in anaerobic conditions
than in aerobic conditions, with β-HBCD transformation being
faster than α- and γ-HBCD (Davis et al., 2005, 2006). However,
very little is known about the transformability of HBCD by
pure or mixed cultures of anaerobic microbes. Until now,
only two HBCD-degrading bacteria have been isolated (Peng
et al., 2015) and no mixed cultures containing anaerobic
microbes have been demonstrated to be able to debrominate
HBCD.

Organohalide-respiring bacteria (OHRB) are key players
in natural attenuation of halogenated organic compounds in
anoxic environments (Löffler et al., 2013; Wang et al., 2014;
Adrian and Löffler, 2016). Dehalococcoides is the best-studied
OHRB that can degrade halogenated POPs (Adrian and
Löffler, 2016). Dehalococcoides mccartyi strain 195 (formerly
Dehalococcoides ethenogenes strain 195) is the first bacterium
known to completely dechlorinate tetrachloroethene (PCE) to
ethene as the sole electron acceptor for growth (Maymó-Gatell
et al., 1997; Löffler et al., 2013). It can cometabolize a broad
variety of recalcitrant POPs in mixed cultures or in the presence
of other electron acceptors, such as polychlorinated biphenyls
(PCBs), polychlorinated dibenzo-p-dioxins (PCDD/Fs) and
polybrominated diphenyl ethers (PBDEs) (Fennell et al., 2004;
He et al., 2006; Liu and Fennell, 2008; Zhen et al., 2014).
D. mccartyi strain CBDB1 is capable of debrominating many
brominated compounds, such as tetra- and penta-brominated
diphenyl ether, tetrabromobisphenol A, bromophenol blue,
and hexabromobenzene (Lee et al., 2011; Yang et al., 2015).
Our previous study showed that mixed cultures containing
D. mccartyi strain 195 dehalogented halogenated compounds
more efficiently than the pure culture (Fennell et al., 2004).
Further, the organisms have been utilized successfully
in the engineered remediation of natural environments
contaminated by halogenated compounds (Schaefer and Steffan,
2016).

Therefore, this study was designed to examine the mixed
culture containing D. mccartyi strain 195 for their ability to
biotransform HBCD as the sole halogenated substrate or in the
presence of PCE. Special attention was given to the change in the
shift pattern transformation characteristics of diastereoisomers
and enantiomers of HBCD. The results obtained here will
give new insight into the biotransformation patterns of HBCD
stereoisomers by OHRB under anaerobic conditions and facilitate
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the practical application of OHRB during bioremediation of
HBCD-contaminated anoxic environments.

MATERIALS AND METHODS

Chemicals and Culture Preparation
The technical HBCD mixture was purchased from Tokyo
Chemical Industry (Tokyo, Japan). Hexabromobenzene (97%)
was purchased from Alfa Aesar (Haverhill, MA, United States).
Hexane (Merck, Darmstadt, Germany), isooctane (Alfa
Aesar, Haverhill, MA, United States), and toluene (JT Baker,
Phillipsburg, NJ, United States) were used as received.

The mixed culture containing D. mccartyi strain 195 was
cultured in the presence of butyric acid and tetrachloroethene
(PCE) as the electron donor and acceptor under anaerobic
condition, respectively (Zhen et al., 2014). The quantitative
polymerase chain reaction (qPCR) analysis and high throughput
sequencing analysis showed that D. mccartyi strain 195 still was
the only dehalogenating bacteria detected in the mixed culture,
which was consistent with the result of our previous study
(Fennell et al., 2004; Krumins et al., 2009; Zhen et al., 2014).

The composition of growth medium of this mixed culture
was described previously by Fennell (1998). Briefly, the medium
consisted of NH4Cl (0.2 g L−1), K2HPO4 (0.1 g L−1),
KH2PO4 (0.055 g L−1), MgCl2·6H2O (0.2 g L−1), FeCl2·4H2O
(0.1 g L−1), Na2S·9H2O (0.5 g L−1), NaHCO3 (6 g L−1), resazurin
(0.001 g L−1), vitamin stock solutions and trace metal solution.

Biotransformation Experiment
A batch experiment was conducted for quantifying the
transformability of HBCD by the mixed culture. Serum bottles
(60 ml) sealed with a Teflon-coated gray butyl rubber stopper
and crimped with an aluminum crimp cap were used as the
batch reactor. Firstly, HBCD stock solution (1 mL) was added
to each bottle containing 1 g of dry and sterile silica powder via
a sterile glass syringe. After the solvent was evaporated under
sterile and anaerobic conditions, the bottles were purged for
15 min with anoxic and sterile gas mixture (70% N2/30% CO2).
The mixed culture (50 mL), with the density of D. mccartyi
strain 195 at approximately 2 × 108 cells mL−1, was transferred
into each bottle under sterile and anaerobic conditions. The
initial concentration of HBCD in the medium was ∼12 µM.
Four sets of triplicate bottles were set up at 30◦C. One set
of bottles was amended with active cells and HBCD as the
sole halogenated compound. The second set of bottles was
amended with active cells, HBCD and PCE for testing the
effects of PCE as an alternative electron acceptor (also a growth
substrate) on the biotransformation of HBCD. The third set
of bottles was amended with active cells and PCE as the sole
halogenated compound. The fourth set of bottles were control
reactors containing HBCD and cells killed by autoclaving for
30 min on each of three consecutive days. All treatments were
conducted in triplicate. In addition, 100 µL of neat butyric acid
and 50 µL of fermented yeast extract solution (50 g L−1) were
added into all bottles as carbon source and nutrient source every
2 weeks, respectively (Zhen et al., 2014). All bottles were shaken

at 250 rpm on a shaker placed in the darkroom at 30◦C. At
predetermined time intervals, an aliquot of 1 mL of the cultures
were sampled from each bottle via sterile and anoxic syringe
and was freeze-dried for the analysis of residual concentration of
HBCD, HBCD diastereoisomers, and enantiomers.

In order to identify the degradation products of HBCD,
a separate experiment was performed using higher initial
concentration of HBCD (∼38 µM) so that sufficient mass of
the products was obtained. The other experimental conditions
were kept the same as those of above batch experiments. At
predetermined time, an aliquot of 1 mL of the cultures were
sampled from each bottle via sterile and anoxic syringe and was
freeze-dried for the analysis of HBCD products.

Analytical Methods
An Agilent 6890N network GC system equipped with Agilent
5973N network mass selective detector was employed for the
determination of residual HBCD and potential low debrominated
products. An Agilent 1100 series HPLC system with a API
4000 triple quadrupole mass spectrometer (LC-MS/MS) with
a TurboIonSpray ionization interface was employed for the
determination of HBCD diastereoisomers and enantiomers.

For quantifying concentrations of residual HBCD, the
freeze-dried samples were spiked with 20 µL of 450 µM
hexabromobenzene as the recovery surrogate and ultrasonically
extracted twice with 1 mL of isooctane/hexane mixtures (9:1,
v/v) for 15 min. Then, the supernatants were combined,
concentrated and analyzed by GC-MS equipped with an
on-column injector and a DB-5 capillary GC column (15 m
length, 0.25 mm id and 0.1 µm film thickness) operating
in negative chemical ionization (NCI) mode. The ions with
m/z 79, 81, 561, and 563 were selectively monitored. A cold
on-column injector was operated in track-oven mode. The
oven operation temperature was set from 60◦C for 1 min,
increased to 260◦C at 10◦C min−1, and held at 260◦C for
5 min, and then increased to 320◦C at 20◦C min−1. The
ion source and quadrupole temperatures were set at 150
and 200◦C, respectively. Helium was used as the carrier gas
at a flow rate of 1.2 mL min−1, and methane was used
as the moderating gas. Quality assurance was performed by
the analyses of spiked blanks. The recoveries of HBCD and
hexabromobenzene in spiked blanks ranged from 96 to 108% and
98 to 113%, respectively. Limits of detection (LOD) and limits of
quantification (LOQ) were defined a signal-to-noise ratio of 3 and
10, respectively. LOD and LOQ of HBCD were 0.03 and 0.11 ng,
respectively.

For identifying potential debrominated products, triplicate
samples were combined, concentrated, and analyzed by GC-
MS equipped with a Rtx-5 ms fused silica capillary column
(30 m length, 0.25 mm id, and 0.25 µm film thickness)
operating in electron ionization (EI) mode. The GC column
temperature was programmed to maintain at 80◦C for 1 min,
ramped at 10◦C min−1, to 300◦C, and held at 300◦C for
10 min. The temperature of injector was set to 250◦C. The
carrier gas was helium at a flow rate of 1 mL min−1. Both
ion source and GC-MS-EI interface temperature were held
isothermally at 250◦C. The mass spectrometer was run in electron
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FIGURE 2 | Anaerobic transformation of the technical HBCD by the mixed
culture in the presence or absence of PCE. The initial concentration of HBCD
coating on the silicate in the growth medium was 12 µM.

impact ionization mode (70 eV) and was scanned from 45 to
700 amu.

Three major HBCD diastereoisomers (α-, β-, and γ-HBCD)
and their enantiomers were analyzed using a LC-MS/MS
according to the method described by Yu et al. (2008).
The enantiomeric composition was expressed as enantiomeric
fraction (EF). In order to avoid the matrix effect, 13C-labeled
α-, β-, and γ-HBCD were added as internal standards for both
quantification and correction of EF values. The corrected EFs
were calculated by the following equation:

EF =
A+

/
A+c13

A+
/

A+c13 + A−
/

A−c13

where A+ and A− represent the peak areas of (+)-enantiomer
and (−)-enantiomer, respectively, while A+C13 and A−C13
represent the peak areas of (+)-enantiomer and (−)-enantiomer
labeled by 13C, respectively.

RESULTS AND DISCUSSION

The mixed culture containing D. mccartyi strain 195 have
demonstrated the ability of dehalogenating recalcitrant POPs
like PCBs and PCDD/Fs (Liu and Fennell, 2008; Zhen et al.,
2014), which might also have the potential to transform
HBCD. As shown in Figure 2, when technical HBCD was
added as the sole halogenated amendment to the mixed
culture, loss of the compounds was observed, supporting our
hypothesis. After a lag period of approximately 7 days, the
mixed culture exhibited high activity for the biotransformation
of the technical HBCD. After 42 days of incubation, 75% of
the initial HBCD (12 µM, equal to 7704 µg L−1) in the
growth medium of the live mixed culture disappeared. There
was no significant degradation between 35 and 42 days. It
was likely because the residual concentration of HBCD as
the electron acceptor was too low to sustain the growth of
dehalogenating bacteria, therefore, the degradation rate did
not increase. Indeed, a similar phenomenon was reported in
a previous study (Cupples et al., 2004). No apparent HBCD
removal was observed in the killed control throughout the
experiment period.

As shown in Figure 3, there were three metabolites
produced during anaerobic degradation of HBCD, i.e.,
Peaks I, II, and III. As shown in Figure 4, Peaks I and
II were tentatively identified as tetrabromocyclododecene
and dibromocyclododecadiene, respectively, by comparison
with mass spectral of debromination products of HBCD

FIGURE 3 | Formation of degradation products of HBCD by the mixed culture.
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FIGURE 4 | Mass spectrum of HBCD and its debromination products. (A) HBCD; (B) Peak I, tetrabromocyclododecene; (C) Peak II, dibromocyclododecadiene; and
(D) Peak III, 1,5,9-cyclododecatriene.

FIGURE 5 | The proposed debromination pathway of HBCD by the mixed culture.

reported in previous studies (Li et al., 2016, 2017). Peak III
was identified by 1,5,9-cyclododecatriene by comparison
with the respective retention time and mass spectrum of
external standards. As shown in the proposed debromination
pathway (Figure 5), HBCD was sequentially debrominated by
anaerobic bacteria via dibromo elimination reaction to form
tetrabromocyclododecene, dibromocyclododecadiene, and
1,5,9-cyclododecatriene. Similar debromination products and
pathway have been reported in anaerobic degradation of HBCD
by pure culture of Achromobacter sp. as well as in digester sludge

and freshwater aquatic sediments (Davis et al., 2006; Peng et al.,
2015).

Our observations are consistent with a prior report which
showed Achromobacter sp. HBCD-1 could anaerobically
transform 35.1% of 5000 µg L−1 HBCD in its growth medium
within 8 days (Peng et al., 2015). However, it is difficult to make
a detailed comparison of our observations with other studies of
transformation of HBCD by OHRB due to limited published
data. Indeed, it is interesting to show that Dehalococcoides
organisms utilized HBCD relatively rapidly compared to PBDEs
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FIGURE 6 | The residual concentration of three HBCD diastereoisomers
during the degradation of HBCD by the mixed culture when HBCD was
amended as the sole halogenated substrate (A), HBCD co-existed with PCE
(B), and in control with killed cells (C) in the growth medium.

(He et al., 2006). As shown by He et al. (2006), pure and enriched
culture containing D. mccartyi strain 195 exhibited detectable
debromination activity of octa-BDEs within 6 and 3 months,
respectively. In previous studies, when more hydrophobic POPs
were added as the sole electron acceptors (Fennell et al., 2004; He
et al., 2006; Liu and Fennell, 2008; Zhen et al., 2014), the rates
of dechlorination were slower. For instance, it was shown that
less than 20% of the initial 1,2,3,4,7,8-hexachlorodibenzofuran in
growth medium was dechlorinated to less chlorinated daughter
products by a mixed culture containing D. mccartyi strain 195
after 195 days of incubation (Liu and Fennell, 2008). Nonetheless,
our results mentioned above, in combination with the fact that D.
mccartyi strain 195 has 17 putative reductive dehalogenase genes
(Seshadri et al., 2005), warrant further study on the potential
activities of Dehalococcoides organisms for the degradation of
other POPs and/or halogenated contaminants.

Note that the biotransformation of the technical HBCD by
the mixed culture containing D. mccartyi strain 195 was likely
diastereoisomer-specific (Figure 6). After 28 days of incubation,
the remaining percentages of α-HBCD, β-HBCD, and γ-HBCD

FIGURE 7 | The dynamics of the proportions of α-HBCD (A), β-HBCD (B),
and γ-HBCD (C) to the total HBCD throughout the transformation experiment,
where HBCD was degraded as the sole halogenated substrate or in the
presence of PCE by the mixed culture.

were 16, 26, and 60%, respectively (Figure 6A). It suggested
that the transformation rate of three HBCD diastereoisomers
followed the order of α-HBCD > β-HBCD > γ-HBCD. The
pattern of transformation rates of α-, β-, and γ-HBCD by the

TABLE 1 | Enantiomer fractions (EFs) of α-, β-, and γ-HBCD during the
transformation of the technical HBCD mixture by the mixed culture containing
D. mccartyi strain 195.

Treatment Time (Day) EFα EFβ EFγ

Control 0 0.51 0.49 0.51

7 0.52 0.51 0.51

14 0.52 0.51 0.51

21 0.51 0.51 0.50

28 0.53 0.50 0.50

HBCD 0 0.52 0.50 0.50

7 0.49 0.50 0.50

14 0.52 0.50 0.51

21 0.52 0.50 0.51

28 0.52 0.51 0.51

PCE+HBCD 0 0.52 0.50 0.50

7 0.51 0.50 0.50

14 0.52 0.51 0.50

21 0.52 0.50 0.51

28 0.49 0.51 0.50
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FIGURE 8 | Degradation of PCE and its intermediates by the mixed culture in presence of HBCD at day 7 (A) and day 28 (B).

mixed culture used in this study (Figure 6A) was consistent with
that of the three diastereoisomers by the anaerobic bacterium
Achromobacter sp. HBCD-1 (Peng et al., 2015). In contrast, it
was reported that the anaerobic biotransformation of α-HBCD in
sewage sludge (Gerecke et al., 2006) and river sediments (Davis
et al., 2006) was slower than that of β-HBCD and γ-HBCD.
These different outcomes could be caused by a number of
environmental factors. It is highly likely that other microbes,
rather than Dehalococcoides or Achromobacter organisms, may
be able to debrominate HBCD via different mechanisms in the
sewage sludge and river sediments. It is also apparent that the
initial concentrations of HBCD diastereoisomers in the technical
HBCD mixtures used are likely very different from those present
in the environments, causing varied rates of biotransformation
of different diastereoisomers (Davis et al., 2006). Interestingly,
α-HBCD with higher hydrophobicity was adsorbed more
strongly on sediment particles in the environments (Marvin
et al., 2011), rendering lower bioavailability of α-HBCD and
hence retarded degradation rate in the environments. The
diastereoisomer-specific degradation of HBCD in the presence of
PCE by the mixed culture is shown in Figure 6B and discussed
below in detail. No diastereoisomer-specific transformation was
observed in control (Figure 6C).

For better understanding the effect of diastereoisomer-specific
biotransformation on the change in stereoisomeric composition
of HBCD, the dynamics of the proportions of individual
diastereoisomers to the total HBCD throughout the
debromination experiment should be considered. The proportion

of γ-HBCD was the largest among the diastereoisomers and
increased with time (Figure 7C), whilst those of all the other
diastereoisomers tended to decrease with time (Figures 7A,B).
In general, these results presented a plausible explanation
for the observation that γ-HBCD was the most dominant
diastereoisomer in many anoxic sediments (Harrad et al.,
2009; Gao et al., 2011; Meng et al., 2011; Zhang et al., 2011;
Klosterhaus et al., 2012; Wu et al., 2014). However, the increased
proportion of γ-HBCD observed in this study was inconsistent
with the phenomenon that the proportion of γ-HBCD in
some river sediments was much lower than those of technical
HBCD mixtures (Wu et al., 2014). This discrepancy could
be explained by a scenario that abiotic transformation played
an important role in the distribution and accumulation of
HBCD diastereoisomers in the sediments, further reflecting the
complexity of factors influencing the environmental fates of
HBCD diastereoisomers.

Enantiomeric selectivity of HBCD played key role in the
toxicity and fate of HBCD stereoisomers in the environment.
There is strong evidence that the environmental fates of HBCD
are enantioselective (Zhang et al., 2011; Zheng et al., 2017), while
enantiomeric analysis has received relatively little attention in
the literature on anaerobic degradation of HBCD. In this study,
the occurrences of three pairs of enantiomers in the technical
HBCD mixture, i.e., (±)α-, (±)β-, and (±)γ-HBCD, were
confirmed. Further, EFs of the three HBCD diastereoisomers
were calculated to determine whether enantiomeric selectivity
was involved in the HBCD transformation by the mixed culture.
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As shown in Table 1, the ranges of EFs of α-, β-, and γ-HBCD
throughout the transformation experiment were 0.49–0.52,
0.50–0.51, and 0.50–0.51, respectively. That is, the EFs of the
three diastereoisomers were close to 0.5, suggesting that the
anaerobic transformation of HBCD was not an enantioselective
process. Similarly, no enantioselective pattern was observed in
the anaerobic degradation of HBCD in sewage sludge (Gerecke
et al., 2006). However, the racemic α-, β-, and γ-HBCD
could undergo enantioselective degradation under aerobic
conditions (Heeb et al., 2014, 2017). For instance, an aerobic
HBCD-degrading bacterium (Sphingobium chinhatense IP26)
could transform (+)α-, (−)β-, and (−)γ-HBCD at a faster rate
than those of their enantiomers (Heeb et al., 2017). Dehalogenase
LinB from Sphingobium indicum B90A transformed (−)α-,
(+)β-, and (+)γ-HBCD at faster rates than those of their
enantiomers (Heeb et al., 2012), whilst dehalogenase LinA could
transform only (−)β-HBCD substantially (Heeb et al., 2014).
In addition, enantioselective transformation and enrichment
of HBCD were even observed in animals (Janák et al., 2005;
Du et al., 2012). These findings indicate that mechanisms
of anaerobic biotransformation of HBCD enantiomers are
considerably different from those of aerobic biodegradation.

Co-amendment of halogenated growth substrate (haloprimer)
has been shown to stimulate the dehalogenating activity
of D. mccartyi strain 195 for the debromination of
recalcitrant halogenated compounds such as 1,2,3,4,7,8-
hexachlorodibenzofuran (Ahn et al., 2008; Liu and Fennell,
2008). However, in this study, the biotransformation rate of
the technical HBCD by the mixed culture was not enhanced
when PCE was amended as an additional halogenated substrate
(Figure 2). In addition, the presence of PCE had negligible effects
on the transformation patterns of individual diastereoisomers
and enantiomers (Figures 6, 7, and Table 1). On the other hand,
the degradation of PCE by the mixed culture and dechlorinated
products (e.g., TCE, DCE, and vinyl chloride) was hardly
influenced by the presence of HBCD after 28-day of incubation
(Figure 8). These results indicate that the dehalogenases
responsible for the debromination of HBCD by the mixed
culture might be different from those of PCE. Another important
implication of these results is that the addition of co-substrate
PCE to stimulate the transformation of HBCD might not be
useful when the mixed culture containing D. mccartyi strain
195 is applied into the remediation of anoxic environments
contaminated by HBCD.

CONCLUSION

This study demonstrated that the mixed culture containing
D. mccartyi strain 195 can relatively rapidly transform
the technical HBCD mixture when added as the sole
halogenated substrate and that the loss/transformation is
stereoisomer-specific. It suggested that the transformation
rate of three HBCD diastereoisomers followed the order of
α-HBCD > β-HBCD > γ-HBCD. The pathway of HBCD
degradation has been proposed. The results also showed that
addition of PCE as a co-substrate had negligible effect on
the removal of both PCE and HBCD by the mixed culture.
This may indicate that D. mccartyi strain 195 utilizes different
enzymes for the biotransformation of HBCD and PCE. The
results not only provide insight to the environmental fate
of HBCD stereoisomers and mechanistic understanding of
biotransformation of HBCD, but also facilitate the practical
guidance for design of bioremediation schemes by using
halogen-respirators to treat environments contaminated with
HBCD.
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