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Over the last decades the enteric bacterium Clostridium difficile (novel name
Clostridioides difficile) — has emerged as an important human nosocomial pathogen.
It is a leading cause of hospital-acquired diarrhea and represents a major challenge
for healthcare providers. Many aspects of C. difficile pathogenesis and its evolution
remain poorly understood. Efficient defense systems against phages and other genetic
elements could have contributed to the success of this enteropathogen in the phage-
rich gut communities. Recent studies demonstrated the presence of an active CRISPR
(clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated)
subtype I-B system in C. difficile. In this mini-review, we will discuss the recent
advances in characterization of original features of the C. difficile CRISPR-Cas system in
laboratory and clinical strains, as well as interesting perspectives for our understanding
of this defense system function and regulation in this important enteropathogen. This
knowledge will pave the way for the development of promising biotechnological and
therapeutic tools in the future. Possible applications for the C. difficile strain monitoring
and genotyping, as well as for CRISPR-based genome editing and antimicrobials are
also discussed.

Keywords: CRISPR, C. difficile, 1-B subtype CRISPR-Cas system, prophage, CRISPR regulation, stress,
antimicrobials, genome editing

CRISPR-Cas SYSTEMS: GENERAL FUNCTIONAL ASPECTS
AND CLASSIFICATION

The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated)
systems are adaptive immune systems protecting prokaryotes against phages and other mobile
genetic elements (Sorek et al., 2013). These defensive systems are found in almost all sequenced
archaeal and in about half of bacterial genomes (Grissa et al., 2007). CRISPR-Cas systems are
composed of CRISPR arrays and cas operons. CRISPR arrays in turn consist of short direct repeats
(20-40 bp) separated by variable spacers. Some spacers are complementary to mobile genetic
elements sequences (Shmakov et al., 2017). CRISPR arrays also contain leader regions carrying
promoters from which their transcription initiates.
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CRISPR-based defensive functions include two major
processes: immunity (interference) and immunization
(adaptation) (for general review, see Marraffini, 2015). CRISPR
interference itself can be divided into two phases: the biogenesis
of CRISPR RNAs and the targeting phase. At the first phase a
CRISPR array is transcribed into a long RNA transcript (pre-
crRNA), which is processed into small CRISPR RNAs (crRNAs),
each consisting of one spacer and flanking repeat sequences.
Individual crRNAs bind to Cas proteins forming a nucleoprotein
effector complex, which is necessary for the second, targeting
phase. The crRNAs serve as guides for recognizing nucleic acids
by complementary base pairing. In this way, crRNAs direct
recognition and, ultimately, cleavage of genetic elements by the
Cas nucleases (Garneau et al., 2010). Spacers are incorporated
into CRISPR arrays in the process of adaptation (Jackson et al.,
2017). Casl and Cas2 proteins, found in almost all investigated
CRISPR-Cas systems, are essential for this process (Koonin et al.,
2017). A very important aspect of CRISPR-based immunity
is the ability to distinguish host DNA from the foreign one.
Protospacer-adjacent motifs (PAMs) are short sequences situated
on the 3’ or 5 end of the protospacer (foreign DNA region
corresponding to a CRISPR spacer) and required for protospacer
recognition. PAMs are absent from CRISPR arrays, which
prevents autoimmunity (Sorek et al., 2013). PAMs are essential
during spacer selection at the adaptation stage, which ensures
that acquired spacers are functional in interference. Previous
studies in type I CRISPR-Cas systems identified the sequence
requirements for the CRISPR targeting that includes a perfect
match between the 5 end of the spacer and the protospacer
within up to a 10-nt “seed” sequence (Semenova et al., 2011;
Wiedenheft et al., 2011; Maier et al., 2013a).

CRISPR-Cas systems are highly diverse. This is reflected in
both CRISPR array architectures and cas genes composition
(Takeuchi et al., 2012). The variability of cas gene sets has formed
the basis of CRISPR-Cas systems classification (Makarova et al.,
2011). All investigated CRISPR-Cas systems are divided into two
classes, characterized by the composition of cas genes involved
in interference module (Koonin et al., 2017). These classes in
turn are divided into six types and 33 subtypes (see Table 1 for
examples). The Class 1 comprises the most abundant and diverse
type I and type III CRISPR-Cas systems as well as rare type IV.
These types of CRISPR-Cas systems are found in both archaeal
and bacterial genomes. Effector complexes of the type I and type
III include Cas5, Cas7, Cas8 (in type I), and Cas10 (in type III)
proteins (Koonin et al., 2017). For crRNA processing Cas6 family
proteins are necessary in these CRISPR-Cas systems (Charpentier
etal., 2015). Type I systems are also characterized by the presence
of Cas3 proteins responsible for degradation of DNA recognized
by effector complexes (Brouns et al., 2008). The Class 2 includes
type II, type V and type VI CRISPR-Cas systems. These systems
possess effector modules consisting of only one multi-domain
protein. The most characterized is the type II Cas9 protein widely
used in genome editing (Wang et al., 2016).

The type I CRISPR-Cas systems are highly diverse and
subdivided into seven subtypes (I-A, I-B, I-C, I-U, I-D, I-E,
I-F) (Makarova et al, 2015). The subtypes I-C, I-D, I-E, I-F
are encoded by a single operon in CRISPR loci, whereas

subtype I-A and I-B are often encoded by several operons.
I-C, I-E, and I-F subtypes are mostly present in bacteria,
while I-A, I-B, and I-D are common in archaea (Makarova
et al, 2011) (Table 1). The subtype I-B, characterized by
a specific Cas8b protein, is present in methanogenic and
halophilic archaea and in clostridia. Studies of the I-B CRISPR-
Cas systems in haloarchaea showed some interesting features
such as multiple PAMs and 9-nucleotide non-contiguous seed
region (Maier et al, 2015). Although the subtype I-B was
found in clostridial species it has not been well studied there
yet. It is suggested that I-B CRISPR-Cas system possibly had
been acquired by clostridia from archaea via horizontal gene
transfer and afterward evolved independently (Peng et al., 2014).
Other CRISPR-Cas systems subtypes, including I-A, I-C, III-A,
II-B, and II-C, are also present in some clostridial species
(Table 1).

CHARACTERIZATION OF Clostridium
difficile CRISPR-Cas SYSTEM

Clostridium difficile (novel name Clostridioides difficile) is an
anaerobic spore-forming bacterium, one of the major clostridial
pathogens and the major cause of nosocomial infections
associated with antibiotic therapy (Abt et al., 2016). During
its infection cycle, this enteropathogen must cope with the
presence of foreign DNA elements, including bacteriophages, in
the crowded environment of the gut, and is thus expected to
rely on efficient defense systems such as CRISPR-Cas to control
genetic exchanges favored in its complex niche.

The first evidence suggesting the presence of active CRISPR-
Cas system in C. difficile was obtained during deep-sequencing of
regulatory RNAs in C. difficile (Soutourina et al., 2013). This study
revealed abundant and diverse crRNAs. Active expression and
processing of CRISPR loci was detected in this and a subsequent
study (Soutourina et al., 2013; Boudry et al., 2015).

Bioinformatics analysis of more than 200 C. difficile genomes
(Hargreaves et al., 2014; Andersen et al., 2016) demonstrated
that C. difficile CRISPR-Cas system belongs to I-B subtype
(Koonin et al., 2017). C. difficile CRISPR-Cas system possesses
several original features (Figure 1). CRISPR-Cas system of this
enteropathogen is characterized by an unusual large set of
CRISPR arrays. For example, reference 630 and hypervirulent
R20291 C. difficile strains contain 12 and 9 CRISPR arrays,
respectively (Soutourina et al., 2013; Boudry et al., 2015). These
CRISPR arrays are orientated in the direction of chromosome
replication, as observed for highly expressed bacterial genes and
presumably ensuring their optimal transcription (Arakawa and
Tomita, 2007; Boudry et al., 2015). On average, known C. difficile
genomes contain 8.5 arrays (Andersen et al, 2016). In most
sequenced C. difficile strains several CRISPR arrays are located
in prophages (Hargreaves et al., 2014; Boudry et al.,, 2015). The
crRNAs originating from arrays located in prophages were found
to be the most expressed in 630 and R20291 strains. Prophage
localization of actively expressed CRISPR arrays may play a role
in preventing infection by related competing phages by targeting
their DNA (Sorek et al., 2008).
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Another unusual feature of C. difficile CRISPR-Cas system is
the presence of two or three (in 027 ribotype strains) cas gene
sets in the majority of sequenced strains (Boudry et al., 2015)
(Figure 1). The full cas operon encodes all necessary genes for
CRISPR interference (cas6, cas8b, cas7, cas5, cas3) as well as
casl, cas2, cas4 genes essential for spacer acquisition (Amitai and
Sorek, 2016; Kieper et al., 2018; Lee et al., 2018). The additional
cas operons lack the adaptation module. While the complete
cas gene operons were found in ~90% of sequenced C. difficile
strains, the additional partial cas gene sets are present in almost all
strains (Boudry et al., 2015). Thus, some C. difficile strains could

have lost the ability to adapt to new genetic elements through
their CRISPR-Cas systems. The cas operon occurrence correlates
with evolutionary relationships of C. difficile strains reflecting
their epidemiological context and, possibly, the intensity of
interactions with foreign DNA elements (Boudry et al., 2015).
When present, complete cas gene operons are usually associated
with longest CRISPR arrays, which is indicative of active new
spacer acquisition (or slower spacer loss) and hints to an existence
of some still unknown in cis mechanisms responsible for different
dynamics of cas proximal arrays. The conservation of CRISPR
array structure and sequences of all CRISPR repeats in C. difficile

TABLE 1 | Main CRISPR-Cas systems subtypes and examples of system-harboring microorganisms and clostridial species.

Class Subtype cas operon composition Example Examples of clostridial species and strains
Class 1 I-A cas6, cas11(csab), cas7, cas5, cas8al, cas3’, Listeria monocytogenes 99 (Sesto C. stercorarium subsp. stercorarium DSM 8532
cas3”, cas2, cas4, casl, cas4 etal., 2014) (Poehlein et al., 2013); C. tetani ATCC 9441
(Cohen et al., 2017)
I-B cas6, cas8b1, cas7, casbh, cas3, cas4, casl, Haloferax volcanii H119 (Maier et al., C. difficile 630, C. difficile R20291 (Boudry
cas2 2013b) et al., 2015); C. pasteurianum BC1 (Pyne et al.,
2016); C. acetobutylicum GXAS18-1 (Peng
etal., 2014); C. tetani ATCC 9441 (Cohen et al.,
2017)
I-C cas3, casb, cas8c, cas7, cas4, casl, cas2 Desulfovibrio vulgaris str. C. cellulolyticum H10 (Brown et al., 2014)
Hildenborough (Hochstrasser et al.,
2016)
I-U cas3, cas8uz, cas’, casb-cas6, cas4-casi, Geobacter sulfurreducens (Koonin -
cas2 etal., 2017)
I-D cas8’, cas8”, cas10d, cas7(csc2), cas5(csc), Cyanothece sp. 8802 (Koonin et al., -
casb6, cas4, casl, cas2 2017)
I-E cas3, cas8e(csel), casll(cse2), cas7, casb, Escherichia coli K12 (Koonin et al., -
cas6, casl, cas2 2017)
I-F cas1, cas2-cas3, cas8f(csy1), cass(csy2), Pseudomonas aeruginosa PA14 -
cas7(csy3), cas6f (Wiedenheft et al., 2011)
I-A cas6, cas10, cas11(csm2), cas7(csm3), Staphylococcus epidermidis (Koonin C. tetani ATCC 453 (Cohen et al., 2017)
casb(csm4), cas7(csmb), csme6, cas1, cas2 etal., 2017)
-B cas7(cmri), cas10, cas5(cmr3), cas7(cmrd), Pyrococcus furiosus (Koonin et al., C. botulinum ATCC 3502 (Negahdaripour et al.,
cas11(cmr5), cas6, cas7(cmr6) 2017) 2017)
I-C cas7(cmri), cas7(cmr6), cas10, cas7(cmrd), Methanothermobacter -
cas11(cmr5), casb(cmr3) thermautotrophicus (Koonin et al.,
2017)
I-D cas10, cas7(csm3), cas5(csx10), cas11(csm2), Synechocystis sp. 6803 (Makarova -
cas7(csm7), cas7(csmb), all1473, cas7(csmb) etal., 2015)
Class 2 II-A cas9, casl, cas2, csn2 Enterococcus faecalis OG1RF -
(Bourgogne et al., 2008)
II-B cas9, casl, cas2, cas4 Legionella pneumophila str. Paris -
(Koonin et al., 2017)
II-C cas9, cas1, cas2 Neisseria lactamica 020-06 (Koonin C. perfringens JGS1495 (Pearson et al., 2015)
etal., 2017)
V-A cas12a(cpfl), cas4, casl, cas2 Francisella cf. novicida Fx1 (Koonin -
etal., 2017)
V-B cas12b(c2c1), cas4, casl, cas2 Alicyclobacillus acidoterrestris (Koonin -
et al., 2017)
V-C cas1, cas12c(c2c3) Oleiphilus sp. (Koonin et al., 2017) -
V-D cas1, casi2d(casY) Bacterium CG09_39_24 (Koonin et al., -
2017)
V-E cas12e(casX), cas4, cas, cas2 Deltaproteobacteria bacterium (Koonin -

et al., 2017)

CRISPR-Cas systems subtypes and the composition of cas operons are shown according to classification of Koonin et al.

with a dash.

(2017). Fused cas genes in operons are marked
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FIGURE 1 | Schematic view of the chromosomal location of CRISPR arrays and the organization of the cas operons in C. difficile strains 630 (A) and R20291 (B).
CRISPR arrays (CR) are numbered according to the CRISPRdb database (Grissa et al., 2007). Arrowheads signify arrays’ position and transcriptional orientation. The
locations of associated cas operons, prophage regions, toxin-antitoxin pairs (TA) or only antitoxins (A) and replication origin (ori) are indicated. The organization of the
cas operons in strain 630 (left) and R20291 (right) are indicated with roman numerals, where i — full operons; ii — partial operons, i — an additional operon. Functional
modules are marked with braces. The same color was used for homologous cas genes (Boudry et al., 2015).
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genomes suggests that CRISPR arrays located far from cas
operons use the same set of Cas proteins for their function.

An interesting evolutionary aspect of C. difficile CRISPR-Cas
system has been recently reported (Maikova et al., 2018). Analysis
of about 2,500 C. difficile genomes revealed co-localization of type
I toxin-antitoxin (TA) modules with CRISPR arrays (Figure 1).
TA - CRISPR array co-localization has never been reported for
other bacteria and its significance remains unclear. CRISPR-
arrays localized in prophage regions are in particular prone to
be associated with type I TA modules, which may contribute to
the stabilization of these chromosomal regions by the mechanism
similar to plasmid maintenance through post-segregation killing.

The function of CRISPR-Cas system is to provide defense
against viruses and other mobile genetic elements. Recent
bioinformatics analysis of C. difficile CRISPR spacers matching
known sequences showed that most of them target clostridial
phages and prophage regions (Hargreaves et al., 2014; Boudry
et al., 2015). This suggests that this entheropathogen actively
interacts with phages, and that CRISPR-Cas actively modulates
this interaction. Identification of protospacers allowed to deduce
PAM sequences. While 3-nucleotide 5'-motifs CCA or CCT
were most common, alternative sequences CCC, CCG, and TCA

were also frequently found. Multiple PAMs were also observed
in other type I-B systems (Shah et al, 2013). Conjugation
efficiency experiments with plasmid vectors containing CCA
and CCT PAMs and protospacers corresponding to the first
spacers from actively expressed C. difficile 630 CRISPR arrays
showed active CRISPR interference in C. difficile cells thus
validating bioinformatically predicted PAMs and showing that
C. difficile CRISPR-Cas system is naturally capable of defensive
function (Boudry et al, 2015). Phage infection assays in
630 and R20291 strains revealed the correlation between the
presence of CRISPR spacer-targeting phage sequences and phage
susceptibility. Experiments using a heterologous E. coli host
system showed that both cas operons of C. difficile 630 strain are
capable of interference.

REGULATION AND POTENTIAL
ALTERNATIVE FUNCTIONS OF C. difficile
CRISPR-Cas SYSTEM

During its infection cycle C. difficile faces with different stress
conditions and changing environments inside the host. To
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survive in phage-rich gut community while relying on the
CRISPR-Cas defense, C. difficile needs to regulate CRISPR-
Cas expression in response to different environmental signals.
A study by Boudry et al. (2015) revealed that all the CRISPR
arrays and cas genes are expressed under standard laboratory
conditions. The level of CRISPR-Cas expression could be
modulated by specific regulatory mechanisms.

Bacterial pathogens often form biofilms, which help them
resist different threats inside the host. It was shown that
C. difficile actively forms biofilms (Dapa et al, 2013; Nale
et al., 2016; Soavelomandroso et al.,, 2017) during its infection
cycle. Biofilm conditions are characterized by high cell densities,
which increase the possibility of horizontal gene transfer (Babic
et al., 2011; Abedon, 2012). Quorum sensing is one of bacterial
mechanisms that regulates gene expression depending on the
density of the population (Miller and Bassler, 2001). Recent
studies showed that cas gene expression is induced by quorum
sensing signals in Serratia sp. (I-E, I-F, and III-A subtypes)
(Patterson et al., 2016) and Pseudomonas aeruginosa (I-F subtype)
(Hoyland-Kroghsbo et al., 2016). Moreover, CRISPR-Cas systems
may play a role in biofilm formation and colonization of
the host. For instance, CRISPR-Cas (II-A subtype) harboring
Enterococcus faecalis strain has increased biofilm formation
(Bourgogne et al., 2008). Furthermore, CRISPR-Cas-mediated
gene regulation of the ability to swarm and form biofilms was
revealed in P. aeruginosa (Zegans et al.,, 2009). In C. difficile
strain 630, a recent study revealed up to 20-fold induction of cas
genes expression in biofilms (Maikova et al., 2018), suggesting the
regulation of C. difficile CRISPR-Cas system activity by biofilm-
related factors. During infection, the complex interactions with
different microbiota members within gut communities should
be considered. More studies are thus needed to assess the
possible link between biofilm-related signals and the regulation
of CRISPR-Cas expression during the C. difficile infection cycle.

The obvious stress to induce CRISPR-Cas system is phage
infection. At the earliest stages of attachment to the cell surface, it
is often accompanied by the envelope stress (Ratner et al., 2015).
The induction of the CRISPR-Cas system expression in response
to this type of stress was found in different bacteria (Westra et al.,
2014). Bacterial pathogens and commensals always combat with
the host’s immune response, which results in a wide range of
stressful effects. Several studies reported the changes of cas gene
transcription in Desulfovibrio vulgaris (Mukhopadhyay et al.,
2007), Streptococcus sanguinis (Rodriguez et al., 2011), Pasteurella
multocida (Melnikow et al., 2008), and Lactobacillus rhamnosus
(Koskenniemi et al., 2011) in response to different stresses such
as changes in growth rate, bile, oxidative, nitrosative stresses
and exposure to antibiotics. Virulence is a specific response of
pathogens to different stress factors inside the host (Louwen
et al., 2014). The regulation of CRISPR-Cas systems during the
infection cycle may indicate an important role of these systems
in pathogens. Recently, a role of an alternative SigB factor in
stress response was investigated in C. difficile (Kint et al., 2017).
Interestingly, SigB-dependent promoters were found upstream of
both cas operons in C. difficile strain 630 (Maikova et al., 2018)
and fivefold decrease in expression levels of both cas operons
was observed in sigB mutant strain. This suggests regulation of

C. difficile CRISPR-Cas system via stress-related signals and a
potential role of this system in the survival of C. difficile inside
the host.

Besides the adaptive immunity, multiple alternative functions
of CRISPR-Cas systems have been revealed (Louwen et al., 2014;
Westra et al., 2014). These functions occur through targeting
bacterium’ own genes by partially or fully matching crRNAs.
For instance, in Listeria monocytogenes a specific long type
I-A CRISPR array transcript rliB processed by polynucleotide
phosphorylase (PNPase) controls the expression of the feoAB
genes important for virulence (Mandin et al., 2007; Sesto et al.,
2014). An rliB mutant colonizes its host more effectively than the
wild type strain. Bioinformatics analysis of C. difficile CRISPR
spacers showed that all investigated strains carry genome-
targeting spacers (Boudry et al., 2015). It may thus be speculated
that C. difficile CRISPR-Cas system might also have functions in
the regulation of the endogenous gene expression. The possible
role of CRISPR-Cas systems in genome evolution via self-
targeting is actively discussed (Westra et al., 2014).

POTENTIAL APPLICATIONS OF
C. difficile CRISPR-Cas SYSTEM

During the last decade, discoveries in the CRISPR field
led to rapid development of revolutionary biotechnological
applications especially in genome editing by CRISPR-Cas9
technology (Hsu et al., 2014). Different CRISPR-based tools have
proved to be effective both in prokaryotes and eukaryotes (Hsu
et al.,, 2014; Barrangou and Horvath, 2017).

Since spacers are acquired in an orderly manner, with more
recently acquired spacer being closer to the leader sequence
(Barrangou et al, 2007; Nufez et al, 2015) the order of
spacers within an array reflects phage invasions in different
populations of the same bacterial species. This feature can
reveal phylogenetic relations between strains and can be used
in genotyping techniques (Louwen et al., 2014; Andersen et al.,
2016). Such “CRISPR-typing” has been already applied for
outbreak tracking of Yersinia pestis (Cui et al., 2008; Barros et al.,
2014) and Salmonella enterica (Timme et al., 2013; Pettengill
et al., 2014). Moreover, CRISPR typing is capable to reveal
antibiotic-resistant phenotypes (Palmer and Gilmore, 2010) or
prophages (Nozawa et al, 2011). These correlations can be
explained by the influence of active CRISPR-Cas systems on
the horizontal gene transfer, which plays important role in the
acquisition of new genes and operons, essential for bacterial
pathogenesis and adaptation (Louwen et al,, 2014). CRISPR-
typing approach based on spacer content and polymorphism can
be successfully applied to C. difficile with correlation between
CRISPR-groups and toxin groups (Andersen et al., 2016).

CRISPR-Cas systems can be applied for development of new
antimicrobials based on the self-targeting (Bikard et al., 2012).
The general strategy is the use of phage particles and phagemids
as vectors to deliver auto-targeting CRISPR-Cas components
inside a pathogenic cell (Bikard and Barrangou, 2017). Many
pathogens possess endogenous active CRISPR-Cas systems,
which can be repurposed for self-targeting. Since C. difficile
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contains a naturally active CRISPR-Cas system, such a strategy
could be promising for control and even treatment of C. difficile
infection (CDI), in the context of recent worldwide emergence
of antibiotic-resistant C. difficile strains (Banawas, 2018). Phage
therapy of CDI has proved to be another promising alternative,
but it faces some difficulties including lack of appropriate
phages (Hargreaves and Clokie, 2014; Sekulovic et al., 2014).
The presence of active CRISPR-Cas system should effectively
prevent infection by at least some phages complicating matters
further.

The most popular biotechnological application of CRISPR-
Cas systems is genome editing (Barrangou and Horvath,
2017). In prokaryotes, the most interesting is the application
of endogenous CRISPR-Cas systems since it requires the
introduction of less additional components for the editing
process. Several works showing the applications of endogenous
I-B subtype systems for genome editing were recently published.
The first one, by Pyne et al. (2016) describes this approach
in Clostridium pasteurianum. In this study, a plasmid vector
containing an artificial CRISPR array with a protospacer targeting
the gene of interest and arms for homologous recombination was
used to delete the cpaAIR gene encoding a restriction enzyme
(Pyne et al, 2016). This approach allows fast and markless
deletion or modification of the genes of interest in bacteria.
Later, other studies confirmed the efficiency of this method
in other I-B subtype-carrying organisms: archaeon Haloarcula
hispanica (Cheng et al., 2017) and butanol producing Clostridium
tyrobutyricum (Zhang et al., 2018). Another study revealed that
Haloferax volcanii CRISPR-Cas system with deletions of cas3
and cas6 genes can be used for programmable repression of
genes in this archaeon (Stachler and Marchfelder, 2016). Many
efficient approaches for C. difficile genome manipulation exist
to date. ClosTron is a method based on altered type II intron,
which is able to insert in almost every region of the chromosome
(Kuehne et al., 2011). Another method is CodA allele exchange
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