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Objectives: In this study, we investigated the antimicrobial activity of resveratrol in

combination with colistin, a last-resort agent for the treatment of severe infections caused

by multidrug resistant Gram-negative pathogens.

Methods: The synergistic activity and the bactericidal activity of colistin in combination

with resveratrol was investigated by checkerboard assays and time-kill assays,

respectively. A total of 21 strains were investigated, including 16 strains of different

species (Klebsiella pneumoniae, n= 6, Escherichia coli, n= 6; Citrobacter braakii, n= 1;

Stenotrophomonas malthophilia, n = 1; Enterobacter cloaceae, n = 1; Acinetobacter

baumannii, n = 1) with acquired colistin resistance, three colistin-susceptible K.

pneumoniae precursors, and two strains of intrinsically colistin-resistant species (Serratia

marcescens, n = 1; Proteus mirabilis, n = 1). Mechanisms of acquired colistin

resistance included chromosomal mutations (i.e., mgrB, pmrAB) and plasmid genes

(mcr-1, mcr-1.2).

Results: Resveratrol did not show any significant intrinsic antimicrobial activity. Overall,

a relevant synergistic antimicrobial activity of resveratrol in combination with colistin was

observed with all tested strains, except for the three colistin-susceptible K. pneumoniae

strains, and for two mcr-1-positive E. coli strains. In time-kill assays, performed with

15 selected strains, the combination of colistin 2 mg/L plus resveratrol 128 mg/L was

bactericidal with 11 strains, and bacteriostatic for the remaining ones.

Conclusions: Resveratrol was found to potentiate colistin activity against a wide panel

of colistin-resistant strains, regardless of species and resistance mechanisms, which

would deserve further investigation for potential clinical applications.
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INTRODUCTION

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a stilbenoid
compound found in numerous plants. Resveratrol has been
investigated for potential therapeutic effects in various diseases
(Chen et al., 2005; Albani et al., 2010; Sawda et al., 2010; Sun et al.,
2010; Singh et al., 2014; Li et al., 2016, 2017) and has also shown
the potential for antiviral (Abba et al., 2015; Lin et al., 2017a,b)
and antibacterial activity against some pathogens, including
Helicobacter pylori, Propionibacterium acnes, and Staphylococcus
aureus (Mahady et al., 2003; Su et al., 2014; Taylor et al., 2014).
Anti-oxydant activity and interaction with various molecular
targets, including kinases, sirtuins, and cytokines, have been
suggested as mechanisms responsible for resveratrol activity,
although knowledge on this aspect remains limited (Kuršvietiene
et al., 2016).

Polymyxins are old antibiotics that, until recently, were
rarely used in the clinical setting except for the practice of
Selective Digestive Decontamination (SDD), carried out in some
ICU settings to reduce infections caused by microorganisms
from oropharyngeal and gastrointestinal tracts (Abis et al.,
2013; Bar-Yoseph et al., 2016; Rawson et al., 2016). Recently,
due to the emergence of extremely drug resistant (XDR)
strains of Gram-negative pathogens, such as carbapenem-
resistant Enterobacteriaceae (CRE) and carbapenem-resistant
Acinetobacter sp. (CRA), polymyxins have regained a major role
as last-resort agents for these infections, and their consumption
has remarkably increased (Falagas and Kasiakou, 2005; Kaye
et al., 2016). Unfortunately, also polymyxin resistance has
emerged and is now increasingly reported, especially among CRE
and CRA (Cannatelli et al., 2013; Monaco et al., 2014; Granata
and Petrosillo, 2017; Jeannot et al., 2017; Nowak et al., 2017),
further narrowing the treatment options.

In this study, we have tested the in vitro activity of resveratrol,
alone and in combination with colistin, against a collection of
colistin-resistant (COL-R) Gram-negative pathogens of different
species. Despite the lack of any significant intrinsic antimicrobial
activity, resveratrol exhibited a strong synergistic effect with
colistin against many COL-R strains of different species,
including Escherichia coli, Klebsiella pneumoniae, Enterobacter
cloacae, Stenotrophomonas maltophilia, Citrobacter braakii, and
also enterobacterial species that are naturally resistant to
polymyxins (e.g., Proteus mirabilis and Serratia marcescens).

MATERIALS AND METHODS

Bacterial Strains
Bacterial strains investigated in this work are listed in Table 1.
These included 18 COL-R strains of different species (A.
baumannii, K. pneumoniae, E. coli, E. cloacae, S. maltophilia,
C. braakii, P. mirabilis, and S. marcescens) and three colistin-
susceptible (COL-S) K. pneumoniae that were precursors of three
COL-R strains. For S. maltophilia, for which clinical breakpoints
for colistin are not available, the definition as COL-R was
arbitrarily based on the high-level colistin MIC (i.e., 32 mg/L)
as compared with the colistin MIC distribution for the species

(Sergio et al., 2017). For some strains, the mechanism of colistin
resistance had been previously characterized (Table 1).

Chemicals
Colistin sulfate and resveratrol were obtained from Sigma-
Aldrich (Saint Quentin Fallavier, France). Resveratrol (Thermo
Fisher, Germany) was dissolved in dimethyl sulfoxide (DMSO)
(Sigma-Aldrich, Saint Louis, USA) at a concentration of 20
mg/mL.

In vitro Susceptibility Testing,
Checkerboard Assays, and Time-Kill
Assays
MICs of colistin and resveratrol were determined by reference
broth microdilution (Clinical and Laboratory Standards
Institute, 2015) using cation-adjusted Mueller-Hinton broth
(MHB) (bioMérieux, Florence, Italy). Colistin MICs were
interpreted accordingly to the EUCAST clinical breakpoints,
version 8.0 (www.eucast.org). Checkerboard assays to test the
antimicrobial activity of combinations of colistin plus resveratrol
were carried out as described previously (Tascini et al., 2013),
using MHB and 96-well microtiter plates (Sarsted, Nümbrecht,
Germany). Each well was inoculated with 50 µl of a suspension
of 5 × 105 CFU/mL of the test strain in a final volume of 100
µl. Inocula were prepared by direct suspension in MHB of
bacteria grown overnight onto MH agar plates. Results were read
after incubation at 35◦C for 16–20 h and interpreted as follows:
FICI ≤ 0.5, synergism; FICI > 4.0 antagonism; FICI 0.5–4 no
interaction. Data were obtained in at least two independent
experiments.

Time–kill assays were performed in duplicate, by inoculating
5× 106 CFU of each strain into 2mL ofMHB in 24DeepWell RB
Block (Thermo Fisher Scientific, MA USA), at 35◦C, under static
condition (Clinical and Laboratory Standards Institute, 2015).
CFU counts were determined at different time points, by plating
appropriate dilutions onto LB Agar (Sezonov et al., 2007).

In time kill assays, the DMSO concentration remained
always below 1% (v/v), as recommended by CLSI guidelines
(Clinical and Laboratory Standards Institute, 2015). In
MIC testing and checkerboard assays, the conditions with
resveratrol concentrations of 256 and 512 mg/L contained
DMSO concentrations higher than 1% (i.e., 1.36 and 2.72%,
respectively). Appropriate controls to exclude any potential
synergistic activity between colistin and DMSO were always
included.

RESULTS AND DISCUSSION

Synergistic Activity of Colistin in
Combination With Resveratrol in
Checkerboard Assays
A collection of 21 strains of eight different Gram-negative
species were tested for susceptibility to resveratrol, colistin, and
combinations thereof. The collection included 15 COL-R strains
of species that are naturally susceptible to colistin (C. braakii,
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E. coli, K. pneumoniae, E. cloacae, A. baumannii), two COL-
R strains of naturally resistant species (S. marcescens and P.
mirabilis), and one S. maltophilia strain with high colistin MIC
(that was considered COL-R for the purpose of this work). It also
included three COL-S strains of K. pneumoniae, which were the
precursors of three of the COL-R strains (Table 1).

MICs of resveratrol were >512 mg/L for all tested strains,
showing the lack of any intrinsic antimicrobial activity of
resveratrol alone against these Gram-negative pathogens.

Checkerboard assays revealed a clear dose-dependent
synergistic activity of resveratrol with colistin vs. COL-R strains
of different species, including intrinsically resistant species such
as S. marcescens and P. mirabilis. Synergism was not observed
with two of the four COL-R E. coli strains carrying the mcr-1
determinant and with the COL-S K. pneumoniae precursors of
three COL-R strains (Table 1).

When synergism was evident, resveratrol was able to decrease
colistin MICs to values equal or lower than the susceptibility
breakpoint (i.e., 2 mg/L) in most cases, at concentrations variable
from 8 to 128 mg/L. In particular, this was the case with
four of the six COL-R E. coli, with five of the six COL-R K.
pneumoniae, with the COL-R C. braakii, with the COL-R strains
of A. baumanni, E. cloacae and S. maltophilia, and with the type
strain of S. marcescens. The synergistic effect was observed in

presence of different colistin resistance mechanisms and with
strains of different clonal lineages, including representatives of
known high risk clones (e.g., ST131 and ST59 for E. coli, or ST512
and ST258 for K. pneumoniae; Table 1).

Synergistic Activity of Resveratrol and
Colistin in Time-Kill Assays
In order to investigate if colistin in combination with resveratrol
had a bactericidal effect, time-kill assays were carried out with
the 15 COL-R strains for which checkerboard assays had showed
a synergistic effect. The colistin concentration used in time-
kill experiments corresponded to the clinical breakpoint for
susceptibility (2 mg/L), or to 0.5 ×MIC and 1 ×MIC, while the
resveratrol concentration used was 128 mg/L, which was able to
inhibit the growth in most cases when combined with colistin at
2 mg/L (Table 1).

The time-kill assays showed a bactericidal activity (i.e., a
reduction≥3 log10 of the initial bacterial inoculum) of resveratrol
128 mg/L in combination with colistin 2 mg/L with 11 of the
15 COL-R strains tested, while with four strains (E. coli FI-4531,
K. pneumoniae KKBO-4, K. pneumoniae KK207-2, A. baumannii
N50) the combination exerted a static effect (Figure 1). Overall,
with these strains when colistin was used at 0.5 X MIC and 1 X
MIC in combination with resveratrol 128 mg/L, a bactericidal

FIGURE 1 | Time-kill assays with colistin 2 mg/L in combination with resveratrol 128 mg/L. Data are mean values from the results of two independent experiments,

and the error bars represent standard deviations. The lowest number of CFU (detection limit) that can be detected by the method used is 1E+02 CFU/mL.
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effect was observed, except for E. coli FI-4531, in which this
combinations seem to be less effectives (Figure 2).

Altogether, the results were consistent with data obtained
in checkerboard assays (Table 1). In fact, all strains exhibiting
a colistin MIC <1 mg/L or >2 mg/L in combination with
resveratrol 128 mg/L, showed a bactericidal or bacteriostatic
effect in time-kill curves, respectively. On the other hand, a
variable effect was observed with strains for which, in the
presence of resveratrol 128 mg/L, colistin MIC was lowered to
2 or 1 mg/L (Figure 1).

Considering the diversity of species tested, (C. braakii, E.
coli, K. pneumoniae, E. cloacae, S. marcescens, A. baumannii, S.
maltophilia) expressing different colistin resistance mechanisms,
the “cidal/static” activity of colistin 2 mg/L in combination with
resveratrol 128 mg/L did not appear to be dependent on species
or the resistance mechanism.

The absence of any synergistic activity with COL-S strains
could suggest a likely resveratrol interaction with the lipid A
modification systems that are responsible for colistin resistance in
COL-R strains. However, the mechanism of synergism observed
between resveratrol and colistin with COL-R strains remains
unknown and will be the subjects of further investigations.

CONCLUDING REMARKS

MDR and XDR Gram-negative bacteria (e.g., CRE and CRA)
have been increasingly reported worldwide (Cannatelli et al.,
2013; Monaco et al., 2014), and are listed among resistant

pathogens with the highest priority for research and development
of new antibiotics by the WHO (WHO, 2017).

Colistin remains one of the few antibiotics active against these
pathogens, and represents a drug of last resort for the treatment
of CRE and CRA severe infections (Falagas and Kasiakou, 2005;
Kaye et al., 2016). It is also used for the Selective Digestive
Decontamination (SDD) in combination with other agents (i.e.,
tobramycin, amphotericin B) (Abis et al., 2013; Rawson et al.,
2016), and is increasingly administered for the management of
chronic lung colonization by Pseudomonas aeruginosa in cystic
fibrosis (Sherrard et al., 2014). In this perspective, the increasingly
dissemination of colistin resistance in these pathogens represents
a matter of public health concern (Cannatelli et al., 2013; Monaco
et al., 2014; Granata and Petrosillo, 2017; Jeannot et al., 2017;
Nowak et al., 2017).

This worrisome scenario has forced the scientific community
to evaluate new therapeutic approaches to face the antibiotic
resistance crisis. One promising strategy is offered by non-
antibiotic drugs which overcome the resistance mechanism
(Antibiotic Resistance Breakers; ARB) when combined with
failing antibiotics (Brown, 2015). A well-proven example of such
approach is represented by the new beta-lactamase inhibitors
(i.e., avibactam, vaborbactam; Giani et al., 2016). Nonetheless,
considering the multitude of resistance determinants and
their rapid evolution potential, additional solutions must be
implemented. Among the diverse approaches investigated over
the last years, some natural compounds (i.e., resveratrol,
quercetin, curcumin, pterostilbene), which have shown anti-
bacterial properties (Su et al., 2014; Taylor et al., 2014; Hwang

FIGURE 2 | Time-kill assays with colistin at 0.5 or 1 X MIC in combination with resveratrol 128 mg/L, in the strains in which colistin 2 mg/L plus resveratrol 128 mg/L

yielded a bacteriostatic effect. Data are mean values from the results of two independent experiments, and the error bars represent standard deviations. The lowest

number of CFU (detection limit) that can be detected by the method used is 1E+02 CFU/mL.
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and Lim, 2015; Kuršvietiene et al., 2016; Zhou et al., 2018), could
also be of interest.

In this work we provided the first in vitro demonstration
that resveratrol can act as an ARB, potentiating colistin
activity against a collection of COL-R Gram-negative pathogens,
covering a wide panel of species and colistin resistance
mechanisms. A limitation of this study was that the synergism
between resveratrol and colistin was not tested with COL-R
strains of P. aeruginosa, which at the time of the study were not
available in our collection.

The potential to exploit this feature in vivo could depend
on the resveratrol concentrations achievable in vivo, at different
body sites. A number of pre-clinical and clinical studies have
previously investigated resveratrol administered orally (Tomé-
Carneiro et al., 2013), intravenously (Tomé-Carneiro et al.,
2013), or by inhalation (Varricchio et al., 2014), but current
knowledge on resveratrol pharmacokinetics in humans remain
limited. When given orally, resveratrol is absorbed but readily
metabolized, leading to a rather low bioavailability (Walle
et al., 2004; Boocock et al., 2007; Tomé-Carneiro et al.,
2013), while the non-absorbed fraction can be transformed by
components of the gut microbiota (Tomé-Carneiro et al., 2013).
Several resveratrol-derived metabolites have been identified in
human and animals following oral or parenteral administration,
including trans- and/or cis- forms of mono- and diglucuronides,
mono- and disulfates, sulfoglucuronides, and dihydroresveratrol
metabolities, which undergo renal and fecal excretion (Walle
et al., 2004; Boocock et al., 2007; Tomé-Carneiro et al.,
2013).

Consider that the activity of specific circulating resveratrol
metabolites is still under debate, and the concentration of
unchanged resveratrol in human urine, feaces and plasma has

still not been clearly determined, the use of colistin/resveratrol

combinations for Selective Digestive Decontamination or
treatment of urinary and systemic infections would deserve
further investigation.

The most promising setting to exploit the synergism
between resveratrol and colistin would be that of respiratory
tract infections, where the administration of inhaled
formulations of resveratrol might overcome the issues related
to low bioavailability and metabolism of this compound.
Being resveratrol also administered by nebulization in
humans (Varricchio et al., 2014), the potential efficacy of
colistin/resveratrol inhaled formulations could deserve further
attention, especially in cases of chronic lung colonization by
difficult-to-treat Gram-negatives, such as in cystic fibrosis,
chronic obstructive pulmonary disease or bronchiectasis not
related to cystic fibrosis.

Present results represent a proof of principle for further
studies aimed at evaluating the potential role of resveratrol
as colistin ARB in other in vitro (e.g., biofilm susceptibility
testing) and in vivomodels (e.g., Selective decontamination of the
digestive tract).
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