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Metalliferous mine tailings have a negative impact on the soil environment near mining

areas and render cultivable lands infertile. Phytoremediation involving the synergism of

legume and rhizobia provides a useful technique in tackling this issue with cost-effective,

environmentally friendly, and easy-to-use features under adverse soil conditions.

Leucaena leucocephala has been found to build symbiotic relationships with native

rhizobia in the iron-vanadium-titanium oxide (V-Ti magnetite) mine tailing soil. Rhizobia

YH1, isolated from the root nodules of L. leucocephala, was classified as Sinorhizobium

saheli according to similarity and phylogenetic analyses of 16S rRNA, housekeeping and

nitrogen fixation genes. Besides nitrogen fixation, S. saheli YH1 also showed capabilities

to produce indole-acetic acid (IAA) (166.77 ± 2.03mg l−1) and solubilize phosphate

(104.41 ± 7.48mg l−1). Pot culture experiments showed that strain YH1 increased the

biomass, plant height and root length of L. leucocephala by 67.2, 39.5 and 27.2%

respectively. There was also an average increase in plant N (10.0%), P (112.2%) and K

(25.0%) contents compared to inoculation-free control. The inoculation of YH1 not only

reduced the uptake of all metals by L. leucocephala in the mine tailings, but also resulted

in decreased uptake of Cd by up to 79.9% and Mn by up to 67.6% for plants grown in

soils contaminated with Cd/Mn. It was concluded that S. saheli YH1 possessed multiple

beneficial effects on L. leucocephala grown in metalliferous soils. Our findings highlight

the role of S. saheli YH1 in improving plant health of L. leucocephala by reducing metal

uptake by plants grown in heavy metal-polluted soils. We also suggest the idea of using

L. leucocephala-S. saheli association for phytoremediation and revegetation of V-Ti mine

tailings and soils polluted with Cd or Mn.
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INTRODUCTION

Industrial activities, e.g., mining and smelting, are a major
source of water and soil pollutions and threaten human health
through accumulative effects along food chains (Wuana and
Okieimen, 2011). Residents living in proximity to mining
areas are continually exposed to hazardous substances released
from the factories. Large swathes of cultivable land have been
laid to waste as a result of mine tailings being continuously

dumped in huge volumes into reservoir-like ponds. Chronic
damages to the surrounding soil environment are caused through
leaching effects by rainfall. Vanadium-titanium (V-Ti) magnetite
mine tailings contain elevated amounts (>2,000mg kg−1) of
manganese (Yu et al., 2014), which is considered to be a major
metal pollutant in soil and aquatic environments (Li et al.,
2014). Cadmium is one of the main heavy metal pollutants that
have high cytotoxicity and usually associate with anthropogenic
activities such as mining and metal smelting, causing severe
contamination to agricultural soils near the vicinity of mines (Liu
et al., 2013; Zheng et al., 2018). It is necessary to give a satisfactory
solution to this environmental hazard.

Plant growth-promoting rhizobacteria (PGPR) are noted
for their capabilities to colonize roots of legumes and at the
same time confer beneficial effects on the hosts by alleviating
deleterious abiotic stresses (Rajkumar et al., 2010). They have
been deemed as a promising approach to the remediation
of polluted soils for the rhizobia-legume associations not
only promote plant growth but also raise soil nitrogen level,
leading to an increased crop yield (Bashan and Holguin,
1998). Several rhizobial species that can form mutualism

with legumes are primarily found in genera Azorhizobium,
Bradyrhizobium,Mesorhizobium, Rhizobium, and Sinorhizobium
(Hayat et al., 2010). Symbiotic nitrogen fixers in the rhizosphere
colonize root systems through sophisticated mechanisms at
both cellular and molecular levels. Legume-rhizobia associations
can lead to enhanced plant growth either by biological
nitrogen fixation (Sanginga et al., 1988), indole-3-acetic acid
(IAA) production, siderophore secretion, and phosphorus
solubilization or by a combination of all the above mentioned
features (Khan et al., 2009). It was reported that the symbiosis
of Sinorhizobium meliloti CCNWSX0020 and Medicago lupulina
exhibited phytostabilizing effects for Cu by boosting plant growth
and metal uptake from Cu-spiked soil while decreasing the
translocation of Cu in the plant (Kong et al., 2015). In another
report, the biofuel legume Pongamia pinnata was used for the
phytoremediation of V-Ti magnetite mine tailings in partnership
with Bradyrhizobium liaoningense and both plant growth and
metal uptake were significantly increased under multi-metallic
conditions (Yu et al., 2016).

Leucaena leucocephala first came under notice due to its water

holding capacity in a hot and dry climate. Besides, it has strong
tolerance and adaptability to drought and therefore is of great
importance for agriculture and forestry (Shelton and Brewbaker,
1998). L. leucocephala was introduced to Panzhihua city, a major
industrial hub in southern Sichuan Province 30 years ago as a
pioneer species for afforestation and has ever since been widely
cultivated along the hot and arid valleys of Golden Sand River,

upper Yangtze (Xu et al., 2013a). A previous study found that
it could serve as a pioneer for the revegetation of lead-zinc
and tin mine tailings, indicating its potential to thrive under
metal-contaminated environments (Li, 2006). In another case,
a variant of L. leucocephala was discovered to be capable of
taking up and metabolizing organic pollutants such as ethylene
dibromide and trichloroethylene even without the synergism
of rhizobia, which again proves that it could be a potential
candidate for the remediation of polluted soils (Doty et al., 2003).
Althoughmany other similar studies for the remediation of heavy
metal-contaminated sites have been reported of late years, the
information on remediation effects of L. leucocephala and its
associated rhizobia is still scanty.

In the present study, we aim to establish the rhizobia-
plant association and explore the feasibility of using it as a
novel means for the phytoremediation and revegetation of
heavy metal-polluted soils. In this work, we report PGP effects
of Sinorhizobium saheli YH1 on and reduced metal uptake
for L. leucocephala in the phytoremediation of both original
mine tailings and soils supplemented with Cd or Mn. Our
results propound the idea of utilizing the symbiotic system
of L. leucocephala and S. saheli YH1 as an alternative to the
alleviation of environmental hazards including Cd, Mn, and
other metals.

MATERIALS AND METHODS

Sample Collection, Rhizobia Isolation and
Soil Metal Measurements
Soil samples and L. leucocephala seedlings were collected
from the edge of a vanadium-titanium magnetite tailing
reservoir (Figure 1), situated on the outskirts of Panzhihua city
(N26◦33′13.23′′; E 101◦45′59.42′′; elevation 1219.3m). Healthy
plants were carefully uprooted, stored in a sterile sampling
bag, and shipped back to laboratory. Samples of the V-Ti
magnetite tailing soil were taken from the topsoil (0–20 cm
deep) within an area of 4 m2 consisting of five sampling points
near the plants. The isolation of rhizobia was carried out using
Congo red-amended yeast mannitol agar (YMA) medium which
comprised of (l−1 Milli-Q H2O): yeast extract 1.0 g, mannitol
10.0 g, K2HPO4 0.5 g, MgSO4 0.2 g, NaCl 0.1 g, CaCO3 1.0 g,
agar 15.0 g and Congo red 0.025 g (pH 6.8 ± 0.2) (Somasegaran
and Hoben, 2012). Fresh root nodules were initially washed with
tap water to remove rhizosphere soil. Surface sterilization was
performed by soaking root tissues in 75% (v/v) ethanol for 5min
followed by 1% (v/v) sodium hypochlorite for 3min before they
were finally rinsed for 3 times with sterile Milli-Q water (Zhang
et al., 2018). Nodules were aseptically cut off from the roots and
crushed in a sterile Eppendorf tube with a sterile glass rod. A
loopful of the nodule suspension was streaked on a Congo red-
containing YMA plate, which was incubated in the dark at 28◦C
for at least 7 d. Repeated streaking was performed on fresh plates
until pure culture was obtained (Somasegaran and Hoben, 2012).
Soil samples were thoroughly air-dried at room temperature, put
through a sieve (pore size 2mm). and digested in Teflon crucibles
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FIGURE 1 | (A) Sampling site at Majiatian V-Ti tailings reservoir in Panzhihua mining area and (B) a fresh plant sample of L. leucocephala with (C) vigorously growing

root nodules thereon.

with a concentrated acid mixture of HNO3, HF, and HClO4

(5:5:3, v/v/v).

Phylogenetic Analyses
Liquid rhizobia culture was used for DNA extraction. The strain
was grown in liquid mannitol broth and harvested when cell
concentration reached 1 × 108 CFU ml−1. Genomic DNA was
extracted using TIANampBacteria DNAKit (TIANGENBiotech,
Beijing, China) following standard protocols prescribed by the
manufacturer. Fragments of 16S rRNA gene were amplified using
the universal primers of 27F (5′-AGA GTT TGA TCC TGG
CTC AG-3′) and 1492R (5′-GGT TAC CTT GTT ACG ACT
T-3′) (Yu et al., 2014). PCR was performed in a 30 µl buffer
system using a Bio-rad T100 Thermo Cycler (Bio-rad, USA)
according to the following protocol: an initial denaturation step
at 94◦C for 3min, 30 denaturation cycles at 94◦C for 1min, an
annealing step at 56◦C for 1min, an extension step at 72◦C for
2min and a final extension at 72◦C for 10min (Tan et al., 1997).
The nitrogen fixation gene nifH was amplified according to
methods described by Laguerre et al. (2001). The amplification of
housekeeping genes was carried out using the following primers
at specific melting temperatures: atpD255F-atpD782R for atpD
at Tm 58◦C, glnII12F-glnII689R for glnII at Tm 56◦C, recA63F-
recA555R for recA at Tm 58◦C, and rpoB454F-rpoB1364R for
rpoB at Tm 65◦C (Gaunt et al., 2001; Vinuesa et al., 2005,
2008). PCR products were subjected to electrophoresis in 1%
agarose gel to verify the size of target fragments and afterwards
sent to Tsing Ke Biological Technology (Chengdu, China) for
sequencing. The determined sequences were then compared and
aligned with those from known species on GenBank (NCBI,
USA) using ClustalW inMEGA 6.0 package (Tamura et al., 2013).
Phylogenetic trees were constructed using maximum likelihood
method with Kimura 2-parameter (Kimura, 1980) and multi-
locus sequence analysis (MLSA) was carried out by constructing
a single phylogenetic tree using the concatenated sequences of

four housekeeping genes (Tak et al., 2016). The reliability of
the phylogenetic trees was calculated based on 1,000 bootstrap
repetitions. All sequences mentioned above were deposited in
GenBank using BLASTn tool and a unique accession number was
assigned to each.

Metal Tolerance Tests
The tolerance of rhizobia to cadmium (Cd) and manganese
(Mn) was assayed by spot-inoculating cell suspension on yeast
mannitol agar. An aliquot of 10 µl initial culture containing 1
× 108 CFU ml−1 cells obtained from yeast mannitol broth was
pipetted on YMA plates supplemented with 50, 150, 250, and
400mg l−1 of Mn2+ or Cd2+, respectively. Each treatment had
at least three plates as replication and each plate was inoculated
with three colonies at equal distance. All plates were maintained
in an incubator for 7 d at 28◦C in the dark. The metal tolerance
was determined by calculating the ratio of the colony size of the
experimental group to that of the control.

Assay of Growth Promoting Traits
Bacterial plant growth promoting abilities including indole-
3-acetic acid (IAA) production, siderophore secretion and
phosphate solubilization were estimated by measuring the
concentrations of IAA, siderophore and solubilized phosphate
in liquid media. For the determination of IAA production,
rhizobia strains were grown in 5ml yeast mannitol broth (YMB)
supplemented with L-tryptophan (2.5 g l−1) at 28◦C on a rotary
shaker at 150 rpm for 3 days. Culture supernatant was obtained
by centrifugation at 8,000 rpm for 5min. An aliquot of 2ml
supernatant was mixed with 4ml Salkowski reagent (2% 0.5M
FeCl3 in 35% HClO4) and immediately incubated in the dark
for 30min at room temperature (Datta and Basu, 2000). The
optical density of the mixture after reaction was measured at
a wavelength of 530 nm (OD530) using a spectrophotometer
(WFJ2100, UNICO, China). The actual IAA concentration was
calculated in accordance with a standard curve. Siderophore
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production was estimated using chrome azurol sulfonate (CAS)
assay on solid plates according to the method described by
Schwyn and Neilands (1987). Liquid National Botanical Research
Institute’s phosphate medium (NBRIP), which was used to
perform quantitative assay of siderophore production, consisted
of (l−1 Milli-Q H2O): MgCl2·6H2O 5.0 g, MgSO4·7H2O 0.25 g,
KCl 0.2 g, (NH4)2SO4 0.1 g, Ca3(PO4)2 5.0 g and glucose 10.0 g.
The medium was adjusted to pH 7.0 ± 0.2 before sterilization
at 115◦C for 15min. An aliquot of 1ml bacterial start culture
(1 × 108 CFU ml−1) was inoculated into a 250ml Erlenmeyer
flask containing 100ml medium and incubated on a rotary
shaker at 150 rpm for 7 days at 28◦C (Nautiyal, 1999). The
vanadiummolybdate blue colorimetricmethodwas employed for
the quantification of phosphate, where the absorbance at 660 nm
was measured using a spectrophotometer (WFJ2100, UNICO,
China) (Walker et al., 2004).

Pot Culture Experiment
To assess the effectiveness of the leucaena-rhizobia remediation
system, pot culture experiment was carried out in both tailings
andmetal-spiked soils using Leonard jar apparatus (Somasegaran
and Hoben, 2012), which was composed of two parts, i.e., the jar
at the bottom (10 × 14 cm) containing plant nutrient solution
and the pot (7× 15 cm) at the top filled with substrate. These two
parts were connected by a cotton wick to keep a steady supply
of nutrients to the substrate in the pot, and joined together by a
sealed screw cap to prevent microbial contamination from the air
(Supplementary Figure S1). The jar contained 1 L of nitrogen-
free nutrient solution (Yu et al., 2016) which consisted of
(l−1 Milli-Q H2O): KCl 0.5 g, CaSO4·2H2O 0.2 g, MgSO4·7H2O
0.2 g, KH2PO4 0.2 g, Fe-EDTA 0.001 g, KNO31 g, trace elements
(containing H3BO3 0.1 g, ZnSO4·7H2O 0.1 g, CuSO4·5H2O
0.05 g, MnCl2·4H2O 0.05 g and Na2MoO4·2H2O 0.01 g), and
CaCO3 2 g which was added to the final solution and stirred
well. Vermiculite was used as substrate for the pot culture
experiment with added metals. Stock solutions of CdCl2 and
MnCl2 were separately prepared in Milli-Q water. Metal-spiked
vermiculite was prepared by adding 190ml of the stock solution
to vermiculite (200 g dry wt) to achieve desired concentrations at
5, 20, and 35mg kg−1 Cd or Mn in the substrate. The apparatus
was assembled by filling the pot with vermiculite to 90% and
autoclaved at 115◦C for 30min. Homogeneity was tested by
measuring vermiculite samples randomly taken from at least
five spots across different depths. Physico-chemical properties
of V-Ti magnetite tailings and vermiculite were determined
using standard methods (Pansu and Gautheyrou, 2007). Seeds
of L. leucocephala were surface sterilized by soaking in 95%
alcohol for 10 s and in 5% sodium hypochlorite solution for 5min
before they were rinsed with at least 10 changes of sterile Milli-
Q water (Somasegaran and Hoben, 2012). After sterilization,
the seeds were placed on plain agar (0.05%) for germination
at 25◦C in the dark. Three burgeoning seeds were aseptically
transferred into each pot and inoculated with 1ml rhizobial
suspension at the root of each seedling. After this, a layer of
1 cm autoclaved quartz sand was placed on top of the vermiculite
to ensure seedlings grew in a sterile environment. Each metal
concentration had three pots as replication and non-inoculated

plants served as the control group. The plants were grown in a
greenhouse for a total length of 6 months at a day temperature
of 25◦C for 16 h and night temperature of 17◦C for 8 h. Upon
harvest, nodule number, plant height and root length were
measured and freshly harvested samples of L. leucocephala were
immediately oven-dried at 105◦C for 30min and maintained at
80◦C until constant weight. Dried plant samples were pulverized
for following experimentation.

Determination of Plant Metal Contents
Dried tissues of the leucaena plants were finely ground and
digested with a concentrated mixture of HNO3 and HClO4 (5:1,
v/v) prior to the measurement of heavy metal concentrations
using ICP-AES (IRIS Intrepid II, Thermo Electron, USA). The
remediation capabilities of L. leucocephala-rhizhobia systemwere
determined by calculating bioconcentration coefficient factor
(BCF) and translocation factor (TF), which were defined as
follows: BCF= root metal content (mg kg−1) / soil metal content
(mg kg−1); TF = shoot metal content (mg kg−1) / root metal
content (mg kg−1).

Determination of N, P, and K in Plants
Plant samples were digested by sulphuric acid prior to the
determination of nitrogen (N) using indophenol blue method,
phosphorus (P) using vanadium molybdate method, and
potassium (K) using a flame photometer (FP6410, Shanghai
Precision & Scientific, China) (Novozamsky et al., 1974).

Statistical Analyses
Statistical analyses were done using the SPSS 22.0 package.
Data were expressed as mean values ± standard deviations
calculated using Microsoft Excel 2013. For the analyses of
symbiotic effects and metal contents in plants, means between
differentmetal treatments were compared using one-way analysis
of variance (ANOVA) and least significant difference (LSD) test.
Means between the inoculated and non-inoculated groups at
each metal concentration were compared using Tukey’s post-
hoc test. Differences were considered statistically significant at
P < 0.05.

RESULTS

Metal Contents of V-Ti Magnetite Tailing
Soil
Heavy metal assay revealed that the topsoil of V-Ti magnetite
tailings at Panzhihua mainly contained 7 heavy metal elements
(Table 1). Exceedingly high amounts of Fe (143.3 g kg−1) and Ti
(35.7 g kg−1) were found. However, the concentration of V was
only 0.3 g kg−1. Compared to Fe, Ti, and V, Mn (2.8 g kg−1), Cu
(58.4mg kg−1), Ni (92.3mg kg−1), and Cd (7.1mg kg−1) existed
in moderate amounts.

Identification of Isolate YH1
All successfully amplified nucleotide sequences of isolate YH1 for
phylogenetic analysis were uploaded to GenBank and accession
numbers were obtained (KU904504, 16S rRNA; KU904541,
nifH; KU904549, atpD; KU904591, glnII; KU904570, recA;
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KU904612, rpoB). The isolate was clustered into the same
group with 99.9% similarity with Sinorhizobium saheli LMG7837
in the 16S rRNA phylogenetic tree (Figure 2). Therefore, it
was preliminarily classified as belonging to Sinorhizobium.
Moreover, the concatenated tree of the four housekeeping
genes (atpD-glnII-recA-rpoB) assigned YH1 to the same branch
with Sinorhizobium saheli with 99.0% homology (Figure 3).
Therefore, isolate YH1 was identified as Sinorhizobium saheli.
The nitrogenase reductase gene (nifH) tree which consisted
of 12 other known species was constructed and it showed
that the nifH gene of strain YH1 shared 99.0 % similarity
with that of Neorhizobium huautlense (CCBAU 65798T)
(Figure 4).

Metal Tolerance of YH1
Metal tolerance test revealed that vigorous growth of YH1 was
observed at 50mg kg−1 Cd and 250mg kg−1 Mn, indicating its
strong tolerance to these metals. Therefore, the metals of Cd
and Mn were selected as metal contaminants for pot culture
experiments to further explore the synergism of S. saheli YH1
with L. leucocephala.

PGP Traits of YH1
S. saheli YH1 secreted 166.77 ± 2.03mg l−1 IAA in L-
tryptophan-containing YMB medium after 3 days growth. An
amount of 104.41 ± 7.48mg l−1 soluble phosphate was detected
in the supernatant of NBRIP after 7 days incubation. However,
S. saheli YH1 did not show siderophore producing activity.

Remediation Effects in V-Ti Magnetite
Tailings
The physico-chemical analysis showed that the tailing samples
were at pH 6.66 ± 0.37 and contained 8.51 ± 0.43mg kg−1

available nitrogen, 23.98 ± 2.33mg kg−1 available phosphorus
and 13.56 ± 1.11mg kg−1 available potassium. L. leucocephala
was nodulated by S. saheli YH1 in V-Ti mine tailings after 6
months growth, while no nodules were found on the roots in
the control group. The nodule number was on average 38 for
each inoculated plant. In general, the inoculation of YH1 led
to 10.0% increase in plant nitrogen content and a significant
increase (P < 0.05) in plant height and root length by 39.5
and 27.2% respectively (Table 2). There was also a significant
(P < 0.05) increase of the plant biomass by 67.2% in comparison
with the non-inoculated control. The contents of phosphorus and
potassiumwere also significantly (P< 0.05) elevated by 112.2 and
25.0%, respectively (Table 2).

The amounts of metal uptake in L. leucocephala roots
from the V-Ti magnetite tailing soil are in the following
order: Fe>Mn>Ti>Cu>Ni>V>Cd for inoculated plants and
Fe>Ti>Mn>Cu>Ni>V>Cd for control group. Overall, the
uptake of Cd was most while that of Mn was least effectively
reduced. Comparing with inoculation-free plants, S. saheli YH1
significantly (P < 0.05) reduced metal uptake in roots, with
the reduction rates for the tested metals ranging from 8.4 to
65.5%.

The translocation of these metals showed that only Fe, Ti,
Mn, Cu, and Ni were transferred from roots to shoots. TF values
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FIGURE 2 | 16S rRNA phylogenetic tree (1,404 bp) of L. leucocephala-isolated strain YH1 created using maximum likelihood method with the Kimura 2-parameter

model. Bootstrap confidence level is based on 1,000 iterations. Accession numbers retrieved from GenBank are shown in parentheses. The scale bar implies 2%

nucleotide substitutions per site. Values lower than 50 are not shown at the nodes. Superscript “T” following each strain number indicates type strain.

for these transferred metals ranged from 9.2 to 26.8% for the
inoculated plants and from 15.9 to 32.0% for the non-inoculated
plants. The amount of Fe transferred was the highest among
all metals tested in both inoculated and control groups, the
former amounting to 331.3mg kg−1 and the latter 967.0mg kg−1.
The inoculation of YH1 prevented these metals from moving
to shoots, leading to a significant reduction (P < 0.05) of TF
values for the inoculated plants. However, in the case of Fe,
the inoculated plants exhibited less than 50% reduction in the
amounts of the translocated metals compared with the control
plants.

Remediation Effects in Cd/Mn Soil
The non-spiked vermiculite was at pH 7.06 ± 0.04 and had the
following properties: 56.02 ± 13.60mg kg−1 total phosphorus,
0.67 ± 0.05mg kg−1 available phosphorous, 15.75 ± 1.29 g kg−1

total potassium, and 75.80 ± 3.66mg kg−1 available potassium.
No nitrogen contents were detected for vermiculite.

Metal Uptake by Plants
In all plants inoculated with L. leucocephala grown in Cd- or
Mn-amended soils, uptake of both metals by the plants was
decreased compared to the control. Root uptake of Cd was
positively correlated with the Cd content in control group, while
it remained at a low level in all three inoculated treatments.
The highest amount of Cd uptake was found in the soil added
with 35mg kg−1 Cd, where the roots of inoculation-free plants
contained 281.33 ± 61.24mg kg−1 Cd, 79.9% higher than in
the YH1-inoculated group (56.43± 11.14mg kg−1) (Figure 5A).
However, shoot Cd contents in plants with YH1 inoculation were
only slightly reduced (Figure 5B) compared to the control at
all three soil Cd concentrations. There was no correlation of
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FIGURE 3 | Concatenated tree of L. leucocephala-isolated strain YH1 combining atpD-glnII-recA-rpoB (1,631 bp), generated using maximum likelihood method

(Kimura 2-parameter model) with 1,000 repetitions of bootstrap value. Accession numbers retrieved from GenBank are shown in parentheses. The scale bar denotes

2% nucleotide substitutions per site. Values lower than 50 are not shown at the nodes.

FIGURE 4 | Maximum likelihood tree of nifH sequences (453 bp) for L. leucocephala-isolated strain YH1 constructed using the Kimura 2-parameter model with

bootstrap confidence based on 1,000 repetitions. Accession numbers retrieved from GenBank are shown in parentheses. The scale bar denotes 5% nucleotide

substitutions per site. Values lower than 50 are not shown at the nodes. Superscript “T” following each strain number indicates type strain.

shoot Cd content to the soil Cd content in both groups. The
highest amount of shoot Cd content in control group was 8.96
± 4.87mg kg−1 in the soil treated with 5mg kg−1 Cd, while in
inoculated group was 4.78 ± 0.61mg kg−1 at 20mg kg−1 soil
Cd.

Root Mn contents in inoculated plants at all levels of soil Mn
were also lower than in the control group (Figure 5C). In the
presence of 35mg kg−1 Mn in soil, the biological concentration
factor (BCF) for Mn was reduced by 67.6% compared with the

non-inoculated control. Shoot Mn contents in all inoculated
plants were apparently reduced compared to the control, and
in treatments with 20 and 35mg kg−1 soil Mn, shoot Mn
contents were significantly (P < 0.05) reduced by 64.1 and 78.9%
respectively (Figure 5D).

Symbiosis and Nitrogen Fixation
All plants with inoculation of strain YH1 exhibited formation
of root nodules. Less nodules were produced in plants treated
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TABLE 2 | Symbiotic nitrogen-fixing and PGP effects of strain YH1 on L. leucocephala after 6 months growth in V-Ti mine tailings and vermiculite supplemented with

different concentrations of Cd or Mn.

Pot soil Treatment Nodule number Plant height (cm) Root length

(cm)

Total dry

weight (g)

Total N

(g kg−1)

Total P

(g kg−1)

Total K

(g kg−1)

Tailings YH1 32 ± 2ab 16.6 ± 0.7ab* 15.1 ± 2.5c 1.0 ± 0.2a 9.4 ± 0.1bc 1.8 ± 0.1ab* 18.5 ± 0.5a*

CK 0 11.9 ± 0.9b 10.1 ± 2.3d 0.6 ± 0.2a 9.0 ± 1.0b 0.9 ± 0.1d 14.9 ± 1.2ab

Cd (5mg kg−1) YH1 23 ± 5bc 15.1 ± 2.2ab 23.6 ± 1.0ab* 0.3 ± 0.0c 8.2 ± 0.3bc 1.6 ± 0.2ab 15.7 ± 0.6ab

CK 0 16.3 ± 2.8a 12.6 ± 0.7cd 0.3 ± 0.1c 8.2 ± 0.2b 1.1 ± 0.1cd 10.7 ± 1.8c

Cd (20mg kg−1) YH1 23 ± 5bc 12.7 ± 4.7b 23.8 ± 2.1ab* 0.5 ± 0.1bc 8.0 ± 0.8c 1.3 ± 0.1bc 15.4 ± 0.4ab

CK 0 17.3 ± 0.9a 16.6 ± 1.7bc 0.4 ± 0.1abc 8.9 ± 0.1b 1.5 ± 0.3bc 14.2 ± 0.8ab

Cd (35mg kg−1) YH1 27 ± 5abc 15.7 ± 2.1ab 27.1 ± 2.9a* 0.5 ± 0.0bc 9.3 ± 0.8bc 1.2 ± 0.1bc 15.1 ± 2.5ab

CK 0 17.3 ± 1.4a 16.2 ± 2.5c 0.4 ± 0.1bc 11.5 ± 0.8a 1.1 ± 0.1cd 12.0 ± 0.3bc

Mn (5mg kg−1) YH1 33 ± 5ab 19.6 ± 3.2ab 19.5 ± 1.5bc 0.6 ± 0.1bc 9.2 ± 0.8bc 1.6 ± 0.1b* 17.0 ± 1.7ab

CK 0 16.7 ± 1.1a 21.0 ± 1.5ab 0.5 ± 0.0ab 8.8 ± 1.4b 0.9 ± 0.1d 14.0 ± 0.7ab

Mn (20mg kg−1) YH1 33 ± 9ab 17.2 ± 2.5ab 20.1 ± 3.4bc 0.7 ± 0.1b 8.0 ± 0.4c 1.2 ± 0.0bc 18.5 ± 0.0a

CK 0 16.1 ± 0.7a 21.0 ± 1.6ab 0.6 ± 0.0a 7.8 ± 0.9b 1.6 ± 0.3b 16.3 ± 0.5a

Mn (35mg kg−1) YH1 17 ± 5c 15.1 ± 2.6ab 22.3 ± 3.2ab 0.5 ± 0.1bc 10.7 ± 1.6ab 0.5 ± 0.1c 14.3 ± 0.8b

CK 0 14.5 ± 1.5ab 17.1 ± 3.3bc 0.3 ± 0.1c 9.6 ± 0.3ab 1.5 ± 0.1bc* 12.0 ± 0.9bc

NA (0) YH1 40 ± 8a 21.7 ± 3.4a 22.0 ± 1.4ab 0.5 ± 0.1bc 12.2 ± 0.2a* 2.5 ± 0.8a 16.3 ± 0.7ab

CK 0 15.7 ± 2.5a 23.1 ± 1.7a 0.5 ± 0.1abc 9.8 ± 0.0ab 2.2 ± 0.2a 13.4 ± 0.2bc

The data are presented as mean values± standard deviations of three replicates. “CK” indicates the non-inoculated control plants. “NA (0)” denotes the plants in non-spiked vermiculite.

Data in each column with different metal concentrations inoculated with the same strain (or without inoculation) are followed by different lowercase letters indicating statistical difference

at P < 0.05 according to LSD test. The highest value in either the inoculated or non-inoculated group is expressed in bold lowercase letters. “*” is placed after the value that is higher

the other with statistical significance (P < 0.05) between the inoculated and non-inoculated groups at each metal concentration according to Tukey’s post-hoc test.

with 5, 20, and 35mg kg−1 cadmium than in those grown in
Cd-free control. With the increasing amount of manganese in
the background from 0 to 20mg kg−1, the number of nodules
was reduced (Table 2). However, more nodules were found in
35mg kg−1 Cd soil. There was no significant difference between
nodule numbers for plants grown in both metal-spiked soils at all
concentrations.

Biomass Yield
After growing for 6 months under greenhouse conditions, all
inoculated groups saw a slightly improved biomass yield in the
presence of both metals. Among all metal-treated plants, dry
weight was increased with the inoculation of YH1, except for
plants in 5mg kg−1 Cd soil, where biomass remained the same
for both groups (Table 2). However, the total dry weight of YH1-
inoculated plants in 5, 20, and 35mg kg−1 Cd soils did not
show apparent difference compared to either inoculation-free or
non-spiked control.

The biomass yield pattern for Mn-treated plants was different
from that for Cd-treated plants. Dry weight of both inoculated
plants and control showed positive correlation to Mn content
ranging from 0 to 20mg kg−1. However, in 35mg kg−1 Mn soil,
biomass yield of both groups decreased. YH1-free plants showed
a significant decrease of biomass at 35mg kg−1 soil Mn compared
to all treatments with lower Mn contents (Table 2).

Plant Height and Root Length
For inoculation-free plants in 0, 5, 20, and 35mg kg−1 Cd soils
(Table 2), no significant difference in plant height was found. In
the inoculated group, plant height was reduced in the presence
of different concentrations of Cd in soil. Only in non-spiked
treatment, inoculated plants appeared to be higher than the

control. YH1-inoculated plants showed a significant increase
(P < 0.05) in root length by 86.9, 44.2 and 67.5% at 5, 20,
and 35mg kg−1 soil Cd respectively, except in the non-spiked
control group, where YH1 did not contribute to the increase of
root length. It showed that plant height was negatively correlated
with the Mn content in soil for both YH1 and YH1-free groups.
The introduction of YH1 led to a slight increase of plant height
compared to plants without inoculation at 5, 20, and 30mg kg−1

soil Mn (Table 2).

DISCUSSION

Rhizobia Identification
L. leucocephala-associated sinorhizobia in this region have been
previously identified as nearest neighbors to S. americanum, S.
fredii, S. kummerowiae, S. meliloti, S. mexicanus, S. saheli, and
S. xinjiangense (Xu et al., 2013a,b). The existence of various
toxic metals tends to exercise a natural selection process, through
which metal-tolerant species are favored (Rajkumar et al., 2009).
As was shown by our results, L. leucocephalawas still able to grow
vigorously and produce nitrogen-fixing nodules regardless of the
presence of elevated amounts of toxic metals and the infertility in
the V-Ti mine tailings, indicating the successful establishment of
synergism between rhizobia and the host.

Both 16 rRNA and MLSA results identified strain YH1 as
the closest neighbor to Sinorhizobium saheli (99.0% similarity),
which is widely reported as a beneficial rhizobium to colonize
L. leucocephala (Wang et al., 2006; Ardley, 2017). It is well
known that the dinitrogenase reductase enzyme encoding
nifH is accountable for the formation of root nodules with
nitrogen-fixing capability (Laguerre et al., 2001). In our work,
the symbiotic gene nifH of Sinorhizobium strain YH1 was
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FIGURE 5 | Cd contents in (A) shoot and (B) root, Mn contents in (C) root and (D) shoot of L. leucocephala after 6 months growth in vermiculite supplemented with

three different concentrations of Cd or Mn. YH1, plants inoculated with strain YH1; CK, control group without inoculation. Different lowercase letters following data in

either the YH1-inoculated or the YH1-free control group treated with different concentrations of the same metal show the statistical difference is significant at P < 0.05

according to LSD test. Error bars represent standard deviations.

clustered nearer to Neorhizobium huautlense (formerly known
as Rhizobium huautlense) CCBAU 65798 with 99.6% homogeny
than to Sinorhizobium saheli which only had 97.1% similarity.
This could be explained by the fact that N. huautlense was also
found to be a PGPR microbe that could reduce the accumulation
of Cd by plant (Chen et al., 2016). In addition, a horizontal
gene transfer could help further explain this phenomenon. It
may be conjectured that the functional gene nifH of Rhizobium
huautlense was accidentally obtained by YH1 due to close co-
existence of the both species in the same region, as was proposed
by other researchers before (Andrews et al., 2018).

Pot Culture Experiment in Tailings
Studies on the in-situ remediation of V-Ti tailings-polluted sites
by the association of natively grown L. leucocephala and rhizobia
are scarce. Mine tailings in Panzhihua region differ from other
mine wastes due to their excessive amounts of extractable iron,
titanium, and vanadium among other toxic metals.

L. leucocephala is not deemed as a hyper-accumulator as
both biological concentration and translocation factors for most
metals of interest were no more than 1.0. In spite of the higher
concentrations of Fe and Ti in the tailings, the plants did
not tend to absorb them as much as Cu and Ni, which are
considered toxic to the plant at a lower dose. Phytoremediation
of soils using legume-rhizobia associations can be generalized

under two categories: mobilization, being the enhancement
of metal uptake by the plants, owing to the production of
various mobilizing agents such as biosurfactants, organic acids,
siderophores and through biomethylation and redox effects
(Ullah et al., 2015); immobilization or stabilization, the process
in which the bioavailability of heavy metals in the rhizosphere
is reduced due to on-root sorption and precipitation effects by
root exudates and microbial metabolites (Salt et al., 1995; Wong,
2003). In this study, it may be concluded that L. leucocephala-
YH1 symbiotic system, which led to 8.4% reduction of plant
uptake for Mn and 65.5% for Cd in tailings, has the best
reduction effect on Cd. This is again confirmed by vermiculite pot
experiment where higher reduction rates on cadmium ranging
from 59.7 to 79.4% were found. Consequently, the significant
reduction (P < 0.05) of metal uptake except for Cd, as shown in
the inoculated group probably implies the positive effects of the
strain YH1 on the host which exhibit the immobilization feature
in the root system.

Among a few leguminous tree species, L. leucocephala is
able to tolerate higher concentrations of toxic metals compared
to non-legumes and is less likely to succumb to multi-metal
contaminated substrates (Chan et al., 1999). In addition, there is
evidence showing the predominant status of this tree species in
the topsoil of Pb/Zn mine tailings and the potential of using it as
a phytoremediation tool (Zhang et al., 2001).

Frontiers in Microbiology | www.frontiersin.org 9 August 2018 | Volume 9 | Article 1853

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Kang et al. S. saheli Cuts L. leucocephala Metal Uptake

The growth state of plant-YH1 consortium demonstrated
that, in contrast to control group, plants infected with
strain YH1 showed successful nodulation and that biomass
yield, plant height, root lengths and NPK contents were
significantly elevated. This is indicative of the effectiveness of
this inoculum and suggestive of the normal functioning of the
symbiotic genes in it. It is widely reported that a number of
PGPRs capable of increasing plant yield and improving soil
conditions can be used in phytoremediation: these include
Achromobacter, Acinetobacter, Actinobacteria, Azotobacter,
Bacillus, Flavobacterium, Ochrobactrum, Pseudomonas,
Rhizobium, and Bradyrhizobium (Reichman, 2007; Wani
et al., 2008; Khan et al., 2009). For a long time, arbuscular
mycorrhizal fungi (AMF) have been especially noted for
improving phytoremediation by attenuating various metal
stresses to the host apart from improving plant growth, whose
mechanisms are frequently alluded to those of bacterial PGP
strains (Lins et al., 2006). Discoveries of phytostabilization using
rhizobia-legume systems came under notice when a number
of rhizobial strains were reported to be both PGP-positive and
capable of reducing metal uptake for the host. In a separate
study, Bradyrhizobium sp. (vigna) RM8, isolated from green
gram in metal contaminated sites, tolerant to high levels of
nickel and zinc, active in promoting plant growth, was found
to be able to cut nickel and zinc intake by the host while
alleviating the toxic stresses (Wani et al., 2007). Another instance
of phyto-immobilization was recorded by Dary et al. (2010),
in which, an effective nitrogen fixer Bradyrhizobium sp. 750
reduced the accumulation of Cd, Cu, and Pb by Lupinus luteus in
a field experiment on a multi-metal polluted site. There appears
to be more metal enhancers than reducers and the former are
often coupled with the ability of siderophore production (Glick,
2010), which may be attributed to the fact that siderophores as
chelating agents make insoluble metal compounds bioavailable
and thereby facilitating metal uptake. However, it works both
ways, as established by Dimkpa et al. (2008), in which the
accumulation of nickel in cowpea plants was lowered with the
help of Ni-binding hydroxamate siderophores produced by
Streptomyces acidiscabies, and this may prove that siderophores
play a dual role in determining the uptake pattern regarding
their various types while other more dominant factors may also
have to be taken into account (Ma et al., 2011).

Phosphorus solubilization is another indispensable trait for
soil microbes in the immobilization of heavy metals. Free
metal ions can be readily precipitated as metal-P complexes of
various mineral phases such, taking cadmium as an example, as
Cd5H2(PO4)4·4H2O, Cd(H2PO4)2, Cd3(PO4)2 and amorphous
cadmium phosphates at higher pH values (Sharma and Archana,
2016), which can be deposited on the surfaces of both roots
and microbes in the rhizosphere resulting in reduced metal
bioavailability and a reduction in both biological concentration
and translocation effects (Park et al., 2011).

Indole-3-acetic acid is a phytohormone which has been widely
regarded as an index for assessing the effectiveness of the
promotion of cell elongation in plant tissues (Nadeem et al.,
2015). The production of IAA by strain YH1 is higher (>100
µg ml−1) than most rhizobial stains previously reported and

can be considered as an IAA-overproducer (Chiboub et al.,
2016; Yu et al., 2017). It is observed that negative impact of
metal accumulation inside plant tissues could be mitigated by
the application of IAA (Nadeem et al., 2015). In our study of
microbial phosphorus solubilization, strain YH1 was found to
be more competent than most strains isolated from infertile and
polluted soils, which among other PGP traits, further confirmed
the effectiveness of strain YH1 to be potentially utilized in the
phytoremediation of heavy metal contaminated soils.

As of today, there is limited information on the remediation of
soils involving members from Sinorhizobium. It was revealed that
some strains of Sinorhizobium meliloti helped with the uptake
of Cd, Cu and Zn by Medicago plants with high translocation
effects (Fan et al., 2011; Ghnaya et al., 2015; Zribi et al., 2015).
Most interestingly, it was found that a symbiotic PGPR strain
may help increase the uptake by one plant species while cause the
decrease by another, as in the case of Bradyrhizobium sp. YL-6,
where it boosted Cd uptake by Loliummultiflorumwhile reduced
Cd uptake by Glycine max (Guo and Chi, 2013).

Pot Culture in Cd/Mn Soils
Our work exhibited that the plants achieved greater biomass
yield in both Cd and Mn tainted soils. In this experiment,
the cross influence of other metals was minimized by using
single metal-spiked vermiculite as substrate. Treatments with
YH1 inoculum were all indicative of the successful formation
of synergism with the microbe. By comparing plant dry weight
between different treatments and the tolerance of YH1 to Cd and
Mn, it is obvious that Cd appears to exercise more negative effects
on both plant and rhizobia, and this may be explained by the
fact that Cd has both higher microbial toxicity and phytotoxicity
than Mn (Lambers et al., 2015; Ullah et al., 2015) and that Mn
content is way higher in the tailings from which this strain
was isolated. Biomass yield and growth parameters of leucaena
plants were both reduced under the stress of cadmium even at
a low concentration of 25 ppm as revealed by a previous study
(Shafiq et al., 2010). Both Cd and Mn can stunt root growth and
have damaging effects to leaves (Khan et al., 2011).It has been
well explained that, several sophisticated microbial mechanisms
conspire to curb the metal bioavailability to plants, which include
biosorption onto the outer wall, intracellular sequestration, and
complexation by certain biogenic anions (Gadd, 2004).

Root is where the toxic metals exert direct influence on the
plant. Changes in this microbial-rhizospheric niche may alter the
composition and patterns of exudation, which can further lead
to damage to the root-hair cells. The significant increase in root
length against the increasing amount of Cd, is probably attributed
to the reduced metal stress caused by the immobilization effects.

There existed a great difference regarding the overall uptake
of these two separately added metals, in which Mn uptake was
more than three times the amounts of Cd in both groups and
the translocation for Mn was more than 10 times that for Cd.
Manganese exhibits extreme toxicity to plant cells in excessive
amounts (>500mg kg−1 in content) and is positively linked to
soil acidity and a lack of other exchangeable metal ions such as
Ca, Mg, and Fe in the rhizosphere (de Varennes et al., 2001).
The reduction of Mn uptake by plants can be more complicated
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as common microorganisms are usually not directly involved
in this process except for manganese oxidizing bacteria, which
can increase Mn availability through the release of low weight
bacteriogenic acids as IAA (Millaleo et al., 2010). Therefore, it
may be conjectured that Mn resistant strain YH1 helped alleviate
manganese uptake through indirect mechanisms by altering the
plant exudation patterns, as suggested in studies on AMF-plant
interactions (Nogueira and Cardoso, 2003), where plant exudates
were changed under the influence of microbial activities resulting
in an immobilization effect and reduced metal uptake by the
plant.

Cadmium is a toxic metal with high mobility in both plant
tissues and soils, the uptake of it by plants is in rise with the
increase of its background concentration in both inoculated
group and control. It is apparent that in metal-spiked soil, the
uptake of Cd is also drastically reduced with the inoculation of
YH1 especially under higher contents, and the plant translocation
factor for Cd was also decreased with the inoculation of YH1,
which is consistent with the tailings experiment and further
indicates the metal-immobilizing effects on the legume.

Nodulation Under Cd or Mn Stress
The decreasing trend in nodule yield under both metal stresses
against the increasing levels of soil metal contents from 5 to
20mg kg−1 was reversed in the treatment with 35mg kg−1 Mn,
which may be accounted for by the fact that manganese is less
toxic to plants and its microbial symbionts. Manganese is an
indispensable trace element constituting the reactive centers of
various enzymes and is more than 20 times the amounts of
the other metal pollutants in the V-Ti tailings. It should be
noted that excessive ingestion of Mn can also cause toxicity to
both plants and bacteria (Zornoza et al., 2010). Investigations
by predecessors discovered that although Mn exists in plants
in fairly large amounts, its toxicity can still affect the bacterial
growth and legume-rhizobia associations (de Varennes et al.,
2001; Hayes et al., 2012). However, our results confirmed that Cd
appears to be more toxic than Mn, since the nodule number was
lower than in plants treated with Mn at the same amounts of 5
and 35mg kg−1.

CONCLUSIONS

In conclusion, metalliferous V-Ti magnetite tailings from
Panzhihua region harbor a PGP-positive rhizobia species, which

was identified as Sinorhizobium saheli YH1. This strain exhibited
IAA-producing and phosphate-solubilizing activities and was
tolerant to high amounts of Cd and Mn. It also improved
plant height, root length, and biomass yield for L. Leucocephala
grown in both V-Ti tailings and soils amended with Cd/Mn.
In particular, strain YH1 demonstrated abilities to nodulate
the plant and reduce the uptake of heavy metals for the plant
in the tailings and Cd- / Mn-supplemented soils. Our results
thus provide further understanding of the efficiency of S. saheli
YH1 in promoting plant health under heavy metal-ridden soil
environments and suggest that it could be potentially used as
an inoculum for the phytoremediation of metal-contaminated
soils.
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