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A Commentary on

Commentary: Probing Genomic Aspects of the Multi-Host Pathogen Clostridium perfringens

Reveals Significant Pangenome Diversity, and a Diverse Array of Virulence Factors

by Gohari, I. M., and Prescott, J. F. (2018). Front. Microbiol. 9:1856. doi: 10.3389/fmicb.2018.01856

We firstly would like to express our appreciation for the comments and efforts made by Gohari
and Prescott regarding their detailed commentary of our Clostridium perfringens Whole Genome
Sequencing (WGS) based genomic and phylogenetic study we published in December 2017. We
are particularly pleased to note that the authors acknowledge that our “work has contributed
significantly to understanding of genomic diversity of this bacterium.”

The aim of our study was to conduct a robust large-scaleWGS study on this important pathogen,
and to highlight genomic insights to the global scientific community. We believe that WGS could
prove extremely useful in exploring new traits in C. perfringens, as has been performed in many
different bacterial pathogens. We agree with the authors, and indeed highlight this throughout our
original study, that alongside genomic-based studies, clinical metadata, epidemiological studies,
and phenotypic testing, will be central to determine the impact of genetic variation in C. perfringens
in the context of human and animal health.

We would first like to respond to the authors commentary suggesting a “clear mistake” or
“incorrect conclusion” in that netB gene (a gene that encode NetB toxin, which is associated
with avian Necrotising Enteritis) has no role in canine haemorrhagic gastroenteritis and
foal necrotising enteritis (Keyburn et al., 2008, 2010; Rood et al., 2016). We appreciate the
authors have a track record of working in this particular area of C. perfringens virulence, as
highlighted by citation of their own work throughout the commentary. They highlight that
netB and netE genes (which encodes proteins NetB and NetE respectively) share high sequence
identity of 78% amino acid (according to their published work in 2015, 79% amino acid
sequence identity; Mehdizadeh Gohari et al., 2015), which may have potentially contributed
to our “understandable misinterpretation” of the data. Based on our informatics filtering
parameters, we also determined that netB and netE are highly identical and not distinctive
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FIGURE 1 | (A) A BLASTn sequence alignment performed on a local machine that aligns epsilon toxin gene etx (NCBI accession: M95206.1) with PacBio-sequenced

NCTC8503 previously assembled genome (ENA accession: SAMEA3879480; contig 5: nucleotide position 51607-52593). Only a point mutation at position 762 is

detected with 100% coverage and > 99% sequence identity. (B) Toxin profile of NCTC8503 isolate, performed via sequence similarity search (“best-match” approach)

pipeline ABRicate (https://github.com/tseemann/abricate; BLASTn-based tool) that confirmed the presence of etx gene in NCTC8503 genome with 99.90% identity

(at 100% coverage).

at nucleotide sequence level. This was based on strict double-
filtering strategy at 80% identity and E-value of 10−20, (routinely
applied in WGS studies to infer identical genes; Pearson, 2013;
Kiu et al., 2017), and was used as we were undertaking a

global in silico-based approach to explore a significant number
of C. perfringens genomes for virulence-associated traits (not
solely focused on these two toxin genes). Consequently, we
have reanalysed the data and determined that a higher sequence

Frontiers in Microbiology | www.frontiersin.org 2 August 2018 | Volume 9 | Article 1857

https://github.com/tseemann/abricate
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Kiu and Hall Genomic Analysis of Clostridium perfringens

identity threshold at 90% (BLASTn) confirms an absence of
the netB gene in these NetF-associated genomes. We thank
the authors for highlighting the high sequence similarly of
these toxin genes, and will factor these parameters in for
future studies (Camacho et al., 2009). As we carried out
a purely bioinformatic-based study, and are aware of the
sensitivity/specificity of different computational pipelines and
parameters, we were careful not to come to any definitive
“conclusions,” and “suggested” that NetB toxin “might be
involved,” thus clarifying our discussion points. Notably, with
the advancement in bioinformatics tools, differentiation between
highly similar genes may be possible using a “best-match”
approach to avoid inaccurate annotations.

To address the question as to whether or not NCTC8503 is
an “NE isolate,” we have re-traced the source of this isolate and
its sequence data. NCTC8503 is a C. perfringens strain isolated
by Bennetts (1930) according to the history record shown on
the Public Health England NCTC official website1 Nairn and
Bamford (1967) state “Bennetts (1930) had earlier reported the
isolation of Bacillus welchii from a bowel lesion in a Black
Orpington pullet with intestinal coccidiosis, and he considered
that an enterotoxaemia had contributed to the bird’s death”;
B. welchii was later renamed as C. perfringens. Furthermore,
Williams et al. states “A frequent, although sporadic, poultry
clostridiosis (necrotic enteritis [NE]) was first recorded by
Bennetts (1930) in Australia,” thus these descriptions indicated
a likely link to strain NCTC8503, a C. perfringens strain isolated
in 1930. We agree that no type D C. perfringens strains have
been linked with poultry NE. Unfortunately, as NCTC8503 is a
historical isolate with no detailed source information recorded,
we have been unable to definitively confirm the isolate’s origin
(Bennetts, 1930; Williams, 2005). However, we can reaffirm
that this isolate has not lost the epsilon toxin plasmid during
laboratory passage as confirmed by both WGS (Figure 1), and
multiplex PCR toxinotyping (Baums et al., 2004; Kiu et al.,
2017).

The “extreme” level of pangenome (12.6% core genes) in
C. perfringens has not been widely reported to date (McInerney
et al., 2017). However, as stated by the authors a previous
study carried out in 2010 in Escherichia coli, which analysed
53 genomes, indicated 11% core genes (Lukjancenko et al.,
2010). Notably, although these 2 bacteria can colonise the GI
tract, they are fundamentally different regarding their oxygen
sensitivity and ability to form spores. As described by Lukjanenko
et al., analysis of 53 genomes (not 61 genomes as claimed)
identified 1,472 core genes out of 13,296 genes in the pangenome
(11%), which is lower than the 12.6% reported in our genomic
C. perfringens analysis, although we note some differences in

1https://www.phe-culturecollections.org.uk/

approaches used. More recently a pangenome study based on
228 E. coli genomes identified 23.8% core genes (2,722 core
genes in 11,401 gene families) (McNally et al., 2016), and
using web-based tool panX pangenome analysis2 and databases
(Ding et al., 2018), based on the same cutoff as our study
indicated 13% of core genes, based on analysis of 307 E. coli

genomes (as of May 2018). We reiterate that our “extreme”
observation for spore-forming Gram-positive C. perfringens is
a rare trait, and is therefore of interest to the wider research
community. We agree with their statement “describing a species
as having extreme variation depends very much to what it is
being compared,” and furthermore we would emphasise that
prediction of genetic diversity will likely vary due to different
factors including sampling bias, number of strains selected, and
parameters used during informatics analysis, thus impacting
diversitymeasurements. In this study we comparedC. perfringens
with Clostridium difficile (30.3%, which has been reclassified as
Clostridioides difficile), a closer relative of C. perfringens, and
Streptococcus pneumoniae (46.5%), Salmonella enterica (16%),
and Klebsiella pneumoniae (26%) (Lawson et al., 2016; Kiu et al.,
2017).

We agree that there is currently no definitive pathogenicity
link with C. perfringens prophages, although previous studies
have indicated they enhance sporulation, which would be
expected to enhance transmission, and can be viewed as a
virulence trait (Stewart and Johnson, 1977). Notably, in the
closely related pathogen C. difficile, bacteriophages are linked to
toxin-secretion (Goh et al., 2005). Consequently, we speculate
that C. perfringens phages contribute to their virulence, which
could be confirmed in future studies.

We hope that our commentary provides clarification and
context and we look forward to wider discussion with all
investigators in the C. perfringens field.
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