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Marine microbial eukaryotes are ubiquitous, comprised of phylogenetically diverse
groups and play key roles in microbial food webs and global biogeochemical cycling.
However, their vertical distribution in the deep sea has received little attention. In
this study, we investigated the composition and diversity of the eukaryotes of both
0.2–3 µm and >3 µm size fractions from the surface to the hadal zone (8727 m) of
the Mariana Trench using Illumina MiSeq sequencing for the 18S rDNA. The microbial
eukaryotic community structure differed substantially across size fractions and depths.
Operational taxonomic unit (OTU) richness in the >3 µm fraction was higher than that
in the 0.2–3 µm fraction at the same depth. For the 0.2–3 µm fraction, sequences of
Retaria (Rhizaria) were most abundant in the surface water (53.5%). Chrysophyceae
(Stramenopiles) sequences dominated mostly in the samples from water depths below
1795 m. For the >3 µm fraction, sequences of Dinophyceae (Alveolata) were most
abundant in surface waters (49.3%) and remained a significant proportion of total
sequences at greater depths (9.8%, on average). Retaria sequences were abundant
in samples of depths ≥1000 m. Amoebozoa and Apusozoa sequences were enriched
in the hadal sample, comprising 38 and 20.4% of total sequences, respectively. Fungi
(Opisthokonta) sequences were most abundant at 1759 m in both size fractions. Strong
positive associations were found between Syndiniales (mainly MALV-I and MALV-II)
and Retaria while negative associations were shown between MALV-II and Fungi in
a co-occurrence analysis. This study compared the community structure of microbial
eukaryotes in different zones in the deep sea and identified a distinct hadal community
in the larger size fraction, suggesting the uniqueness of the eukaryotes in the biosphere
in the Mariana Trench.

Keywords: microbial eukaryotes, size fraction, diversity, community structure, hadal zone, biotic associations,
Mariana Trench

INTRODUCTION

Microbial eukaryotes play a fundamental role in marine ecosystems by supporting global biological
and geochemical processes, especially in microbial food webs (Worden et al., 2015). Microbial
eukaryote diversity is high and much of this has been discovered using molecular approaches
such as high throughput sequencing (HTS). Picoeukaryotes (0.2–3 µm) have been widely reported
as being abundant throughout the water column, playing key roles in primary production and
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mineral cycling (Massana, 2011). However, most picoeukaryotes
are relatively new to science and little is understood of their
ecology (Worden et al., 2004). Because there are far fewer 18S
rDNA copies in picoeukaryotes compared with larger eukaryotes
(Zhu et al., 2005), the estimation of microbial eukaryotic
community structure may be skewed in those studies using
DNA sequencing. Thus, characterizing diversity and community
structure of microeukaryotes by size fractionation is a necessary
step toward quantifying the ecological importance of these
microeukaryotes and studying the interactions between them
(Parris et al., 2014).

Deep-sea (>200 m) environments cover more than 65% of
the earth’s surface and more than 95% of the global biosphere
(Herring, 2001; Corinaldesi, 2015). Depth plays a key role in
shaping the diversity and community structure of microbial
eukaryotes, and some groups of microbial eukaryotes have
apparent depth-related distributions (Countway et al., 2010;
Schnetzer et al., 2011). Previous studies have also revealed a
variety of eukaryotic community structures in extreme habitats
(e.g., Edgcomb V. et al., 2011; Amaral-Zettler, 2013; Logares
et al., 2014; Parris et al., 2014), and shown that deep-sea
microbial eukaryotic communities are significantly different from
those in surface waters. For instance, several groups, such as
Rhizaria and Excavata, have been widely detected in deep waters
while Alveolata and Stramenopiles dominate in surface waters
(Scheckenbach et al., 2010; de Vargas et al., 2015; Xu et al.,
2017). However, compared with surface/epipelagic waters (e.g.,
Bachy et al., 2011; Wu et al., 2014a,b; de Vargas et al., 2015),
cold methane seeps (Takishita et al., 2007), and anoxic basins
(Stoeck et al., 2003; Edgcomb V.P. et al., 2011; Orsi et al., 2012),
few studies have focused on planktonic microbial eukaryotes
in bathypelagic and abyssal areas. Furthermore, most of these
studies were conducted over a narrow depth range where it was
not possible to examine vertical distribution patterns (Countway
et al., 2007; Xu et al., 2017).

Deep-sea life is heavily influenced by marine snow [particulate
organic matter (POM) flux from the euphotic zone] which
provides hotspots of microbial diversity and activity (Bochdansky
et al., 2010). Marine snow, combined with fecal pellets
from zooplankton and fish and phytodetritus from sinking
phytoplankton, is important to the biological pump, transferring
particulate carbon to greater depths (Turner, 2015). The
composition and sinking rate of marine snow thus influence the
microbial community, which is different from the surrounding
water (Turner, 2002). Marine snow harbors microbes of
different nutritional types, such as saprotrophy, heterotrophy,
and parasitism. A recent study has shown that two saprotrophic
groups, i.e., fungi and labyrinthulomycetes, dominate the
biomass of bathypelagic marine snow (Bochdansky et al.,
2016), indicating that eukaryotic microbes could contribute
to particle solubilization and remineralization (Pernice et al.,
2015b). Heterotrophic microbial eukaryotes, acting as bacterial
grazers, are also important members of bathypelagic microbial
communities (Pernice et al., 2015a). Parasitic dinoflagellate
(MALV-II, marine alveolates group II) species were found to be
wide-spread in all water types, accounting for 10–18% of total
microbial eukaryotic sequences (Pernice et al., 2015b).

The microbial loop (Azam et al., 1983) exerts a major influence
on patterns of carbon and nutrient fluxes in the ocean. However,
our current understanding of these ecological concepts is mainly
based on studies conducted in the euphotic zone with much
less information from greater depths (López-García et al., 2001;
Herndl et al., 2008; Nagata et al., 2010). Despite technological
and methodological advancements, current investigations have
provided little information on the ecological role and function of
deep-sea microbial eukaryotes (Snelgrove, 1999; Danovaro et al.,
2014). “Deep-sea Microbial Ecology” is a rapidly evolving field
with several large investigations having been made in last two
decades (Corinaldesi, 2015). While a variety of highly diverse
habitats have been recently described (Jørgensen and Boetius,
2007; Bartlett, 2009; Ramirez-Llodra et al., 2010; Danovaro et al.,
2014), the ecological roles of the different groups of microbial
eukaryotes in the deep sea have received little attention.

The Mariana Trench, as a part of the Izu-Bonin-Mariana
subduction system, is the deepest place on earth. While recent
studies have revealed distinct active prokaryotic communities in
the sediments of the Mariana Trench (e.g., Glud et al., 2013), there
remains little information on microbial eukaryotes, especially
in the water column of the Mariana Trench. Based on vertical
distribution patterns of microbial communities in the Challenger
Deep (e.g., Nunoura et al., 2015) and studies of microbial
eukaryotes in other deep-sea areas (e.g., Pernice et al., 2015b;
Xu et al., 2017), we hypothesized that (1) some picoeukaryote
groups would be distributed widely across all depths; (2) distinct
microbial eukaryotic community structures might exist in the
abyssal or hadal zones compared with upper layers; (3) variations
in community compositions would be different between size
fractions. In the present study, we focused on the vertical
community structure and diversity of microbial eukaryotes from
the surface to the hadal layer (8727 m) at a site above the
Mariana Trench. We performed Illumina MiSeq sequencing
targeting the V4 region of 18S rDNA for eukaryotes of the
0.2–3 µm and >3 µm size fractions. To reveal the potential biotic
relationships across water column, we explored the ecological
associations among eukaryotic microbial assemblages according
to their co-occurrences.

MATERIALS AND METHODS

Samples Collection
This study was conducted at a site above the Challenger Deep
of the Mariana Trench (11.38◦N, 142.30◦E) on an oceanography
survey of south-central western Pacific Ocean in winter (GASI-
02-PAC-ST-MSwin), on R/V “Dongfanghong 2” (Supplementary
Figure S1). Seawater samples (2 L, from each Niskin bottle,
prefiltered through a 200 µm pore-sized mesh) from water depths
of 0, 1000, 1759, 3699, 5367 and 8727 m were collected by
Niskin bottles mounted to a Seabird CTD (SBE 16plus, with a
Titanium housing for maximum depth over 10,000 m. Detailed
technical information1) on January 3rd, 2016. These sampling

1http://archive.ssc-ras.ru/eg/Equipment/SBE_19plusV2/website/products/spec_
sheets/16plusdata.htm
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depths were selected based on the hydrographic conditions of the
site and to reflect the microbial eukaryotic communities in the
epipelagic (0–200 m), mesopelagic (200–1000 m), bathypelagic
(2000–4000 m), abyssopelagic (4000–6000 m), and hadopelagic
(>6000 m) zones. After collection, each sample was immediately
filtered through a 3 µm pore-sized polycarbonate filter (with a
gentle vacuum pressure <25 cm Hg), followed by a 0.22 µm filter
(Whatman, Piscataway, NJ, United States). Samples of 0.2–3 µm
from surface to the deepest layer were named 0m-0.2, 1000m-0.2,
1759m-0.2, 3699m-0.2, 5367m-0.2, and 8727m-0.2, respectively,
and samples of >3 µm were named 0m-3, 1000m-3, 1759m-3,
3699m-3, 5367m-3, and 8727m-3, respectively. Each filter was
carefully placed into a 5 mL tube containing 2 mL of Lysis
buffer (50 mM Tris-HCl, 1.0 mM EDTA, 150 mM NaCl, and
0.1% SDS). The tubes were quickly frozen in liquid nitrogen and
stored at −80◦C until DNA extraction. Depth, temperature and
dissolved oxygen (DO) were measured in situ by the sensors on
the CTD equipment while nutrient concentrations (PO4, NO3,
NO2, NH4, and SiO3) were subsequently analyzed on return
with a continuous-flow auto-analyzer (AA3, Seal Analytical Inc.,
Southampton, United Kingdom).

DNA Extraction and PCR Amplification
Filters were thawed and DNA extraction was performed
according to Stoeck and Epstein (2003) using a phenol-
chloroform-isoamyl (1:1) extraction combined with precipitation
and washing procedures: proteinase K (100 µg mL−1) was
added and incubated (55◦C, 1 h); the lysates were mixed
twice with phenol–chloroform–isoamyl (both 500 µL); 100%
ethanol and 50 µL NaAc (1 M) were added to precipitate
DNA (incubated in −20◦C for 2 h); the pellet was washed
with 1 mL 70% ethanol, dried and dissolved in 50 µL water
(Bostrom et al., 2004). The precipitated DNA extracts were
diluted in 30 µL of ddH2O and kept at −20◦C for further
analysis. For PCR amplification, bidirectional primers were
designed to amplify the V4 region of 18S SSU rDNA: the
forward 3NDF (5′-GGCAAGTCTGGTGCCAG-3′) and the
reverse V4_euk_R2 (5′-ACGGTATCT(AG)ATC(AG)TCTT
CG-3′) (Bråte et al., 2010). A subsequent limited-cycle
amplification step was performed to add overhang adapters
and library-specific barcodes to primers. PCR reactions were
performed in a triplicated 20 µL mixture containing 4 µL of 5×
FastPfu Buffer, 2 µL of 2.5 mM dNTPs, 0.8 µL of each primer
(5 mM), 0.4 µL of FastPfu Polymerase and 10 ng of template
DNA. PCR amplification was completed at 95◦C for 2 min,
followed by 35 cycles of 95◦C for 30 s, 55◦C for 30 s, 72◦C for
45 s, and a final extension of 10 min at 72◦C.

Illumina MiSeq Sequencing and Data
Processing
PCR products were checked by 2% agarose gel electrophoresis
and purified using the AxyPrep DNA Gel Extraction Kit (Axygen
Biosciences, Union City, CA, United States) and quantified using
QuantiFluorTM-ST (Promega, United States). The concentrations
of these purified DNA extracts were measured with a Qubit 2.0
fluorometer (Thermo Fisher Scientific Inc., United States). The

purified products were then pooled in equimolar concentrations
for paired-end sequencing on an Illumina MiSeq PE300
platform2. Raw reads in fastq files with low quality (Q < 20 or
length <200 bp) were discarded using QIIME (Version 1.17)
(Caporaso et al., 2008). Tags were obtained by merging the paired
reads according to their overlaps, using COPE (Connecting
Overlapped Pair-End, V1.2.3.3) (Liu et al., 2012), after cutting
off the sequences of barcodes and primers. High quality pair-
wise sequences were obtained following these standards: (i)
bases with ASCII value below 33 were screened out; (ii) a
minimum overlap of 19 bp between reads; (iii) no more than
one mismatch was accepted while cutting off the sequences
of primers. Operational taxonomic unit (OTU) clustering was
performed at a minimum sequence similarity of 97% using
UPARSE (Edgar, 2013). Chimeric sequences were screened out
through UCHIME (Edgar et al., 2011). Representative sequences
of each OTU were assigned using the Silva (SSU115) 18S rRNA
database (Quast et al., 2013) based on a confidence threshold
of 70% for taxonomic affiliations. Non-affiliated OTUs, OTUs
affiliated with Archaea and terrestrial plants and singletons were
removed from the data set. Sequence data generated in this study
have been deposited in the NCBI Sequence Read Archive (SRA)
under BioProject PRJNA399026.

Statistical and Phylogenetic Analyses
R software (version 3.4.13) was employed to compute diversity
and richness indices with the “Vegan” package (Oksanen et al.,
2016). Alpha diversity (OTU richness), Chao1 and Shannon
indices were calculated based on the standardization of the
sample with lowest sequences (N = 12,889 sequences). Abundant
OTUs and groups, with sequence proportion over 1% at a
given site, were focused on in this study (Logares et al., 2014).
The taxonomic affiliations of eukaryotes, of both super group
and lower group level, were determined following Worden
et al. (2015). Super groups mainly include Archaeplastida,
Amoebozoa, Opisthokonta, Excavata, Rhizaria, Alveolata,
Stramenopiles, and lower groups include some sub-taxonomies
at the phylum or class level. A maximum likelihood (ML)
phylogenetic tree of abundant OTUs and reference species was
built (bootstrap replications = 1000) after alignment of their
sequences using MEGA v7.0 (Kumar et al., 2008). A heatmap
of locally abundant OTUs was generated by the “pheatmap”
package in R with corresponding taxonomy to each OTU (Kolde,
2015). Non-metric multidimensional scaling (nMDS) analysis
was performed with PRIMER v6.1 (Clarke and Gorley, 2006),
using square root-transformed sequence data. Differences among
groups discriminated by nMDS were tested using permutational
multivariate analysis of variance (PERMANOVA) (Anderson
et al., 2008). Co-occurrence of pairwise OTUs within and among
groups was analyzed and depicted by employing “cooccur” and
“circlize” packages in the R software using presence/absence
data (Lima-Mendez et al., 2015). Based on the results of the
detrended correspondence analysis (DCA), redundancy analysis
(RDA), and canonical correspondence analysis (CCA) were

2https://www.illumina.com/products/by-system/miseq-products.html
3http://cran.r-project.org
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used for constrained analyses between environmental variables
and microbial eukaryotic communities (by “Vegan” package in
R 3.4.1). Environmental factors most related with variation of
community changes were selected in this correlation analysis
by using the “bioenv” function in “Vegan” package (with
significance tested by the “envfit” function, permutation = 999).

RESULTS

Environmental Factors and Relationships
With Microbial Eukaryotic Communities
The vertical temperature and salinity profiles were similar to
previous report (Taira et al., 2004, 2005; Nunoura et al., 2015)
(Table 1). The highest DO concentration was observed at the
surface (205.22 µM) and the lowest was found at a depth of
1000 m (86.48 µM). The pH was highest at the surface (8.3) and
remained at around 7.9 at all other depths. The nitrate (NO3)
concentration was low at the surface (0.4 µM) but increased
strongly with depth, sharing a similar pattern with phosphate,
silicate and dissolved inorganic nitrogen (DIN) distributions. The
ratios of nitrogen to phosphorus (N/P) used here were estimated
by dividing DIN by the PO4 concentration; the highest N/P ratio
occurred at the surface (19.23).

Because of strong vertical gradients in most environmental
factors (≥1000 m) (e.g., silicate concentration, 1.36 µmol/L at the
surface but over 100 µmol/L in deep waters), the relationships
between environmental factors and the samples were analyzed
with and without surface layer values (Supplementary
Figure S2). With surface samples included, the 0.2–3 µm
communities were significantly influenced by DO (p = 0.034),
silicate concentration (p = 0.008) and salinity (p = 0.019),
while the >3 µm communities were significantly influenced
by DO (p = 0.026). After excluding the surface samples,
community variations in the 0.2–3 µm and >3 µm fractions
were significantly related to both DO (p = 0.033 and 0.033,
respectively) and phosphate concentration (p = 0.033 and 0.008,
respectively).

Alpha Diversity
After the removal of low quality reads, a total of 436,160
sequences and 910 OTUs (0.2–3 µm, 636 OTUs; >3 µm,
780 OTUs) were obtained from protist (unicellular eukaryotes)
taxa (Table 2). The rarefaction curves of the samples’ OTU
richness were sampled to near saturation, indicating that
the sequencing effort had exhaustively sampled the microbial
eukaryotic diversity at each depth (Supplementary Figure S3).
OTU richness was highest in the >3 µm fraction of the surface

TABLE 1 | Environmental factor values of different depths of sampling site.

Depth (m) Tem (◦C) Sal DO (µmol/L) pH PO4 (µmol/L) NO3 (µmol/L) NO2 (µmol/L) NH4 (µmol/L) SiO3 (µmol/L) DIN N/P

0 28.10 34.30 205.22 8.3 0.12 0.40 0.06 1.81 1.36 2.27 19.23

1000 4.34 34.55 86.48 7.85 2.84 41.47 0.05 0.72 109.22 42.24 14.86

1759 2.3 34.60 121.95 7.89 2.65 38.10 0.04 1.19 139.81 39.34 14.84

3699 1.49 34.66 159.19 7.93 2.54 27.73 0.03 1.33 161.65 29.09 11.46

5367 1.50 34.68 180.94 7.92 2.42 43.10 0.02 0.48 150.00 43.60 18.05

7200 1.75 34.69 NA NA 2.43 31.28 0.03 0.43 150.00 31.74 13.06

8727 2.00 34.68 173.24 7.82 2.43 35.30 0.06 0.61 142.72 35.97 14.80

Tem, temperature; Sal, salinity; DO, dissolved oxygen; DIN, dissolved inorganic nitrogen; N/P, ratio of nitrogen to phosphorus; NA, means data is not available.

TABLE 2 | Contextual data of 12 samples in this study.

Sample Size (µm) Depth (m) Sequences OTUs Chao Shannon

0m-0.2 0.2–3 0 32,047 380 427 2.86

0m-3 >3 0 25,875 431 475 4.23

1000m-0.2 0.2–3 1000 31,847 157 179 2.93

1000m-3 >3 1000 29,095 256 318 2.2

1759m-0.2 0.2–3 1759 32,390 227 267 2.98

1759m-3 >3 1759 28,093 284 343 2.79

3699m-0.2 0.2–3 3699 38,095 105 115 1.2

3699m-3 >3 3699 29,640 228 250 3.53

5367m-0.2 0.2–3 5367 34,833 139 155 3.38

5367m-3 >3 5367 27,890 314 343 4.22

8727m-0.2 0.2–3 8727 17,131 84 112 1.99

8727m-3 >3 8727 12,889 145 183 1.58

Total sequences 436,160

Total unique OTUs 910

Only protistan sequences and OTUs were included.
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(431 OTUs) while the lowest OTU richness appeared at the
greatest depth with only 84 OTUs. Notably, within each depth,
OTU richness in >3 µm sample was higher than that in 0.2–3 µm
sample. Diversity index Chao and Shannon showed the same
trend.

Metazoan taxa comprised 18.5% of the total sequences (44
OTUs) in the 0.2–3 µm fraction and 24.2% of the total
sequences (38 OTUs) in the >3 µm fraction. Most of the
Metazoan sequences were affiliated to Cnidaria, Arthropoda,
and Vertebrata. Generally, Cnidaria sequences dominated the
Metazoan sequences from surface layer to 1759 m, while
Vertebrata sequences were the most abundant at depth over
3699 m. As most sequences may have come from either dead
bodies (which can be important food resources for microbial
communities in the marine snow) or extracellular DNA, and
regarding the high number of 18S rDNA copies in the Metazoan
cells, they were not further analyzed based on the proportion
of sequences (only included in the co-occurrence analysis where
presence and absence data were used).

Community Structures and Abundant
OTUs
The sequence proportion of eukaryotic microbial groups, at
super group and lower level (mainly phylum or class) were

calculated for each sample to show the community structure at
each depth (Figure 1). Community composition of microbial
eukaryotes differed with depth. For the 0.2–3 µm fraction, at the
super group taxonomic level (Figure 1A), sequences of Alveolata
and Rhizaria dominated in the surface and 1000 m samples.
Opisthokonta sequences were abundant at 1795 m (61.8%).
Sequences belonging to Stramenopiles were abundant at 3699 m
(65.6%) and greater depths. At lower group levels (Figure 1D),
sequences of Retaria and MALV-II dominated at the surface (with
53.5 and 26.3%, respectively). The community at 1000 m was
mainly composed of Cercozoa (51.2%) and MALV-II (21.2%).
Fungi dominated at 1759 and 5367 m depths with sequence
proportion of 56.8 and 33.2%, respectively. Both the 3699 and
8727 m samples were overwhelmingly dominated by sequences
of Chrysophyceae (80.5%, on average).

For protistan sequences in the >3 µm fraction, at the super
group level (Figure 1B), Alveolata sequences overwhelmingly
dominated the surface sample (85%). Rhizaria sequences were
most abundant at 1000 m (69.9%). Opisthokonta sequences
accounted for 65% of the total sequences at 1759 m. Alveolata
and Rhizaria sequences dominated at 3699 and 5367 m while
Amoebozoa and Apusozoa sequences were most abundant at
8727 m (38 and 20.4%, respectively). At the lower taxonomic
levels (Figure 1E), Dinophyceae sequences dominated the surface
community (49.3%). Retaria sequences were found in all samples

FIGURE 1 | Sequence proportions of taxonomic groups in the (A) 0.2–3 µm fraction at the super group level; (B) >3 µm fraction at the super group level;
(D) 0.2–3 µm fraction at lower group level; (E) >3 µm fraction at lower group level. Only protistan sequences were included. (C) Shows the grouping of samples in
the non-metric multidimensional scaling (nMDS) by community similarities, using Bray–Curtis distance.
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with an average proportion of 30.9%. Fungi sequences were
most abundant at 1000 m (40%). Sequences of Lobosa within
Amoebozoa dominated the community at 8727 m, accounting for
39.5% of total sequences.

Hierarchical clustering based on SIMPROF divided the 12
samples into five groups (Group 1: 0m-0.2 and 0m-3; Group
2: 1000m-0.2, 1759m-0.2 and 5367m-0.2; Group 3: 3699m-0.2
and 8727m-0.2; Group 4: 1000m-3, 1759m-3, 3699m-3 and
5367m-3; Group 5: 8727m-3) at a similarity level of 35%. This
grouping result is presented on the nMDS map (Figure 1C),
where difference between each two groups (Groups 1–5) is
statistically significant (p < 0.05, PERMANOVA test). The
average dissimilarity (Bray–Curtis) between the samples in the
larger size fraction (54.8%) is greater than that in the 0.2–3 µm
fraction (49.4%).

For the locally abundant OTUs (sequence proportion over
1% in a given sample) in the two fractions (Figure 2), it was
found that sequences of OTU444 and OTU352 (both belonging
to Chrysophyceae) dominated in the 0.2–3 µm fraction with
depths ≥1759 m (averagely 32.1 and 17.5%, respectively),
while sequences of OTU195 and OTU752 (both belonging to
Dinophyceae) were abundant in the >3 µm fraction from the
surface to the deepest layer (averagely 4.1 and 2.5%, respectively).
Sequences of OTU631 and OTU507, within Fungi, had wide
distributions in both fractions at depths ≥1000 m (averagely 8.8
and 2.4%, respectively). Sequences of OTU812 (Massisteria sp.,
Cercozoa) was highly enriched in sample 1000m-0.2 (46.5%), but
was uncommon in other samples (0.1%, on average).

Retaria, Syndiniales (mainly MALVs) and Fungi were widely
distributed in all samples with abundant sequences and high
OTU richness (on average 14.1, 36.6 and 8.9% of the OTU
richness proportion in a single sample, respectively). Their
compositions of sub-taxonomies are shown in Figure 3

(Sub-taxonomies with no sequences in this study are not
shown). Generally, Polycystinea dominated the Retaria sequences
in both fractions (84.4%, on average). Within Polycystinea,
the order Collodaria (represented by OTU443, OTU408,
and OTU53) was abundant in upper layers (0–1759 m),
while the order Spumellaria, close relatives of heterotrophic
grazers, (represented by OTU494, OTU307, and OTU488)
was enriched in deeper waters (≥3699 m) (Supplementary
Figure S4). Within Syndiniales, MALV-I and MALV-II sequences
were most abundant (on average 35 and 58% of the total
Syndiniales sequences, respectively) in all samples, Ascomycota
overwhelmingly dominated the Fungi sequences (99.3%, on
average), compared with Basidiomycota.

Associations Between Groups
According to the co-occurrence analysis, a total of 3145
pairwise OTUs were found with significantly positive associations
(Figure 4A). MALV-I, MALV-II and Retaria showed the greatest
contributions to the relationships within and between groups
(60.8%). Positive co-occurrence was also found for the above
three groups and others, for instance, between MALV-I and
Haptophyta (7.4% of total). For the negative associations
(Figure 4B), a substantial number of pairwise OTUs (966, in
total) were found within and between groups as well. Pairwise
OTUs between Fungi and MALV-II represented 17.5% of the total
negative associations.

DISCUSSION

Despite recent methodological and technological advances, it is
estimated that only 5% of the deep oceans has so far been explored
and that less than 0.001% has been sampled and described in

FIGURE 2 | Heatmap of abundant OTUs of the 12 samples. Abundant OTU refers to OTU with sequence proportion over 1% in a given sample. The corresponding
taxonomy of each OTU is on the right, with the sequence similarity to the nearest match.

Frontiers in Microbiology | www.frontiersin.org 6 August 2018 | Volume 9 | Article 2023

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02023 August 27, 2018 Time: 10:24 # 7

Xu et al. Microbial Eukaryotes in the Mariana Trench

FIGURE 3 | Sequence proportions of sub-taxonomies within (A) Retaria, (B) Syndiniales, and (C) Fungi. Sub-taxonomies with no sequences in the samples were
not shown.

terms of biodiversity (Danovaro et al., 2014; Corinaldesi, 2015);
even less is known about microbial eukaryotes. Furthermore,
many microorganisms are fragile and may have regularly been
lost during filtering, making their diversity under-presented
and poorly understood (Biard et al., 2016). The filtration
procedures used here were performed on board the ship
at room temperature. The increase in seawater temperature
after retrieval may have influenced the documented microbial

eukaryotic community. However, this effect will likely be minor
for microorganisms examined at the DNA level.

In this study, the species richness of microbial eukaryotes
was highest at the surface and lowest at the bottom, 8727 m
(for both size fractions), suggesting that great differences in the
living environment of microbial eukaryotes may exist in the
hadal zone, compared with upper layers (Jamieson et al., 2010).
In addition, a comparison of OTU richness of the two size
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FIGURE 4 | Co-occurrence of different groups based on network analysis. Ribbons connecting two segments indicate co-presence (A) and exclusion (B) links, on
the left and right. Size of the ribbon is proportional to the number of links (co-presence and exclusion) between OTUs assigned to the respective groups. Links are
dominated by Retaria, MALV-I and MALV-II in the positive associations (Left) and by Retaria and Fungi in the negative associations (Right).

fractions at each depth showed that microbial eukaryotes were
more diverse in the >3 µm size fraction than in the 0.2–3 µm
fraction, which was consistent with the results of Parris et al.
(2014).

Abundant Groups Represented by
Retaria, MAVLs, and Fungi
Marine microbial eukaryotic communities are usually composed
of a few of locally abundant species and many rare species. The
abundant species or groups dominate the community not only
by having large numbers of individuals but also by performing
the major ecosystem functions (Logares et al., 2014). It is worth
commenting, however, that the number of 18S rDNA sequences
does not represent cell abundance. Recent studies have shown
that the number of rDNA copies in protists varies greatly, from
a few in picoeukaryotes to more than thousands in larger sized
protists, such as dinoflagellates and ciliates (e.g., Zhu et al., 2005;
Gong et al., 2013). Moreover, a recent study using single-cell
approach to quantify ribotype copy numbers in ciliates found that
the sequence number of 18S rDNA is more closely related to a
population’s biomass than cell abundance (Fu and Gong, 2017).
Although this difference in gene copy numbers can be reduced by
analyzing the size fractions separately, data derived from rDNA
sequencing (e.g., HTS) needs to be interpreted with caution.

In this study, a number of abundant groups and species were
identified that characterized differences between communities at
different depths and between different size fractions. While the
super groups SAR (i.e., Stramenopiles, Alveolata, and Rhizaria)
and Archaeplastida have been widely reported as the dominant
groups in various surface waters (Massana, 2011), studies of
the vertical distributions of abundant microbial eukaryotes from
surface to the deep water remain scarce. In a recent study
by Pernice et al. (2015b), Collodaria, Chrysophyta, Fungi, and
MALV-II were found to be dominant in the bathypelagic waters

at 27 stations in the Atlantic, Pacific, and Indian Oceans. In
addition to these four groups, large numbers of sequences
affiliated to Amoebozoa and Apusozoa were also found in
the deep-sea samples studied herein. The relative proportions
of these abundant groups, however, varied among samples of
different depths, showing a high level of variability.

Sequences of Rhizaria, which were all affiliated to Radiolaria
(amoeboid protists belonging to Retaria) were abundant at all
depths in this study. Radiolarians, comprised of five orders (i.e.,
Acantharia, Taxopodia, Collodaria, Nassellaria, and Spumellaria),
are thought to actively contribute to the deep-sea heterotrophic
communities, especially in the mesopelagic and bathypelagic
zones. Furthermore, Acantharia species play an important
role in the biological pump of carbon by contributing to
the deep-sea particulate organic carbon (POC) flux via cyst
formation (Bernstein et al., 1987; Martin et al., 2010). Radiolarian
sequences from the surface layer were mostly represented by
OTU443 (98.1% of the total Retaria sequences) with a 98%
identity to Sphaerozoum fuscum (Collodaria), which was recently
characterized as a colonial species living in the photic zone (Biard
et al., 2017). In addition to the PCR bias, the enrichment of
radiolarians at the surface in the 0.2–3 µm fraction might have
been derived from extracellular material of larger radiolarian cells
(Not et al., 2009) or small reproductive cells (gametes) (Not et al.,
2007).

In the >3 µm fraction, the class Polycystinea (including
Collodaria and Spumellaria) overwhelmingly dominated the
Retaria sequences (91.16%), consistent with previous studies
(Pernice et al., 2015b; Xu et al., 2017). Notably, the most
abundant Retaria OTU at each depth was affiliated to a
different order. As the most abundant Retaria OTUs at 1000
and 1759 m, respectively, OTU53 and OTU408 belonged to
the order Collodaria (with the nearest sequence match to
the uncultured clone from pelagic water of South China Sea,
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accession number KX532676.1), while the most abundant OTUs
at depths≥3699 m belonged to the order Spumellaria. Moreover,
Collodaria comprised 76% (on average) of the total Retaria
sequences at depth ≤1759 m, while Spumellaria comprised
85.7% (on average) at depths ≥3699 m, suggesting a difference
in depth preference for the two orders. A previous study
has found that some radiolarians living at the surface can
produce cysts that sink rapidly and release flagellated cells
at depth (Decelle et al., 2013) and it is thought that this
may have led to the uneven distributions of radiolarians
in the deep sea. Although the presence of DNA sequences
of radiolarians does not infer their activity, the possibility
that some radiolarians live in the deep sea should not be
discounted.

As one of the most phylogenetically diverse groups within
Alveolata, MALV (marine alveolates) has frequently been
reported from its uncultured parasitic sub-groups MALV-I and
MALV-II (Massana, 2011). MALV-II, also known as Syndiniales
Group II, was widespread, including in the deep ocean (Guillou
et al., 2008; Pernice et al., 2015b). It comprised 18.2 and 11.7% of
the picoeukaryotic (0.2–3 µm) richness and sequence abundance,
respectively, in the present study. An average of 6.2% of the
total sequences in >3 µm fraction also belonged to MALV-II,
indicating that potential hosts affected by MALV-II parasites
may exist in this size fraction, especially dinoflagellates. Among
MALV-II, Amoebophrya spp. are host specific species infecting
different free-living dinoflagellates (Coats and Park, 2002). They
were also found in the present study with 76 OTUs, none
of which were among the abundant OTUs. However, MALV-I
appeared to make up a greater proportion of sequences in
the >3 µm fraction than MALV-II at surface and 1000 m,
suggesting that it has a wider host spectrum, especially in
the lager sized fraction, even in the deep sea (Massana,
2011).

The widespread distribution of MALVs (abundant throughout
the water column) in the samples investigated herein suggests
that microbial eukaryotic heterotrophy in the deep sea is
largely represented in the form of parasitism (Pernice et al.,
2015b). Many parasitic groups, e.g., Amoebophrya spp., are
host-specific; however, whether the specific parasitism exists
consistently in the deep sea has received little attentions so far.
The network of interactions here demonstrated consistent biotic
relationships within and between microbial eukaryotic groups
throughout the water column. Positive associations, mainly
represented by MALV-I, MALV-II, and Retaria, outnumbered
negative associations by a ratio of 3:1, which is similar to
that found in the photic zone (Lima-Mendez et al., 2015),
suggesting wide distributions of parasitism throughout the
water column. Syndiniales are an order of dinoflagellates,
found exclusively as endosymbionts (Chambouvet et al., 2008).
Some groups with affiliation to Syndiniales, e.g., MALV-II,
can parasitize plankton such as Phaeodarea (Cercozoa),
Acantharea (Radiolaria), and Polycystinea (Radiolaria) (Guillou
et al., 2008) and have a widespread distribution in the deep
sea (Not et al., 2007). Moreover, individuals of MALV-I
and MALV-II have been directly isolated from the cells
of Radiolaria (Dolven et al., 2007), supporting the likely

parasitism between Syndiniales and Retaria in deep waters.
Species within MALV-I also have widespread distributions
and host spectrums (Guillou et al., 2008) and in this study,
seem to infect Dinophyceae and Haptophyta, based on
positive associations among these groups. MALV-I and
MALV-II might, however, have the same hosts and infect them
simultaneously, as few negative associations were found between
them.

Fungi are osmotrophs, feeding by externally processing
nutrients into metabolites (Richards et al., 2015). Marine fungi
have been reported to be one of the main component of
marine snow (Bochdansky et al., 2016) and Basidiomycota,
within Fungi, is the dominant microbial eukaryotic group in
the deep sea (3000–4000 m) worldwide (Pernice et al., 2015b).
They were found to be the most abundant taxa in the hadal
waters of the Puerto Rico Trench (Eloe et al., 2011). In this
study, Fungi were most abundant at 1759 m. Ascomycota was
much more abundant than Basidiomycota in terms of both
sequence number and richness, suggesting that the composition
of this group may be quite different in some areas, even though
the physical environment was relatively uniform (Junior et al.,
2015). Fungi are largely responsible for the decomposition of
organic matter in the deep sea and previous studies have shown
that Fungi are capable of the degradation and utilization of
refractory organic material that other microorganisms cannot
use (Clipson et al., 2006). It is possible that they stabilize the
composition of marine snow, in a similar manner to their
contribution in soils (Chenu and Stotzky, 2002). The mutual
exclusions between MALV-II and Fungi here might indicate
that saprophytism (represented by Fungi) is more favored in
the deep sea than parasitism (represented by MALV-II), as
more refractory organic material (or dead organism bodies) and
fewer potential hosts remain in the marine snow at greater
depths.

The grouping of the two surface samples together was due
partly to the similar contributions of different abundant groups
(especially some phototrophs) to the community structures,
which is similar to the community patterns found in the
water columns of northern Chile (Parris et al., 2014) and the
South China Sea (Xu et al., 2017). While Retaria was the
most abundant group at surface in the 0.2–3 µm fraction,
Dinophyceae dominated the surface sample in the >3 µm
fraction and was also present at all other depths. Many
Dinophyceae species (e.g., species withinGymnodinium) produce
cysts, which can sink into deep waters, as part of their
life cycle (Bravo and Figueroa, 2014). Since the deep water
enriched Dinophyceae OTUs (e.g., OTU195 and OTU752, both
belonged to Gymnodinium) also had abundant distributions at
the surface, the presence of Dinophyceae sequences at greater
depths (≥1000 m) could be attributed to sinking cysts (Gisselson
et al., 2002).

Hadal Zone Communities
Microbial communities (including both prokaryotes and
eukaryotes) can be grouped (e.g., UPGMA clustering) by their
depth in the water column, possibly reflecting their adaptation
to pressure (Brown et al., 2009). Communities of prokaryotes
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(both bacteria and archaea) in the hadal waters were found
to be distinct from those in abyssal waters, suggesting that
the unique hadal biosphere in the Challenger Deep may be
strongly influenced by the input of organic matter followed by
heterotrophic degradation (Nunoura et al., 2015). However,
little is known about the differences between the microbial
eukaryotic community structures of the hadal waters and upper
layers. Thus, a deeper understanding of the microbial eukaryotic
community composition of the hadal zone is necessary to identify
the main activities and contributions of microbial eukaryotes
to the carbon pump, nutrient cycling and energy transfer at
extreme depth (Corinaldesi, 2015). The present study compared
the community structures of microbial eukaryotes along a depth
gradient to the deep sea, with hadal samples included for the first
time.

While previous studies have reported a wide variety of
metazoan species (mainly benthic fauna) (Jamieson et al., 2010)
in trenches, planktonic protists have only rarely been studied. In
this study, the grouping of the samples 3699m-0.2 and 8727m-0.2
in the nMDS analysis was mainly due to the overwhelming
dominance of Chrysophyceae (78.3%, on average), together with
the low overall species richness (eight OTUs, in total). This
was similar to the prokaryotic community pattern found in
the hadopelagic water of the Mediterranean Sea, where the
diversity was extremely low and a “deep-ecotype” of Alteromonas
macleodii overwhelmingly dominated the community (Smedile
et al., 2013). As a major photosynthetic group (Vaulot et al., 2008),
Chrysophyceae contains many mixotrophic species (Holen and
Boraas, 1996) and many cultured species, such as Spumella sp.
and Ochromonas sp., are known to be bacterial grazers (Rønn
et al., 2002; Pfandl et al., 2004). In the present study, sequences
belonging to Chrysophyceae comprised only 2.7% of the surface
sample but up to 43% of the deeper samples (≥1000 m) in
the 0.2–3 µm fraction. As the most abundant OTU within
Chrysophyceae, OTU444 (68.01% of the total Chrysophyceae
sequences), showed a 99% identity with the sequence of Spumella
sp. (accession number: KF651119.1), which could potentially
also be a heterotrophic species and thus play an active role
in this deep-sea ecosystem (Pernice et al., 2015b). Similarly,
OTU352 as the second most abundant Chrysophyceae species
(31.5% of the total Chrysophyceae sequences), was also affiliated
to the genus Spumella. Thus, heterotrophic Chrysophyceae
species may be some of the most important grazers in the
deep sea.

Amoebozoa groups, which employ phagocytosis, are
important bacterial grazers and have usually been reported from
sediments (e.g., Quaiser et al., 2011; Lesniewski et al., 2012).
However, earlier studies have shown that Amoebozoa also has
a substantial presence in both the deep Pacific Ocean (from
500 to 3000 m) (Sauvadet et al., 2010) and the Southern Ocean
(170 m) (Bachy et al., 2011). The most abundant Amoebozoa
species (OTU13) found at 8727 m had a closest sequence
match to Squamamoeba japonica (87%), which was isolated
from the sediment (2700 m) of the Sea of Japan (Kudryavtsev
and Pawlowski, 2013). It might represent a novel unknown
Amoebozoa species living in hadal waters. The heterotrophic
grazers, Apusozoa species, which have frequently been detected

in fresh water, cold seeps, and hydrothermal sediments,
show adaptations to a wide range of salinity, temperature,
and oxygen conditions (Torruella et al., 2017). However,
the distributions of Apusozoa, especially Amastigomonas
bermudensis and Ancyromonas kenti (the two most abundant
Apusozoa species in this study, represented by OTU558 and
OTU580, respectively), in the hadal water have not been studied
so far.

Cell size has an important influence on the ability of organisms
to adapt to environmental changes (Toigo et al., 2006). Many
tiny organisms (e.g., bacteria and protists with cell size <3 µm)
inhabit marine snow aggregates (with size >3 µm) and the
abundances of these attached microorganisms can be much
higher than in the adjacent water column (Kiørboe, 2003).
A previous study conducted in a pelagic trench (6000 m)
showed that microbial (both bacteria and archaea) diversity
was higher in the >3 µm fraction (particle-associated) than
in the 0.2–3 µm fraction (free-living), coupled with significant
compositional differences between the two size fractions (Eloe
et al., 2011). In this study, the diversity of microbial eukaryotes
was mostly higher in the >3 µm fraction than in the
0.2–3 µm fraction and the community structure of the hadal
sample, 8727m-3,was significantly different from those of the
upper layers (compared to the much smaller difference in the
0.2–3 µm fraction between the community of hadal sample
and the community at 3699 m), supporting the view that
differences in protistan communities were related more to
the size fractions, than to sample depth (Sauvadet et al.,
2010).

CONCLUSION

In this study, two size classes of microbial eukaryotes from the
surface to the hadal zone of the Mariana Trench were examined.
Some abundant groups, such as radiolarians, Dinophyceae
and Fungi, had widespread distributions across all depths
and showed heterogeneous relationships to depth and size
fraction. Potential parasitic relationships between MALVs and
Retaria were reflected by their positive associations, while
mutual exclusions were suggested between MALV-II and Fungi,
which could be caused by competition for food resources.
This is the first record of Amoebozoa and Apusozoa as
abundant groups in the hadal zone of the Mariana Trench.
Together with Chrysophyceae, they could be the dominant
heterotrophic grazers in the deep sea. With higher OTU
richness and more variations in the community structures in
the larger size fraction, especially in the hadal zone, our results
suggested that size-fractionated differences should be considered
when investigating the adaptation of microorganisms to the
deep sea.
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FIGURE S1 | Location of sampling site. The station locates at a site (11.38◦N,
142.30◦E) above the Challenger Deep of the Mariana Trench, indicated with a red
triangle in the figure.

FIGURE S2 | Analysis of the relationships between microbial eukaryotic
communities and environmental factors. Samples with and without surface layers
were used to conduct the analysis due to the great difference of environmental
factors between surface water and deeper layers (≥1000 m). Only shown were
the factors most related with the community compositional changes (redundant
factors were not shown).

FIGURE S3 | Rarefaction curves for samples in this study. Left half of a sample
name refers to depth and right half refers to size fraction (0.2 refers to 0.2–3 µm
while 3 refers to >3 µm). The curve near to saturation indicates that the
sequencing effort has exhaustively sampled the diversity. Metazoan sequences are
included here.

FIGURE S4 | Maximum likelihood phylogenetic tree of abundant OTUs in this
study. Names in bold correspond to abundant OTUs found in this study while
other names (in regular) refer to the nearest cultivated species or uncultured clones
with accession numbers on the left (related deep-sea species were underlined).
Bootstrap values above 80% are indicated by red solid circles (larger sizes
represent higher values) near the nodes. Their taxonomic affiliations were shown
on the right at the super group and lower group level (more specific for Rhizaria).
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