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Cyanophages are viruses with a wide distribution in aquatic ecosystems, that specifically
infect Cyanobacteria. These viruses can be readily isolated from marine and fresh waters
environments; however, their presence in cosmopolitan thermophilic phototrophic mats
remains largely unknown. This study investigates the morphological diversity (TEM),
taxonomic composition (metagenomics), and active infectivity (metatranscriptomics)
of viral communities over a thermal gradient in hot spring phototrophic mats from
Northern Patagonia (Chile). The mats were dominated (up to 53%) by cosmopolitan
thermophilic filamentous true-branching cyanobacteria from the genus Mastigocladus,
the associated viral community was predominantly composed of Caudovirales (70%),
with most of the active infections driven by cyanophages (up to 90% of Caudovirales
transcripts). Metagenomic assembly lead to the first full genome description of a T7-
like Thermophilic Cyanophage recovered from a hot spring (Porcelana Hot Spring,
Chile), with a temperature of 58◦C (TC-CHP58). This could potentially represent a
world-wide thermophilic lineage of podoviruses that infect cyanobacteria. In the hot
spring, TC-CHP58 was active over a temperature gradient from 48 to 66◦C, showing
a high population variability represented by 1979 single nucleotide variants (SNVs).
TC-CHP58 was associated to the Mastigocladus spp. by CRISPR spacers. Marked
differences in metagenomic CRISPR loci number and spacers diversity, as well as SNVs,
in the TC-CHP58 proto-spacers at different temperatures, reinforce the theory of co-
evolution between natural virus populations and cyanobacterial hosts. Considering the
importance of cyanobacteria in hot spring biogeochemical cycles, the description of this
new cyanopodovirus lineage may have global implications for the functioning of these
extreme ecosystems.
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INTRODUCTION

Hot springs host microbial communities dominated by a limited variety of microorganisms that
form well-defined mats (Uldahl and Peng, 2013; Inskeep et al., 2013). Frequently, the uppermost
layer of the mat is composed of photoautotrophs; such as oxygenic phototrophic cyanobacteria,
including the unicellular cyanobacterium Synechococcus spp. (Steunou et al., 2006, 2008;
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Bhaya et al., 2007; Klatt et al., 2011), the filamentous non-
heterocystous Oscillatoria spp., the filamentous heterocystous
Mastigocladus spp. (Stewart, 1970; Miller et al., 2006; Mackenzie
et al., 2013; Alcamán et al., 2015), as well as filamentous
anoxygenic phototrophs (FAPs), such as Roseiflexus sp. and
Chloroflexus sp. (Van der Meer et al., 2010; Klatt et al., 2011; Liu
et al., 2011). These primary producers interact with heterotrophic
prokaryotes through element and energy cycling (Klatt et al.,
2013). Heterocystous cyanobacteria are a key component in
hot springs, since these systems are commonly N-limited due
to the rapid assimilation and turnover of inorganic nitrogen
forms (Alcamán et al., 2015; Lin et al., 2015). Thus, N2-
fixation by cyanobacteria is identified to be a key biological
process in neutral hot spring microbial mats (Alcamán et al.,
2015).

These simplified but highly cooperative communities
have been historically used as models for understanding the
composition, structure, and function of microbial consortia
(Klatt et al., 2011; Inskeep et al., 2013). The role of a variety
of abiotic factors, such as pH, sulfide concentration, and
temperature, in determining microbial assemblages and
life cycles in these ecosystems have been investigated (Cole
et al., 2013; Inskeep et al., 2013). However, there is a lack
of investigation into biotic factors, such as viruses, on
thermophilic photoautotrophic mats, with existing studies
only reporting short or partial viral sequences (Heidelberg
et al., 2009; Davison et al., 2016). Currently, viral communities
from thermal mats have been characterized through indirect
approaches, indicating the hypothetical presence of viruses
(Heidelberg et al., 2009; Davison et al., 2016). Heidelberg
et al. (2009) used CRISPR spacer sequences extracted from
the genomes of two thermophilic Synechococcus isolates, from
a phototrophic mat in Octopus Spring. Subsequently, they
searched for viral contigs from previously published water
metaviromes from the Octopus and Bear Paw Springs in
Yellowstone National Park (United States) (Schoenfeld et al.,
2008). Furthermore, Davison et al. used CRISPR spacers and
nucleotide motive frequencies to link viral contigs to known
hosts using a metavirome obtained by Multiple Displacement
Amplification (MDA) of VLPs from a mat in Octopus Spring
(Davison et al., 2016), as well as reference genomes from
dominant species (Synechococcus sp., Roseiflexus sp., and
Chloroflexus sp.) previously described in the same microbial
mat. A key finding from these studies was the link between
viruses and their hosts, indicating their co-evolution and
an effective “arms race” within hot spring phototrophic
mats.

Unlike thermophilic mat studies, most viral investigation
carried out in hot springs occur within the source waters
(Rachel et al., 2002; Yu et al., 2006; Schoenfeld et al., 2008;
Bolduc et al., 2012, 2015; Zablocki et al., 2017). In these
waters, virus abundances range between 104 and 109 virus
like particles (VLPs) mL−1 (Breitbart et al., 2004; Schoenfeld
et al., 2008; Redder et al., 2009). They play an important role
in both the structuring of host populations and as drivers
of organic and inorganic nutrient recycling (Breitbart et al.,
2004). The majority of the viruses were dsDNA, with new

and complex viral morphotypes, distinct to the typical head
and tail morphologies (Rachel et al., 2002; Prangishvili and
Garrett, 2004; Schoenfeld et al., 2008; Redder et al., 2009;
Pawlowski et al., 2014). Furthermore, the few metaviromes
obtained in thermal waters indicate that natural thermophilic
virus communities differ from those obtained in culture, given
that there was only a 20–50% similarity between the sequences
obtained and those in the databases (Pride and Schoenfeld,
2008; Schoenfeld et al., 2008; Diemer and Stedman, 2012;
Bolduc et al., 2015). Thus far, the genomes that have been
isolated and sequenced from thermophilic viruses (57 genomes,
of which 37 infected archaea and 20 infected Bacteria) generally
yielded few significant matches to sequences in public databases
(Uldahl and Peng, 2013). More recently, a water metaviromic
study from Brandvlei hot spring (BHS), South Africa (Zablocki
et al., 2017) reported the presence of two partial genomes
(10 kb and 27 kb), the first related to Podoviridae and the
second to lambda-like Siphoviridae families. Both Caudovirales
genomes did not have a confirmed host, but the presence of
green microbial mat-patches around the contours of the hot
spring, implied that filamentous Cyanobacteria and unclassified
Gemmata species were the potential hosts, respectively. The
last, based on the proximity of some viral predicted proteins
with bacteria from well characterized microbial mats present
in a nearby hot spring (Tekere et al., 2011; Jonker et al.,
2013).

Given the lack of knowledge of viral communities within
hot spring phototrophic microbial mats, the present study
used the mats of Porcelana hot spring (Northern Patagonia,
Chile), as a pH neutral model, to better understand the
associated thermophilic viral communities within these mats.
This pristine spring is covered by microbial mats that grow along
a thermal gradient between 70 and 46◦C, dominated by bacterial
phototrophs, such as filamentous cyanobacteria from the genus
Mastigocladus (Mackenzie et al., 2013; Alcamán et al., 2015). This
is the dominant and most active cyanobacterial genus in the
Porcelana mat environment, carrying out important biological
processes such as carbon- and N2-fixation (Alcamán et al., 2015,
2017). Thus, this study proposes that the mats in Porcelana
hot spring are dominated by viral communities of the Order
Caudovirales, which is able to infect Cyanobacteria, preferably
Mastigocladus spp.

The viral diversity in Porcelana was determined through the
detection of viral signals in microbial mat omics data, and
by TEM along the thermal gradient. The results demonstrate
that the viral community was dominated by Caudovirales,
which actively infect Cyanobacteria. Furthermore, the first
complete genome description of a thermophilic cyanobacterial
T7-like podovirus, Thermophilic Cyanophage Chile Porcelana
58◦C (from now on TC-CHP58) is realized. The host is the
dominant phototroph Mastigocladus spp, based on CRISPR
spacers. Finally, the presence of different populations of this
new podovirus are identified through single nucleotide variants
(SNVs) analyses, and the co-evolution of Mastigocladus spp. and
particular populations of TC-CHP58 at different temperatures
is described through association of specific SNVs to different
CRISPR spacers.
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MATERIALS AND METHODS

Sampling Site
Porcelana hot spring is located in Chilean Patagonia (42◦ 27′
29.1′′S – 72◦ 27′ 39.3′′W). It has a neutral pH range between 7.1
and 6.8 and temperatures ranging from 70 to 46◦C, when sampled
on March 2013. Phototrophic microbial mats growing at 66, 58,
and 48◦C were sampled using a cork borer of 7 mm diameter.
Cores of 1 cm thick were collected in triplicate at noon (12:00
PM), transported in liquid nitrogen and kept at−80◦C until DNA
and RNA extraction.

Transmission Electron Microscopy
Five liters of interstitial fluid was squeezed using 150 µm
sterilized polyester net SEFAR PET 1000 (Sefar, Heiden,
Switzerland) and filtered through 0.8 µm pore-size polycarbonate
filters (Isopore ATTP, 47 mm diameter, Millipore, Millford,
MA, United States) and 0.2 µm pore-size (Isopore GTTP,
47 mm diameter, Millipore) using a Swinex filter holder
(Millipore). Particles in the 0.2 µm filtrate were concentrated to
a final volume of approximately 35 ml using a tangential-flow
filtration cartridge (Vivaflow 200, 30 kDa pore size, Vivascience,
Lincoln, United Kingdom). Viral concentrates (15 µL) were
spotted onto Carbon Type-B, 200 mesh, Copper microscopy
grids (Ted Pella, Redding, California, United States), stained
with 1% uranyl acetate and imaged on an FEI Tecnai T12
electron microscope at 80 kV (FEI Corporate, Hillsboro,
OR, United States) with attached Megaview G2 CCD camera
(Olympus SIS, Münster, Germany). Imaging analysis was
done at the Advanced Microscopy Unit, School of Biological
Sciences at Pontificia Universidad Católica de Chile (Santiago,
Chile).

Nucleic Acid Extractions and High
Throughput Sequencing
Nucleic acids (DNA and RNA) were extracted as previously
described (Alcamán et al., 2015). For RNA, Trizol (Invitrogen,
Carlsbad, CA, United States) was added to the mat sample, and
homogenized by bead beating, two pulses of 20 s. Quality and
quantity of the extracted nucleic acids were checked and kept at
−80◦C.

Samples were sequenced by Illumina Hi-seq technology
(Research and Testing Laboratory, Texas, United States).
Briefly, for metagenomes, DNA was fragmented using
NEBNext dsFragmentase (New England Biolabs, Ipswich,
MA, United States), followed by DNA clean up using column
purification, and a NEBUltra DNA Library Prep Kit for Illumina
(New England Biolabs, Ipswich, MA, United States) was used for
library construction.

For metatranscriptomes, DNase treated total RNA was cleaned
up of rRNA by a Ribo-Zero rRNA Removal Kit Bacteria
(Illumina, San Diego, CA, United States), followed by purification
using an Agencourt RNAClean XP Kit (Beckman Coulter,
Indianapolis, IN, United States), and a NEXTflexTM Illumina
Small RNA Sequencing Kit v3 (Bio Scientific, Austin, TX,
United States) was used for library construction.

For quality filtering, the following filters were applied using
Cutadapt (Martin, 2011), leaving only mappable sequences longer
than 30 bp (-m 30), with a 3′ end trimming for bases with a
quality below 28 (-q 28), a hard clipping of the first five leftmost
bases (-u 5), and finally a perfect match of at least 10 bp (-O
10) against the standard Illumina adaptor. Finally, the removal
of sequences representing simple repetitions that are usually due
to sequencing errors was applied using PRINSEQ (Schmieder
and Edwards, 2011) DUST threshold 7 (-lc_method dust, -
lc_threshold 7). Details of the number of sequences obtained are
shown in Supplementary Table S1.

Identification of rRNA-Like Sequences
and Viral Mining From Metagenomes and
Metatranscriptomes
Metagenomic Illumina TAGs (miTAGs) (Logares et al., 2014) that
are small subunit (SSU) 16S and 18S rRNA gene sequences in the
metagenomes were identified and annotated using the Ribopicker
tool (Schmieder et al., 2012) with the Silva 123 SSU database
(Quast et al., 2013).

For viral mining, bacterial, archaeal and eukaryotic sequences
were removed through end-to-end mapping, allowing a 5% of
mismatch (-N 1 -L 20) against the NCBI non-redundant (NR)
database (Nov-2015) using bowtie2 (Langmead and Salzberg,
2012). Viral sequences were then recruited against modified
NCBI RefSeq (Release 75) viral proteins, where only amino
acid sequences from viruses that do not infect animals (NAV)
were considered to build the database, using the UBLAST
algorithm (-strand both -accel 0.9) through the USEARCH
sequence analysis tool (Edgar, 2010). Recruitment was made for
sequences with over 65% of coverage and an E-value < 1× 10−3

(-query_cov 0.65 -evalue 1e-3). For taxonomic assignment,
recruited sequences were aligned against the NAV database
using BLASTX (Camacho et al., 2009) and parsed using the
lowest common ancestor algorithm trough MEGAN 6 (Huson
et al., 2016) (LCA score = 30). The latter displays a graphical
representation of abundance for each taxonomic group identified
at the family and species levels. Species classification of viral
reads, was used to infer the phyla of the putative hosts based on
viral RefSeq host information or through a manual search of the
publication associated with each viral genome.

To extract putative viral genomes, all metagenomes
(48, 58, and 66◦C) were assembled using De Bruijn graphs
as implemented in the Spades assembler (Bankevich et al., 2012),
followed by gene prediction using Prodigal software (Hyatt et al.,
2010) and the recovery of circular contigs over 5 kb using a
Python script (Crits-Christoph et al., 2016). Only sequences over
5 kb were used in the subsequent analysis because all dsDNA
viruses in the databases have genomes over that size. A homology
search of the viral predicted proteins by Prokka (Seemann, 2014)
was done using BLASTX against the NAV protein database and
NCBI nr as described before. Additionally, all contigs over 5 kb
were analyzed using VirSorter (Roux et al., 2015a) against the
virome database option.

To quantify the abundance and activity of the retrieved
viral genome, reads recruitment from each metagenome and
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metatranscriptome was performed using BWA-MEM (-M),
resulting SAM file was parsed by BBmap pileup script
(Bushnell B.)1.

Phylogenetic Analysis
The protein inferred sequences of DNA polymerase and major
capsid were aligned by Muscle (Edgar, 2004) and MAFFT (Katoh
et al., 2002), respectively, using the amino acid substitution
model determined by ProtTest 3 (Blosum62+G+F) (Darriba
et al., 2011) and modelFinder (LG+F+G4), respectively. The
Bayesian Markov chain Monte Carlo method was implemented
with MrBayes 3.6 (Ronquist et al., 2012) and MCMC results
were summarized with Tracer 1.62. MrBayes was run using
two independent runs, four chains, 1,500,000 generations and a
sampling frequency of 100 with a burn-in value of 33% until the
standard deviations of split frequencies remained below 0.01.

The maximum likelihood method was implemented with
IQtree (-bb 10000 -nm 10000 -bcor 1 -numstop 1000)
(Trifinopoulos et al., 2016) using 100 standard bootstrap and
10,000 ultrafast bootstrap to evaluate branch supports. The details
of the sequences used for phylogenetic analyses are listed in
Supplementary Table S2.

CRISPR/Cas Virotopes
Assemblies for each temperature, were taxonomically grouped
(bins) using the Expectation–Maximization (EM) algorithm
implemented in MaxBin 2.0 (Wu et al., 2016). In order to asses
the completeness and contamination of each bin, CheckM (Parks
et al., 2015) analyses were performed. Finally, the closest genome
of each bin was searched using the Tetra Correlation Search
(TCS) analysis implemented in Jspecies tool (Richter et al., 2016)
with selection criteria of Z score greater than 0.999 and ANI over
95% (Konstantinidis et al., 2017).

CRISPR/Cas loci were identified in contigs assigned
to Mastigocladus spp. from 48, 58, and 66◦C assembled
metagenomes using CRISPRFinder tool (Grissa et al., 2007). To
quantify the activity of the CRISPR loci, reads recruitment from
metatranscriptomes for the same temperatures was performed
using BWA-MEM (-M), and the resulting SAM file was parsed
by BBmap pileup script (Bushnell B.) (see footnote 1) and
normalized by total number of reads and length of each loci.

Spacers from CRISPR containing contigs were mapped to
viral contigs using bowtie2 (Langmead and Salzberg, 2012)
parameters (-end-to-end -very sensitive -N 1). Mapped spacers
were manually annotated to the viral predicted proteins in viral
contig.

Single Nucleotide Variants (SNVs)
To call variants occurring in TC-CHP58 populations at the
three different metagenome temperatures, LoFreq method (Wilm
et al., 2012) was used. SNVs frequencies were quantified in ORFs
from TC-CHP58 genome using Bedtools suite (Quinlan and
Hall, 2010). The alleles of SNVs present in proto-spacers were
visualized in IGV tools for each virotope at each temperature.

1sourceforge.net/projects/bbmap/
2http://beast.bio.ed.ac.uk/Tracer

RESULTS

Morphological and Genetic Composition
of VLPs
Transmission electron microscopy (TEM) was applied to
identify the VLPs present in the interstitial fluid from
microbial mats in Porcelana hot spring. Caudovirus-like
particles belonging to Myoviridae, Podoviridae and Siphoviridae
families, typically infecting bacteria (Figures 1A–G) were
identified. Additionally, filamentous and rod shaped VLPs were
detected, that could be associated with Lipothrixviridae and
Clavaviridae families, usually infecting archaea (Figures 1H–K).
Viral read counts ranged between 0.47 and 0.78% of the
total metagenome reads, and between 0.35 and 3.71% in
the metatranscriptomes (Supplementary Table S1). At all
temperatures, viral metagenomic sequences (Figure 2) revealed
the dominance of the Order Caudovirales, followed by the Order
Megavirales, with ∼70% and ∼23% of the total viral reads,
respectively. Metatranscriptomic analysis results (Figure 2)
showed a slightly different pattern, with a reduction in
Caudovirales with increasing temperature (from ∼78% at 48◦C
to ∼57% at 66◦C), whereas Megavirales did the opposite (from
∼7% at 48◦C to∼36% at 66◦C).

In the metagenomes, Siphoviridae was the most abundant
family of Caudovirales, with maximum abundance at 48◦C.
Myoviridae members were also well represented with a maximum
of ∼31% at 58◦C and a minimum (∼25%) at 48◦C. Meanwhile,
Podoviridae accounted for just ∼8% at all temperatures
(Figure 2). In metatranscriptomes, Siphoviridae increased sixfold
with temperature, while Podoviridae and Myoviridae decreased
with temperature (fivefold and twofold, respectively).

The Megavirales order was also present, however, at a
lower abundance compared to Caudovirales. Megavirales were
represented by Phycodnaviridae (∼13%), Mimiviridae (∼8%),
and Marseilleviridae (∼2%) families, remaining constant through
all temperatures. Metatranscriptomics showed an increase in
abundance of these three virus families with temperature.

Caudovirales Host Assignments
Porcelana mat communities based on miTAGs were dominated
by bacteria (∼96%), with low abundances of eukarya (∼3%) and
archaea (∼1%) (Supplementary Table S1). At the phylum level
(Figure 3A), bacterial communities were mostly composed of
Cyanobacteria oxygenic phototrophs (33, 53, and 21% of total
rRNA SSU sequences at 48, 58, and 66◦C, respectively) and
Chloroflexi anoxygenic phototrophs (higher than Cyanobacteria
only at 66◦C, with 35% of total rRNA SSU sequences). Other
representative members of the community were Proteobacteria
(5–11%), Deinococcus–Thermus (2–7%), Firmicutes (1–17%),
and Bacteroidetes (4–8%) (Figure 3A).

The host assignment, based on taxonomy from viral reads
of the most representative Caudovirales (Figure 3B), showed
that viruses putatively infected members of the bacterial phyla
Proteobacteria, Cyanobacteria, Actinobacteria, and Firmicutes.
Metagenomic data showed that increases in temperature led
to an increase in viruses from Actinobacteria and Firmicutes.
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FIGURE 1 | Transmission electronic micrographs of VLPs obtained from the interstitial fluid of phototrophic microbial mats growing between 62◦C and 42◦C in
Porcelana hot spring. Scale bar: 100 nm. (A–G) Caudovirus-like particles belonging to Myoviridae, Podoviridae, and Siphoviridae families. (H–K) Filamentous and
rod shaped VLPs that could be associated with Lipothrixviridae and Clavaviridae families.

FIGURE 2 | Relative abundances of viral Families in microbial mats from Porcelana hot spring; standardized by the total number metagenomic reads (DNA), and
metatranscriptome (RNA) from each temperature samples.

Additionally, an increase in Cyanobacteria viruses was observed
at 58◦C. Viruses from Proteobacteria, Actinobacteria, and
Firmicutes were represented by the three Caudovirales
families, while viruses from Cyanobacteria were represented
by Podoviridae and Myoviridae families only (Supplementary
Table S3), where cyanopodovirus and cyanomyovirus reads
increase from 31 to 50% at 48◦C and from 30 to 45% at 58◦C,
then decrease to 23 to 28% at 66◦C, respectively.

Metatranscriptomic sequences from Caudovirales potentially
infecting Cyanobacteria, were predominant at 48◦C and 58◦C,
with ∼90% and ∼74% of the total viral sequences, respectively.
However, cyanophage transcripts abruptly decrease at 66◦C.
Cyanophages were exclusively related to the Myoviridae
and Podoviridae families (Supplementary Table S3). Reads
associated with cyanopodoviruses and cyanomyoviruses
gradually decreased with temperature; between 48 and 58◦C,
virus reads declined from 95% and 96% to 84% and 89%,
respectively. On the other hand, at 66◦C a more severe decline

was observed, to 15% and 20%, respectively. Conversely, with
the reduced representation of Cyanobacteria at 66◦C, other
caudovirales transcripts increased, including those that infect
Proteobacteria (∼31%), Firmicutes (∼30%), and Actinobacteria
(∼23%).

Thermophilic Cyanophage Genome
Recovery
The metagenome assembly recovered 3,912; 2,697; and 2,758
contigs, at 48◦C, 58◦C, and 66◦C, respectively. A script search
(Crits-Christoph et al., 2016) resulted in 11 circular contigs,
possibly indicating complete genomes. Subsequent BLASTP
analysis (Camacho et al., 2009) of predicted proteins indicated
that only one circular contig had viral hallmark genes, meanwhile
nine contigs had genes associated with bacterial mobile genetic
elements and one contig remain completely unknown. These
hallmark genes are shared by many viruses but are absents
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FIGURE 3 | Relative abundances of (A) Bacterial community, to Phylum level, in the microbial mats obtained from 16S miTAGs, standardized by the total number of
metagenomic reads (DNA) for each temperature sample, and (B) Caudovirales community at the host Phylum level, obtained from shotgun sequences in
metagenomes (DNA) and metatranscriptomes (RNA), standardized by the total number of reads from each temperature sample.

from cellular genomes (Koonin et al., 2006). VirSorter tool
analysis (Roux et al., 2015a) confirmed these results, obtaining
the same complete putative viral contig from the 58◦C assembly,
40,740 bp long and 43.9% of GC content. This contig, TC-CHP58
(Figure 4A), was associated with a Cyanobacterial host. TC-
CHP58 was present (reads recruitment) over all temperatures in
Porcelana hot spring (Figure 5 and Supplementary Figure S1).
At 66◦C, TC-CHP58 was sevenfold more abundant than
their putative host (measured as Mastigocladus RUBISCO gene
abundance); at 48◦C, the virus-host ratio was 1:1, and at
58◦C the host was fourfold more abundant than TC-CHP58.
Metatrancriptomic reads also show that TC-CHP58 was active
over all temperatures (Figure 5 and Supplementary Figure S2),
but with lower transcription levels than the putative host
(measured as Mastigocladus RUBISCO gene activity), ranging
between 80- and 8-fold lower (Supplementary Table S4). TC-
CHP58 viral DNA:RNA ratio indicated similar proportions (2.4)
at 58◦C, least similar (552.9) at 66◦C; while at 48◦C the ratio was
10.4 (Supplementary Table S4).

Genomic Features and Organization of
TC-CHP58
Complete protein prediction and annotation of TC-CHP58 using
Prokka (Seemann, 2014) and BLASTP revealed 39 putative ORFs,
10 of which were viral core proteins (i.e., capsid and tail-
related proteins, DNA polymerase, Terminase, etc.), 22 had no
significant similarities in NCBI nr database, and 4 were present
in the database but with unknown function (Table 1).

Blast analysis of the viral genes in TC-CHP58, revealed 25 to
48% identity (amino acidic level) with proteins from Cyanophage
PP, PF-WMP3 and Anabaena phage A-4L, that infect freshwater
filamentous Cyanobacteria such as Phormidium, Plectonema,
and Anabaena (Table 1). At the nucleotide level, there was

almost no similarity to any known sequence except for a short
segment of 40 nucleotides, which showed 93% similarity to a
Portal protein gene sequence of Plectonema and Phormidium
cyanopodoviruses (Cyanophage PP; NC_022751 and PF-WMP3;
NC_009551).

Gene prediction by Prodigal indicated that the TC-CHP58
genome might be structured into two clusters, based on
the transcriptional direction and putative gene functions
(Figure 4A). The predicted ORFs (Table 1) in the sense strand
encode proteins involved in DNA replication and modification,
such as DNA polymerase and DNA primase/helicase. Conversely,
the ORFs in the antisense strand (Table 1) encode proteins
necessary for virion assembly, such as major capsid protein
(MCP), tail fiber proteins, internal protein/peptidase, tail
tubular proteins, scaffold protein, and portal protein. Moreover,
two ORFs in the antisense strand had the best hits to the
cyanobacterial hypothetical proteins found in the filamentous
cyanobacterium Fischerella (WP_026731322. 1) and the
unicellular Gloeobacter (WP_023172199.1).

Additionally, VIRFAM (Lopes et al., 2014) was used
to classify TC-CHP58 according to their neck organization
(Supplementary Figure S3), being assigned to the Podoviridae
Type 3 category with neck structural organization similar to
the Enterobacteria phage P22 (Lopes et al., 2014). Hierarchical
clustering of neck proteins grouped TC-CHP58 together
with the freshwater cyanophages Pf-WMP3 and Pf-WMP4,
separating them from marine cyanophages such as P60 and
Syn5.

Even when a large number of viral reads were assigned
to cyanophages of Myoviridae family, it was not possible to
recover any genome of this type. Most of the Myoviridae related
contigs only had non-structural genes or hypothetical proteins
of unknown function which align with proteins of known
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FIGURE 4 | (A) Genomic organization of the thermophilic cyanophage CHP58 (TC-CHP58). Arrows indicate the size, position, and orientation of annotated ORFs,
with predicted functions or homologs (e.g., DNApol, DNA polymerase; TailY a/b, tail tubular protein a/b; MCP, major capsid protein; TerL, large terminase subunit;
TailP, Tail protein; hp-PP_08/23, homologous to hypothetical proteins 08/23 from cyanophage PP; hp-Fischerella/Gloeobacter, homologous to hypothetical proteins
in Fischerella sp. PCC 9605/Gloeobacter kilaueensis). (B) Genomic organization of Enterobacteria phage T7, Anabaena phage A4L and Pf-WMP4. Arrows indicate
the size, position, and orientation of viral core ORFs.

cyanomyoviruses. Here, the absence of hallmark genes from
Cyanobacteria related viruses makes their accurate classification
as cyanomyoviruses impossible.

Phylogenetic Analysis of Phage
TC-CHP58
To investigate the relationship of the phage TC-CHP58 within
the Podoviridae family, the DNApol gene was selected for
comparison, using published viral genomes. The analysis
included representatives of Picovirinae and Autographivirinae
subfamilies, plus all the available DNApol genes from known
freshwater podoviruses (Pf-WMP3, PP, Pf-WMP4 and A-
4L) infecting filamentous heterocystous cyanobacteria from
the order Nostocales and non-heterocystous from order
Oscillatoriales, plus those infecting marine Synechococcus

spp. and Prochlorococcus spp. The DNApol tree (Figure 6)
showed the phage TC-CHP58 as part of a monophyletic clade
with all cyanopodoviruses described as infecting freshwater
filamentous cyanobacteria, and more distantly, with the
marine cyanopodovirus clade that infects Synechococcus spp.
and Prochlorococcus spp. Both cyanophage subgroups are
closely related with podoviruses from the Autographivirinae
subfamily, which includes all T7 relatives. Furthermore, the
phylogeny of the MCP was constructed for freshwater and
marine representatives of the Autographivirinae subfamily.
The available MCP gene from BHS3 Cyanophage partial
genome, that is the only known thermophilic representative
within the Podoviridae family, was also included (Zablocki
et al., 2017). The MCP tree (Supplementary Figure S4)
showed similar results to the DNApol tree (Figure 6), with a
monophyletic origin for all freshwater cyanophages infecting
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FIGURE 5 | Relative abundance and transcriptomic expression of Mastigocladus spp. CRISPR systems and TC-CHP58. Abundance and expression of
Mastigocladus RUBISCO was used as reference of the cyanobacterial presence and metabolic activity. Only specific CRISPR loci with proto-spacers in TC-CHP58
were fully quantified for each temperature. For improved visualization, counts are represented as Log of reads per kilobase million (RPKM).

TABLE 1 | Blastp analysis of predicted CDS from TC-CHP58 of known function against NCBI RefSeq (Release 75) and NR databases.

Query sequence ID Subject sequence ID Identity % E-value Bit Score

TC-CHP58_sequence KF598865.1| [Cyanophage PP] 93% 0.2 54.7

TC-CHP58_CDS1 YP_009042789.1| DNA polymerase [Anabaena phage A-4L] 29.03 4.00E-60 223

TC-CHP58_CDS3 YP_009042786.1| DNA primase/helicase [Anabaena phage A-4L] 25.21 2.00E-28 131

TC-CHP58_CDS4 YP_008766966.1| hypothetical protein PP_08 [Cyanophage PP] 29.7 0.0006 47

TC-CHP58_CDS7 WP_026824764.1| dTMP kinase [Exiguobacterium marinum] 30.61 4.00E-22 99.4

TC-CHP58_CDS13 WP_026731322.1| hypothetical protein [Fischerella sp. PCC 9605] 34.55 7.00E-12 69.3

TC-CHP58_CDS14 WP_023172199.1| hypothetical protein [Gloeobacter kilaueensis] 42.31 4E-05 48.1

TC-CHP58_CDS15 YP_008766995.1| terminase [Cyanophage PP] 44.39 2.00E-150 456

TC-CHP58_CDS16 YP_001285799.1| portal protein [Phormidium phage Pf-WMP3] 42.96 0 551

TC-CHP58_CDS17 YP_009042804.1| scaffold protein [Anabaena phage A-4L] 30.69 1E-07 60.8

TC-CHP58_CDS18 YP_008766991.1| capsid protein [Cyanophage PP] 48.14 4.00E-109 335

TC-CHP58_CDS20 YP_009042802.1| tail tubular protein A [Anabaena phage A-4L] 29.52 3.00E-28 116

TC-CHP58_CDS21 YP_001285795.1| tail tubular protein B [Phormidium phage Pf-WMP3] 36.49 0 630

TC-CHP58_CDS24 YP_009042798.1| internal protein [Anabaena phage A-4L] 29.86 5.00E-41 174

TC-CHP58_CDS25 YP_001285791.1| PfWMP3_26 [Phormidium phage Pf-WMP3] 28.26 5.00E-23 117

TC-CHP58_CDS26 YP_009042796.1| tail protein [Anabaena phage A-4L] 24.8 4.00E-89 322

TC-CHP58_CDS32 WP_038085449.1| N-acetylmuramoyl-L-alanine amidase [Tolypothrix bouteillei] 46.29 3.00E-46 160

TC-CHP58_CDS35 WP_043587103.1| deoxycytidine triphosphate deaminase [Diplosphaera colitermitum] 44.9 2.00E-48 167

TC-CHP58_CDS37 YP_008766981.1| hypothetical protein PP_23 [Cyanophage PP] 29.92 1.00E-21 101

filamentous cyanobacteria, emphasizing the division between
freshwater and marine cyanobacterial viruses, and their
affiliation with T7 phage. The thermophilic representatives

of Podoviridae family were located in different branches
inside the freshwater clade, with BHS3 more basal than
TC-CHP58.
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FIGURE 6 | Bayesian inference phylogenetic reconstruction of DNA polymerase I protein of TC-CHP58. Numbers indicate Bayesian posterior probabilities as
percentage/ultra-fast bootstrap values. Only UFBoot values over 80 and Bayesian PP over 50 are shown. The sequence characterized in the present study is
reported in bold letters. Scale bar: 0.4 amino acid substitutions per site.

CRISPR Arrays on TC-CHP58 Host
Given the high abundance (Mackenzie et al., 2013; Alcamán et al.,
2015) and activity (Alcamán et al., 2015) of cyanobacteria, such as
Mastigocladus spp., in Porcelana hot spring (Figure 3A), and in
order to confirm the putative host of phage TC-CHP58, CRISPR
spacer arrays were identified using the CRISPRFinder tool (Grissa
et al., 2007) for seven Mastigocladus spp. Contigs, obtained from
metagenome assemblies at 48◦C, 58◦C, and 66◦C. Three CRISPR
loci were common between all temperatures (48_CRISPR_2,
58_CRISPR_5, and 66_CRISPR_2), while four loci were specific
to higher temperatures (58–66◦C) (Table 2). In total, the seven
CRISPR loci contain 562 spacers, of which 25 of them had a
proto-spacer sequence in the TC-CHP58 genome (Table 2). From
the 25 spacers, 19 have a target ORF of known function, such
as DNA polymerase, dTMP, portal protein, M23-petidase, tail
protein, tail fiber, and deoxycytidine triphosphate deaminase. In
general, each CRISPR loci contained spacers against different
ORFs on TC-CHP58, or even against different locations on the
same ORF. For the 25 spacers, searching the nt/nr database,
using BLASTN and BLASTX, showed no similarity to any know
sequence. Finally, in order to check if CRISPR systems were
active, expression of the seven loci was directly quantified in the
three metatranscriptomes. For all temperatures, slightly lower
transcript levels were found compared to the Mastigocladus
RUBISCO gene (Figure 5).

Identifying Single Nucleotide Variants in
TC-CHP58 Genome
To assess if mismatches between the CRISPR spacer and
proto-spacer sequences in TC-CHP58 genome were concealing

potential variations in TC-CHP58 populations, a SNV calling
was conducted. For this task LoFreq tool was used, as it is high
sensitivity and has low false positive rates, lower as <0.00005%
(Wilm et al., 2012) and higher as 8.3% (Huang et al., 2015). This
approach, together with the use of sequences with qualities over
q28 (whose error probability in the base call is ≤1.58%), allow us
to consider these SNVs as real mutations.

A different number of SNVs was found at each temperature.
TC-CHP58 showed 1611, 930, and 671 variant sites at 48◦C,
58◦C, and 66◦C, respectively, unevenly distributed throughout
the viral genome (Supplementary Figure S5). Considering the
three metagenomes, a total of 3212 variable sites were present
in the TC-CHP58 genome, with 391 SNVs present over all
temperatures (Supplementary Figure S5). Most of the SNVs
(74% on average) were located at coding regions on the TC-
CHP58 genome, with variable rates, ranging from 15 to 0 SNVs
for each 100 bp (Supplementary Table S5) over different ORFs.

A detailed analysis of SNVs in CRISPRs proto-spacer sites
revealed the presence of these polymorphisms in 14 of the
25 spacer targets, with 13 mismatches and 4 perfect matches
(Table 2). The total number of polymorphic sites was 22, with
13 SNVs causing a synonymous substitution and 7 causing a
non-synonymous substitution (Table 2).

DISCUSSION

The study of viruses from thermophilic phototrophic microbial
mat communities remains largely unexplored except for a
few cases providing limited information on viral presence
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within these communities (Heidelberg et al., 2009; Davison
et al., 2016). Thus far, no study has characterized viral
composition and activity, or the identity of any complete
viral genome. Here, using metagenomic and metatranscriptomic
approaches, the composition of the most abundant and
active viruses associated with the dominant members of the
thermophilic bacterial community have been characterized,
describing for the first time a full genome from a thermophilic
cyanopodovirus (TC-CHP58). Moreover, the active cross-fire
between this new cyanophage and its host is demonstrated,
through TC-CHP58 population diversification (SNV), and
Mastigocladus spp. CRISPR heterogeneity, as a response to
selective pressure from the host defense system and viral
predation, respectively.

Active and Ubiquitous Cyanophage-Type
Caudovirales in Phototrophic Microbial
Mats
The taxonomic classification of small subunit rRNA
(Supplementary Table S1) indicates that the phototrophic
mats in Porcelana hot spring are dominated by Bacteria (96%
on average) as commonly observed in other thermophilic
phototrophic microbial mats (Inskeep et al., 2013; Bolhuis et al.,
2014).

Porcelana microbial mats are mainly built by filamentous
representatives of two phototrophic phyla, Cyanobacteria
(oxygenic) and Chloroflexi (anoxygenic), with Mastigocladus,
Chloroflexus, and Roseiflexus as the main genera, respectively.
This is verified by previous surveys carried out by the authors
(Mackenzie et al., 2013; Alcamán et al., 2015), as well as
investigations from the White Creek, Mushroom, and Octopus
hot springs in Yellowstone (Miller et al., 2009; Inskeep et al.,
2013; Klatt et al., 2013; Bolhuis et al., 2014), presenting similar
pH, thermal gradient and low sulfide concentrations.

Porcelana dominant viruses (∼70% and ∼68% of
metagenomic and metatranscriptomic reads) are from the
families Myoviridae, Podoviridae, and Siphoviridae within
the Caudovirales Order (Figure 2), which typically infect
Bacteria and some non-hyperthermophilic Archaea (Maniloff
and Ackermann, 1998). These results were also supported by
TEM images (Figure 1). The small decrease in transcripts
associated to caudovirales with the increase in temperature is
due to the reduction of sequences related to Podovirus and
Myovirus families. A plausible explanation, is that at high
temperatures some representatives of these families might have a
lysogenic lifestyle, then a fraction of them will remain inactive as
prophages.

Dominance by Caudovirales was only reported recently from
the Brandvlei hot spring, South Africa, a slightly acidic (pH
5.7) hot spring with moderate temperature (60◦C) and green
microbial mat patches (Zablocki et al., 2017). Previously, the
presence of this viral order had only been suggested in moderate
thermophilic phototrophic mats from Yellowstone hot springs,
through indirect genomic approximations, such as spacers in
CRISPR loci, from dominant bacterial members (Heidelberg
et al., 2009; Davison et al., 2016) or classifications based on

nucleotide motives in metaviromic data (Pride and Schoenfeld,
2008; Davison et al., 2016).

Contributions from megavirus sequences were also identified
in Porcelana hot spring (Figure 2), with an average of ∼24%
viral metagenomic reads, associated with unicellular eukaryotic
hosts such as those from Phycodnaviridae and Mimiviridae
families, and also the family Marseilleviridae, but to a lesser
extent. The presence of VLPs from these three viral families
could not be corroborated through TEM, using the limited
available viral fraction (<0.2 µm) within the community, as it has
been previously documented that nucleocytoplasmic large DNA
viruses (NCLDV) particles are only found in larger viral fractions
(Pesant et al., 2015). The ubiquity of NCLDVs in hot springs
was previously described in a hydrothermal freshwater lake in
Yellowstone, with assemblies of genomes from Phycodnaviridae
and Mimiviridae (Zhang et al., 2015).

Viral relative abundances and activity reported here can be
affected by the lack of replicates at this highly local heterogeneity
samples. However, the fact of having three different temperature
sampling points for metagenomics and metatranscriptomics,
partially compensates the replicate limitation.

Furthermore, many viruses in an environmental sample share
a degree of similarity in their genomic sequence, and this intrinsic
complexity of metagenomic/metatranscriptomic samples makes
difficult to accurately estimate the relative abundances or activity
of specific phages at low ranks of taxonomy tree, such as the
species level (Sohn et al., 2014). To avoid this problem, our
strategy focused on the use of the LCA algorithm at higher
taxonomic levels (Order and Family) to classify the viral reads,
as well as for the inferred hosts, we use the phylum level.

Virus-host inference in Porcelana phototrophic mats
(Figure 3B), demonstrated that the most frequent targets for
viral infections were the most dominant and active components
of the bacterial communities. Similarly, this is the case in other
environments, such as in the human microbiome (Macklaim
et al., 2013) and marine communities (Thingstad et al., 2014;
Zeigler-Allen et al., 2017). In Porcelana, it is demonstrated
that within microbial mats at 48◦C and 58◦C, cyanophages
were among the most active viruses (Figure 3B), as were
Cyanobacteria, such as Mastigocladus spp., as exemplified in
terms of primary production and nitrogen fixation (Alcamán
et al., 2015). The presence of cyanophages has been previously
suggested in Yellowstone hot spring phototrophic mats
(Heidelberg et al., 2009; Davison et al., 2016), and more recently
in the Brandvlei hot spring, South Africa (Zablocki et al.,
2017). Heidelberg et al. (2009) found that CRISPR spacers in
unicellular cyanobacteria Synechococcus isolates (Syn OS-A
and Syn OS-B9) from Octopus Hot Spring, might have 23
known viral targets (lysozyme-related reads, PFAM DUF847)
on an independently published metavirome from the same hot
spring. More recently, 171 viral contigs associated with the
host genus Synechococcus, based on tetranucleotide frequencies,
were identified from a microbial mat (60◦C) metavirome
from Octopus Spring. The majority of the annotated ORFs
on the viral contigs coded for glycoside hydrolases, with
lysozyme activity, identifying six CRISPR proto-spacers in
those genes (Davison et al., 2016). Even though a taxonomic
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relationship with cyanophages was not confirmed for those
proto-spacers containing contigs (Heidelberg et al., 2009;
Davison et al., 2016), it provides evidence toward the presence
of cyanophages related sequences within these thermophilic
mats. The work by Zablocki et al. (2017) reconstructed a
10 kb partial genome of a new cyanophage (BHS3) from
Brandvlei hot spring metavirome, stating that cyanophages
appear to be the dominant viruses in the hot spring. The
BHS3 contig (MF098555) contains nine ORFs, with the
majority of the identified proteins having a close relation to
the Cyanophage PP and Phormidium phage Pf-WMP3, which
infect freshwater filamentous cyanobacteria Phormidium and
Plectonema.

The presence of cyanophages related sequences in
thermophilic phototrophic mats is significant, since these
viruses are known to play an important role in the evolution of
cyanobacteria (Shestakova and Karbysheva, 2015). Cyanophages
affect the rate and direction of cyanobacterial evolutionary
processes, through the regulation of abundance, population
dynamics, and natural community structure. This has been
extensively studied and demonstrated for marine environments
(Weinbauer and Rassoulzadegan, 2004; Avrani et al., 2011).
These cyanophages are proven to play a relevant role in the
marine biogeochemical cycles, through the infection and lysis
of Cyanobacteria, affecting carbon and nitrogen fixation (Suttle,
2000). Moreover, cyanophages act as a global reservoir of genetic
information, as they are vectors for gene transfer, meaning
that cyanobacteria can acquire novel attributes within aquatic
environments (Kristensen et al., 2010; Chénard et al., 2016).

Caudoviruses were prevalent at 66◦C in Porcelana,
and potentially infecting Firmicutes, Proteobacteria, and
Actinobacteria. These phila have also been previously identified
in other hot springs at temperatures above 76◦C, such as in
Octopus and Bear Paw (Pride and Schoenfeld, 2008). At high
temperatures in Porcelana also the phylum Chloroflexi was
dominant in the phototrophic mat (Figure 3A). However,
viral sequences related to this taxon could not be retrieved, as
neither viruses nor viral sequences have been confirmed to infect
members of this phylum in any environment. Davison et al.
(2016), described viral contigs associated with Roseiflexus sp.
from a metavirome from Octopus Spring, but only raw reads
are publicly available, without taxonomic assignation. Finally,
the recently released IMG/VR database (Paez-Espino et al.,
2016) contains three contigs associated by CRISPR spacers to
Chloroflexus sp. Here, a BLASTP analyses against RefSeq viral
proteins revealed that six of these proteins have a best hit in
Mycobacterium phage proteins and one which best hit was a
Clavibacter phage protein. These findings, suggest that some
of the viral reads classified as Actinobacteria viruses could be
instead from unknown Chloroflexi viruses.

Viral Mining Reveals a New Infective
Thermophilic Cyanopodovirus Lineage
Metagenomic surveys of viral genomes are an effective way to
detect unknown viruses (Roux et al., 2015a,b; Zhang et al., 2015;
Voorhies et al., 2016). In metagenomics, two key elements for

virus detection are the presence of viral hallmark genes and the
circularity of viral contigs (Roux et al., 2015a,b). Based on these
two principles, a complete genome (TC-CHP58) was identified.
The genome was represented by a viral contig of 50 kb, which
is a typical size for Caudovirales members from the Podoviridae
family. The genome size and viral core proteins affiliated with
the Podovirus seems to make TC-CHP58 the first report of a
full genome of a thermophilic cyanopodovirus. Moreover, the
genome organization (Figure 4B) shows a consistent synteny
with other cyanopodoviruses, which also lack RNA polymerase
inside the T7 supergroup, as described for the viruses Pf-WMP4,
Pf-WMP3, Cyanophage PP, Anabaena phage A-4L (Liu et al.,
2007, 2008; Zhou et al., 2013; Ou et al., 2015), and the recently
reported partial genome of the thermophilic BHS3 cyanophage
(Zablocki et al., 2017). Initially, the presence of a single-
subunit RNA polymerase that binds phage specific promoters was
considered to be a major, and unique characteristic of the T7
supergroup (Dunn et al., 1983). However, more recently, it has
been proposed that podoviruses that share extensive homology
with T7, but lack the phage RNA polymerase, are still part of
the T7 supergroup, as distant and probably ancient branches
(Hardies et al., 2003).

TC-CHP58 presented a genome organization that can be
divided into two portions (Figure 4A); with ORFs in the sense
strand related to DNA replication and modification, and genes
encoded in the antisense strand related to virion assembly. This
genome organization is also present in other freshwater T7-
related podoviruses that infect filamentous cyanobacteria (Liu
et al., 2007, 2008; Zhou et al., 2013; Ou et al., 2015), including the
thermophilic BHS3 cyanophage (Zablocki et al., 2017). This setup
is also similar to the class II and III organization genes in T7-like
viruses, where class II genes are responsible for DNA replication
and metabolism, and class III genes include structural and
maturation genes (Dunn et al., 1983). The VIRFAM analysis of
neck protein organization verifies the classification of TC-CHP58
within the Podoviridae family (Supplementary Figure S3),
where the Type 3 podovirus encompasses T7-like phages from
Autographivirinae subfamilies and several other genera (Lopes
et al., 2014). The T7-like classification for TC-CHP58, and other
podoviruses that infect freshwater filamentous cyanobacteria, is
supported by the organization of the genome into two portions
as well as the organization of the neck proteins.

The phylogenetic position of TC-CHP58, based on DNA
polymerase I (DNApol) (Figure 6) and MCP (Supplementary
Figure S4) predicted proteins, confirm the affiliation of this
new virus within the family Podoviridae. Both phylogenetic
markers verify the separation between the marine from the
freshwater cyanopodoviruses within the T7 family, as previously
proposed (Liu et al., 2007; Ou et al., 2015). These results also
support the connection between the T7 phages and marine
and freshwater cyanopodoviruses (Chen and Lu, 2002; Hardies
et al., 2003; Liu et al., 2007; Ou et al., 2015), including
TC-CHP58 and BHS3 as representatives of a novel, and
potentially globally distributed thermophilic cyanophage lineage.
Moreover, this data demonstrates that marine and freshwater
cyanopodoviruses, including the thermophilic TC-CHP58, are
part of the Autographivirinae subfamily as previously suggested
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for Cyanophage P60 and Roseophage SIO1 (Labonté et al., 2009),
both included in this analysis.

In Porcelana, the virus host ratio relating to TC-CHP58
presence was lower than the typical values observed in freshwater
environments (Maranger and Bird, 1995), being more similar to
other geothermal environments where viral density is typically
lower, with 10- to 100-fold less viruses than host cells (López-
López et al., 2013). This is expected, considering that there are
abundant cyanobacteria in phototrophic mats in Porcelana in
comparison with the 104 mL−1 VLPs observed in the water of
hot springs (Breitbart et al., 2004). It is also demonstrated that
TC-CHP58 presented higher infection efficiency, as revealed by
the viral DNA to RNA ratios at lower temperatures (58◦C, then
48◦C) with cyanobacteria dominating, while at 66◦C most of the
TC-CHP58 remained inactive (Figure 5). Infection inefficiency is
multidimensional, as it initiates from reduced phage adsorption,
RNA, DNA, and protein production (Howard-Varona et al.,
2017). Thus, the high copy number of TC-CHP58 DNA at 66◦C
may be due to the persistence of viral DNA (Mengoni et al., 2005)
encapsidated extracellularly and intermixed in the microbial mat
were the host (Mastigocladus spp.) has a low activity as evidenced
by the low expression of the RUBISCO gene and the CRISPR
loci. An alternative explanation is the absence, or the diminished
presence, of the specific host due to intraspecific diversification
as evidenced by the existence of different CRISPR loci at
different temperatures. This theory has been proposed for other
cyanobacteria, such as Prochlorococcus and Phormidium, where
slight differences in fitness, niche, and selective phage predation,
explain the coexistence of different populations (Kashtan et al.,
2014; Voorhies et al., 2016). The last explanation acquires
special importance in light of recent evidence that variations
in the structure and function of the heterocyst and differential
CRISPR loci are fundamental to diversification of Mastigocladus
laminosus (also known as Fischerella thermalis), a cosmopolitan
thermophilic cyanobacterium, reinforcing the importance of viral
predation (Sano et al., 2018).

CRISPR Spacers Assign Mastigocladus
spp. as Putative Hosts for TC-CHP58
It was possible to verify Mastigocladus spp. as putative hosts for
the new cyanopodovirus (TC-CHP58), via the analysis of CRISPR
spacers found in the cyanobacteria, recovered from contigs
obtained in the same metagenomic datasets. This methodology
has been previously used for the identification of novel viruses in
hot springs (Heidelberg et al., 2009; Snyder et al., 2010; Davison
et al., 2016), as well as in other environments such as acid mines
(Andersson and Banfield, 2008), the human microbiome (Stern
et al., 2012), as well as sea ice and soils (Sanguino et al., 2015).

Observations from the CRISPR loci over all temperatures
(Table 2) indicated that, in general, proto-spacers in the TC-
CHP58 genome were distributed on coding, and therefore
more conserved regions. The expression of seven CRISPR loci
(Figure 5), demonstrated the activity of the Mastigocladus
spp. defense system against TC-CHP58 over all temperatures.
CRISPR arrays are transcribed into a long precursor, containing
spacers and repeats, that are processed into small CRISPR

RNAs (crRNAs) by dedicated CRISPR-associated (Cas)
endoribonucleases (Brouns et al., 2008). Although it is not
possible to measure mature crRNAs, as due to their small
size they are likely to be filtered out in RNA-seq libraries, this
approximation has been validated using large datasets (Ye and
Zhang, 2016).

Despite variations in the number of CRISPR loci observed
at each temperature, with 60% of the total CRISPR loci
found in Mastigocladus contigs at 58◦C, the abundance of
reads agreed with the abundance of other genes required by
these cyanobacteria, such as the RUBISCO gene (Figure 5).
This further verified that the loci are from Mastigocladus
populations. The different CRISPR loci found over the different
temperatures in Porcelana (Table 2), also reinforces the notion
that diversification of Mastigocladus is partly due to selective
pressure exerted by the predation of viruses, such as TC-CHP58.
This theory has been previously put forward for Mastigocladus
laminosus in Yellowstone (Sano et al., 2018), and proposed for
marine cyanobacteria (Rodriguez-Valera et al., 2009; Kashtan
et al., 2014).

Furthermore, each CRISPR loci contains spacers that
corresponds to different proto-spacers in the TC-CHP58
genome. Increases in spacer number and diversity against the
same virus may explain the increase in interference, whilst
decreasing the selection of escape mutants (Staals et al., 2016).
Priming mechanisms are the most efficient form of obtaining
new spacers (Staals et al., 2016), using a partial match between
a pre-existing spacer and the genome of an invading phage to
rapidly acquire a new “primed” spacer (Westra et al., 2016).
Then, over-representation of spacer sequences in some regions of
the TC-CHP58 genome may be related to a site that has already
been sampled by the CRISPR-Cas machinery or by other biases
such as the secondary structure of phage ssDNA, GC content,
and transcriptional patterns (Paez-Espino et al., 2013).

The selection pressure of multiple spacers in Mastigocladus
CRISPR loci leads to the emergence of SNVs in the TC-
CHP58 viral populations (Table 2), which cause mismatches
between spacers and proto-spacers, resulting in the attenuation
or evasion of the host immune response (Shmakov et al.,
2017). It is still possible to utilize mismatched spacers for
interference and/or primed adaptation, however, the degree of
tolerance to mismatches for interference among the CRISPR-
Cas, varies substantially between different CRISPR-Cas type
systems (Shmakov et al., 2017). The variable frequency (0.6–
0.02) of the corresponding spacer SNVs alleles on TC-CHP58
proto-spacers, suggests that some variants are more prevalent
throughout the population, regardless of whether the SNV causes
a silent mutation. Based on this evidence, it has been proposed
that, for other microbial communities, only the most recently
acquired spacer can exactly match the virus. This suggests that
community stability is driven by compensatory shifts in host
resistance levels and virus population structure (Andersson and
Banfield, 2008).

The present study describes the underlying viral community
structure and activity of thermophilic phototrophic mats.
Moreover, abundant virus populations are linked to dominant
bacteria, demonstrating the effectiveness of omics approaches in
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estimating the importance and activity of a viral community, in
this case with thermophilic cyanophages.

Additionally, the first full genome of a new T7-related virus
that infects thermophilic representatives of the cyanobacterium
Mastigocladus spp. was here retrieved. This genome may
represent a novel, globally present, freshwater thermophilic virus
from a new lineage from the Podoviridae family. The latter was
strongly suggested by the significant phylogenetic relationship
and shared gene organization with the BHS3 cyanophage partial
genome (South Africa). Even more, TC-CHP58 proteins also
matches several contigs that include common viral hallmarks
genes in the IMG/VR database. However, further work is
necessary to fully understand the global representation and
relevance of this virus, which complete genome is presented here
as first reference available.

Finally, the evolutionary arms race between a specific
cyanobacteria-cyanophage in the natural environment is
exposed, where a there exist a variety of potential scenarios.
For instance, host resistance may increase over time forcing the
decrease of viral populations, or a specific virus population may
occasionally become extremely virulent and cause the crash of
the host population as proposed by the “kill the winner” model
(Andersson and Banfield, 2008). Alternatively, if CRISPR systems
and the diversification of the viral population remain in balance
through time, a relatively stable virus and host community may
result.
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