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Agricultural peatlands are essential for a myriad of ecosystem functions and play an
important role in the global carbon (C) cycle through C sequestration. Management
of these agricultural peatlands takes place at different spatial scales, ranging from
local to landscape management, and drivers of soil microbial community structure and
function may be scale-dependent. Effective management for an optimal biogeochemical
functioning thus requires knowledge of the drivers on soil microbial community structure
and functioning, as well as the spatial scales upon which they are influenced. During
two field campaigns, we examined the importance of different drivers (i.e., soil
characteristics, nutrient management, vegetation composition) at two spatial scales
(local vs. landscape) for, respectively, the soil microbial community structure (determined
by PLFA) and soil microbial community functional capacity (as assessed by CLPP) in
agricultural peatlands. First, we show by an analysis of PLFA profiles that the total
microbial biomass changes with soil moisture and relative C:P nutrient availability.
Secondly, we showed that soil communities are controlled by a distinct set of drivers
at the local, as opposed to landscape, scale. Community structure was found to be
markedly different between areas, in contrast to community function which showed high
variability within areas. We further found that microbial structure appears to be controlled
more at a landscape scale by nutrient-related variables, whereas microbial functional
capacity is driven locally through plant community feedbacks. Optimal management
strategies within such peatlands should therefore consider the scale-dependent action
of soil microbial community drivers, for example by first optimizing microbial structure at
the landscape scale by targeted areal management, and then optimizing soil microbial
function by local vegetation management.

Keywords: microbial community, landscape ecology, PLFA, peatlands, ditch margins, CLPP, Biolog Ecoplates,
peatland management
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INTRODUCTION

Peatlands play an important role in Earth’s biogeochemical
cycles by storing about an estimated third of all terrestrial
carbon (C) (Turetsky et al, 2002; Turunen et al., 2002). In
Europe, the majority of peatlands is in use as agricultural land
(Joosten and Clarke, 2002). Despite their potential to sequester
C, agricultural peatlands typically act as significant C sources.
Worldwide drainage of such peatlands has increased the rates of
peat oxidation and hence microbial decomposition, causing high
rates of C losses and greenhouse gas emissions (Drosler et al.,
2008). However, due to the large C sequestration potential of
agricultural peatlands, they could play an important role in efforts
to increase soil C storage, such as the recently launched 4 per
1000 initiative; which seeks to increase C storage in agricultural
soils with 4% per year (Le Foll, 2015).

Current peatland management influences microbe-mediated
biogeochemical functions, for example by maintaining
waterlogged conditions to prevent microbial peat oxidation and
thereby reduce peat subsidence and CO, emissions (Klove et al.,
2017). Restoration of peat ditches often seeks to optimize nutrient
removal and reduce eutrophication, both of which have links
to the microbial processes of nitrogen (N) and phosphorus (P)
conversion. Microbial activities are clearly critical to the success
of peatland management strategies, for instance for C storage,
yet management practices rarely consider potential impacts on
soil-borne microbial communities. With future climate change
pressures in mind, the management of ecosystems for minimal
microbial mediated CHs4 and N;O emission is expected to
become ever more important (Taft et al., 2017).

Traditionally regarded as random noise, spatial variability in
soil microbial communities is now widely acknowledged (Ettema
and Wardle, 2002), and it displays consistent and informative
patterns at different spatial scales (O’Brien et al., 2016). With
mounting evidence for scale-dependent ecological processes
acting on microbial communities, the need for examining
multiple spatial scales to understand the patterns in soil microbial
communities has become apparent (Martiny et al., 2011). This has
led to the study and discovery of clear examples of small scale
(cm to m) patterns (e.g., Franklin and Mills, 2003), as well as
large continental (Waldrop et al., 2017) and global biogeographic
patterns in soil microbial communities (Nemergut et al., 2011).
These scales of study are not always in line with the scales
at which the management of such ecosystems takes place. For
agricultural peatlands, the most obvious scale of management
is that of the field level, with local farmers carrying out
customary management practices such as fertilization, grazing
and mowing. Another relevant scale is that of the landscape level
at which spatial planning and water level management occurs.
Furthermore, the different components of the ecosystem may also
be organized at different spatial scales themselves (Yergeau et al.,
2010). To adequately steer management toward optimization
of microbial communities, there is a need to match the spatial
scale of land management and the study of spatial microbial
community patterns.

While identification of patterns in soil microbial composition
is in itself relevant, there is a clear need to go beyond pattern

description and toward identification of the underlying drivers
of community structure and functioning (Martiny et al., 2011;
Hanson et al.,, 2012). Soil microbial community structure and
functioning are often assumed to be driven by the same factors
(O’Brien et al., 2016). This would imply that management aimed
at an optimal microbial structure will also result in the desired
functioning of the ecosystem. Alternatively, soil microbes are
often considered to have high functional redundancy (Strickland
et al., 2009); and therefore drivers of soil microbial community
structure may have minimal effect on soil microbial functioning.
This perspective would imply that management practices
designed to control only the drivers of community function
would be sufficient to achieve the desired ecosystem functions.

Soil microbial community structure has been shown to be
controlled by a wide spectrum of drivers: soil pH and C:N
ratio (Lauber et al., 2008; Fierer et al., 2009, 2012; Kuramae
et al.,, 2012; Zhang et al., 2013; Ramirez et al., 2014), vegetation
(O’Donnell et al., 2001; de Vries et al.,, 2012), external nutrient
load (O’Donnell et al.,, 2001; O’Brien et al., 2016), and soil
moisture (Brockett et al, 2012). Although drivers of soil
microbial community function have not been examined in as
much detail, but it has been shown that soil microbial community
functions are also controlled by soil moisture (Brockett et al.,
2012), C:N ratio (Kuramae et al., 2014), and external nutrient
load and pH (Wakelin et al., 2013). These different drivers of
community structure and functioning differ with the spatial scale
of examination. As land management is carried out at scales
orders of magnitude larger than those experienced by microbes
directly, it remains to be tested if and how microbial communities
respond to changes in these drivers. If soil microbial community
structure and functioning are influenced by scale-dependent
drivers, information on the scale-dependency of these microbial
community drivers could be useful for informing management
designed to improve peatland functioning.

In this study, we assessed the impacts of several drivers of
soil microbial structuring and functional capacity at local and
landscape scales in agricultural peatlands. We combine data from
two sampling campaigns across agricultural peatlands in The
Netherlands (Figures 1a,b), one that examined drivers of soil
microbial community structure, as determined by phospholipid
fatty acid (PLFA) analysis, and one that examined drivers
of soil microbial community functional capacity, as estimated
by community level physiological profiling (CLPP). These
patchwork agricultural landscapes are highly heterogeneous,
making them effective model systems for examining the effects
of multiple environmental drivers on soil microbial communities
(Vasseur et al., 2013). Comparison of samples within and between
different polder areas made it possible to analyze drivers at two
different spatial scales: local scale (sites within a sampled area)
and landscape scale (differences between sampled polder areas).

MATERIALS AND METHODS
Study Sites and Design

The field sites used in this study are situated in a peat area
in the West of The Netherlands (Figure 1a and Table 1) and
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FIGURE 1 | Overview of sample areas and sample sites. (a) The Netherlands with the studied region indicated in an orange rectangle. (b) Map with the areas
sampled in 2013 for PLFA analyses (orange) and in 2014 for CLPP analyses (green). (c¢) Detailed map of one of the study areas indicating the location of the 24
sampling sites for this specific area. (d) Schematic representation of how samples were collected along the waterside of ditches.

TABLE 1 | Characteristics of the different study areas (ID) used for PLFA or CLPP.

ID Lon(°) Lat (°) Int. Agr. (%) AES (%) Nat. (%) Org.N Org. P Inorg. N Inorg. P Water Peat Clay
fertilizer fertilizer fertilizer fertilizer Area (%) (%)
(kg/haly) (kg/haly) (kg/haly) (kg/haly) (%)
PLFA  H  4.75494  51.88792 50 24 26 167.2 62.7 36.9 1.7 13 95 5
/ 4.82294  51.86355 63 35 2 151.1 56.7 79.7 23.3 10 100
O 489699 51.91930 90 9 1 169.3 66.5 86.2 26.3 10 93 7
CLPP Q 453776 51.75151 5 9 86 160.9 63.9 0.0 0.0 7 61 39
R 5.00921 52.25942 58 36 6 169.0 67.7 75.7 21.8 14 80 20
S 5.08050 52.19264 44 0 56 134.7 68.7 19.8 6.5 12 83 17
T 5.13003 52.27827 28 0 72 136.5 68.4 14.7 4.6 19 94
U 477225 51.93984 65 9 26 167.5 62.8 36.0 11.6 13 94 6
Z  4.78264  52.03339 3 8 90 92.0 48.6 0.0 0.0 16 100 0

Land management of peatlands is given as the percentage of the management style to the total peatland. Estimated N and P application through fertilizers (organic and
inorganic) and the total water area, peaty soil and clay soil percentages are also shown for each area.

comprise nine £ 200 ha peatlands (Referred to as ‘sampling
areas, Figure 1b, each comprising between 18 and 24 sampling
sites). All areas are characterized by a mixture of intensive and
extensively managed peatlands intersected by ditches, resulting
in a mosaic of land uses. In the summer of 2013, a total of
three agricultural peatland areas were sampled, and another
six areas were sampled in the subsequent summer of 2014. In
each area, between 18 and 24 transects were laid out on field
margins (referred to as ‘sampling sites’ Figure 1c), as such edges
account for 96% of the total vegetation species richness of a field

(Kleijn et al., 2001). Each transect had a total length of 100 m,
where the vegetation was surveyed for the sloping part of each
transect up to the waterside (Figure 1d). Vegetation abundance
was assessed using Tansley abundance classes (Tansley, 1946),
which were subsequently converted into abundance percentages
(Supplementary Table S1). To analyze soil physical-chemical
properties and microbial community structure and functional
capacity, five soil samples (10 cm deep) were taken in each
transect, 20 m apart from each other and 20 cm from the
waterside (Figure 1d). Soil samples were mixed per transect after
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removal of the vegetation layer, sieved (2 mm mesh) and stored
at —80°C as one composite sample.

Phospholipid Fatty Acid (PLFA) Analyses

Soil microbial community structure was determined by analyzing
PLFA extracted from soil samples taken in the areas that were
sampled in summer 2013 (three areas, 63 samples). PLFAs were
extracted from 4 g of soil per composite sample using an adapted
protocol, following White et al. (1979) and Frostegard and Baath
(1996). Lipid fractionation took place over prepacked Bond Elut
SI solid phase extraction columns, after which lipid extracts
were identified by gas chromatography (GC-FID, 7890A, Agilent
Technologies, Wilmington, DE, United States). The (relative)
abundance of fungi, Gram positive (G) and Gram negative (G™)
bacteria was characterized by the use of specific indicator PLFA
biomarkers: fungi (18:26), G' bacteria (i14:0, i15:0, a15:0, i16:0,
i17:0 and al7:0) and G~ bacteria (16:1w7, cy17:0 and 18:1w7).
Total bacterial biomass was determined by taking the sum of
all bacterial biomarkers, including the general biomarker 15:0.
Abundance of each PLFA biomarker was expressed as nmol PLFA
g~ ! dry weight of soil.

Community Level Physiological Profiling
(CLPP)

Functional diversity of the soil microbial community was
determined in soil samples originating from the areas that were
sampled in summer 2014 (six areas, 144 samples) by the use of
Biolog EcoPlates (Biolog, Hayward, CA, United States). These 96-
well plates contain three replicate sets of 31 ecologically relevant
C substrates, along with a tetrazolium redox dye (Insam, 1997).
Microbial use of these substrates is reflected by color change in
each of the wells, as the redox dye is reduced to tetrazolium violet
(Pohland and Owen, 2009). Eco-plate wells were inoculated with
diluted soil slurries (150 pl), obtained by mixing 0.5 g of soil with
49.5 mL of milli-Q water, shaken (200 rpm) for 30 min on an
orbital shaker, and 10~ diluted by serial dilution. Three technical
replicates were included for each of the 144 soil samples. Eco-
plates were incubated in the dark at 25°C, and color development
was recorded as optical density (ODsg9, ODy75) at the start and
after 24, 48, 72, 96, 168, and 192 h, on a Biotek Synergy HT plate
reader (Biotek Instruments, Winooski, VT, United States).
Conceptually, the function of Ecoplate-substrate utilization
through time consists of four distinct phases (Supplementary
Figure S1A). The substrate utilization function captures the
signals of community respiration, but also that of the substrate
consumed for community growth. For our purposes, we were
interested only in the respiration of the originally sampled
community. To remove the signal of reproduction from the
data, we used a modified method of Brouns et al. (2016). The
rationale behind this method is that by removing the exponential-
growth signal from the exponential phase of the substrate-use
function, only the substrate use of the initial community remains.
The exponential phase is characterized by plentiful substrate
where growth of organisms is not limited by its availability.
By fitting a log-linear regression to the extracted exponential
phase (Supplementary Figure S1B), we determined the initial

community substrate use (y-intercept). In contrast to the existing
methodology, we determined the phase of true exponential
growth from the second derivative of a polygonal curve fit. By
finding the inflection point, the point where the second derivative
changes from positive to negative, the convex, true exponential,
part of the curve is determined. We also accounted for the
possible existence of a lag phase by removing non-positive values
(i.e., zeroes). We calculated the classical Average Well Color
Development (AWCD; Garland and Mills, 1991) and diversity
metrics of substrate utilization (e.g., Gomez et al., 2006), substrate
richness, the exponent of the Shannon diversity and Pielou’s
evenness of the substrate utilization.

Soil Chemical Analyses

Soil pH was measured after shaking a soil-water (1:2.5 w/v)
suspension on an orbital shaker at 200 rpm for 2 h. Total C, N,
and P analyses were performed on oven-dried (60°C, 96 h) and
ground (1.0 mm, Retsch SM 100, Haan, Germany) soil samples.
Total C and N were determined using an Elemental Analyser
(Thermo Electron, Milan, Italy). Total P was determined
according to the method of Murphy and Riley (1962). Soil
samples were ashed at 550°C for 30 min, after which P was
re-suspended by digestion with 2.5% (w/v) acid persulphate
in an autoclave (30 min at 121°C). Total P was measured
colorimetrically, on a continuous flow analyser (SEAL analytical,
Abcoude, Netherlands). Soil moisture was determined as the
percentage weight loss upon oven drying.

Cartographic Information

Soil typological information, yearly fertilizer use and land
management were extracted from geographical maps (Alterra,
PAWN; Natuur op Kaart, Kadaster 2013/14, SNL, IPO 2013/14)
using ArcGIS 10.1. With this information, we determined
fertilizer use and N and P loadings per hectare. In determining
artificial and organic fertilizer (manure), we assumed that farmers
used the maximum amount of admissible fertilizer based on
national legislation. Fields with specific nutrient management
schemes, such as areas with natural grassland management
generally use less artificial fertilizer due to a resting period where
no fertilizer can be applied or due to legal restrictions on artificial
fertilizer use. Also, manure application may be constrained due to
the resting period or further limited to solid manure application
for certain types of nature management. In designated natural
grassland sites, neither artificial nor organic fertilizer application
is allowed. We estimated inorganic and organic N and P loadings
per hectare (ha) per year for fields in each polder (Table 2 and
Supplementary Table S2).

Data Analysis

All analyses were performed in R version 3.2.1 using the
vegan, KernSmooth, MASS, PCNM, packfor and VennDiagram
packages. In this study, we use two separate datasets on soil
microbial communities (see Supplementary Tables S1, S2). One
dataset contained data on soil microbial community structure
(PLFA data), and another dataset contained data on soil microbial
community functional capabilities (CLPP data). The PLFA data
consisted of three areas containing 22, 18 and 23 sites, each.
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TABLE 2 | Average and range [min;max] of local soil conditions of the different areas (H, I, O) used in soil community structure analyses (PLFA).

Variables H 1 o
pH 451 4.93 434
[3.91; 5.4] [3.87; 6.64] [3.70; 5.10]
C (mg/g dry weight of soil) 208.62 196.48 177.96
[158.86; 273.75] [92.9; 240.64] [105.13; 237.67]
N (mg/g dry weight of soil) 14.95 14.68 12.89
[11.59; 18.74] [6.8; 18.04] [7.79; 16.57]
P (mg/g dry weight of soil) 1.42 1.33 2.69
[0.75; 2.06] [0.84; 2.01] [2.04; 4.22]
Moisture (%) 64.63 61.88 62.56
[40.23; 76.97] [49.96; 74.72] [37.78; 77.43]
Microbial biomass (nmol/g dry weight of soil) 20.01 14.04 11.77
[4.81; 64.93] [4.93; 31.42] [3.45; 38.35]
Fungal:Bacterial biomass ratio (-) 0.06 0.06 0.06
[0.03; 0.09] [0.03; 0.09] [0.08; 0.1]

The CLPP data encompassed 6 distinct areas with 24 sites each.
First, we examined general soil properties, biomass and PLFA
and CLPP patterns in these datasets. We determined descriptive
soil properties (soil C,N,P content, pH and moisture) and tested
how microbial biomass changed along environmental gradients
using generalized linear models with a gamma distribution
and log link function to deal with deviations from normality.
These models were run for the different proportions of biomass
as calculated from the PLFA data as dependent variables and
included all soil geochemical, as well as all land management-
related variables and the polder area identity as explanatory
variables. Second, to assess general patterns and clustering in
polder areas we used a principal component analysis (PCA). We
tested the importance of general drivers and the existence of
polder level differences further using distance-based redundancy
analysis models (dbRDA; Legendre and Anderson, 1999), where
microbial community variation (in composition or functional
capacity) between sites was expressed as an Odum’s percentage
difference distance. Thus, large distances indicate very different
sites and small distances indicate comparable sites in terms of
community structure or functioning. We defined two spatial scale
levels for this analysis, the local field level within polders and
between polder areas at the regional level. At both scale levels,
we carried out a variation partitioning analysis (Peres-Neto et al.,
2006) using dbRDA. Prior to variation partitioning, a dbRDA
analysis on the full data set was carried out. Next, all models
were subjected to a forward selection procedure prior to variation
partitioning (Blanchet et al., 2008). We subsequently assessed
the importance of underlying variables in shaping the microbial
community structure and functional capacity at the two scale
levels by examining the explained variation (R? adj) of the selected
variables in isolation.

Local Scale: Model Definition

Differences in community composition or functional capacity
at the local scale may result from differences in environmental
quality between field edges. To analyze patterns at the local level,
we applied the approach described by Declerck et al. (2011).
Briefly, dummy-coded polder identifiers delineate the different

study areas. These polder identifiers were used as covariates in
the analysis to control for large-scale patterns in the data. By
controlling for the polder identity, we could effectively study
within polder patterns in community structure and function
for multiple polders simultaneously. We distinguished four
explanatory models at the polder level: a soil characteristics model
(SOIL), a nutrient management model (NUT), a vegetation
composition model (VEG) and a spatial model (SPACE).

The SPACE model was composed of Moran Eigenvector
Map (MEM) variables that explain the spatial autocorrelation
between sites in the landscape based on geographical distances
(PCNM: Dray et al., 2006). By using staggered matrices of MEM
eigenvectors (Declerck et al, 2011; Legendre et al., 2013), we
described spatial autocorrelation among sites within polders. We
only selected the eigenvectors with positive spatial correlations
for analyses. The SPACE model represents small scale spatial
patterning in community variation, large scale patterning already
being excluded through the use of polder identity as a covariate.
Our SOIL model consisted of variables describing the quality
of the soil (pH, C, N, and P content, C:N, C:N, and N:P
ratio, moisture), morphometric characteristics (bank angle, bank
width) and soil typology. Our NUT model consisted of loadings
of organic and inorganic N and P applied to the field along with
dummy coded variables of the occurring nutrient management
schemes (Supplementary Table S$4). Our VEG model consisted
of a staggered matrix of the principal axes of a principal
coordinate analysis (PCoA) per polder. Because many axes of a
PCoA explained little to no variation, we selected for relevant
axes based on a broken stick model of explained variation, with all
axes before the break point being selected. The resulting axes were
arranged into a staggered matrix (Legendre et al., 2013) with the
goal of only representing within polder differences. All models
were subjected to forward selection based on a double stopping
criterion (Rzadj and a > 0.05) and tested for significance using
99,999 permutations constrained within polder identity levels.

Regional Scale: Model Definition
Differences in community composition or functioning at the
landscape scale may result from differences in environmental
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quality between polders. Environmental gradients existing at
the spatial grain of the landscape may be markedly different
from those at the field level. Hence, an examination of these
gradients irrespective of the variation explained within polders
is appropriate. To this end, we used an approach where
we first constructed a statistical model explaining community
variation by dummy-coded polder identity variables (Polder
model). By taking the predicted values of this polder model,
we obtained a matrix of community variation present between
polder landscapes only. We used this matrix as our response
matrix in subsequent analyses of drivers of community variation
between polders, allowing us to make models that only
explain community variation encompassed by the polder model.
Here, we constructed three explanatory models at the level
of the landscape: a SOIL, a nutrient loading model (NUT)
and a vegetation composition model (VEG). For the sake of
interpretation, the explained variation of the models was rescaled
to the total community variation captured by the polder model.
Our SOIL and NUT models consisted of the same variables
as those used at the local scale. Our VEG model was created by
transformation of an Odum’s percentage dissimilarity matrix of
the vegetation composition of all field edges within the respective
data set by means of a principal coordinate analysis (PCoA).
For the model explaining community variation, we made use
of the resulting PCoA axes. This approach differs from the one
used at the local scale in that we did not use PCoA axes per
polder, but rather examined variation across all polders. As for
the local model, we selected for the relevant PCoA axes based
on a broken stick model of explained variation, with all axes
before the break point being selected. The uniquely explaining
part of the variation of the polder model, the part not explained by
environmental drivers, may be interpreted as spatial patterning at
the landscape level that is not directly related to the measured
environment. A formal permutation test is not viable with the

limited number of different polders. Hence, forward selection
was carried out using the increase in Rzadj as the only criterion.
Additionally, when models were found to be non-significant in
explaining patterns in the full data, irrespective of spatial scale,
we disregarded the model in this analysis.

RESULTS

Soil Chemical Properties and Microbial

Biomass Patterns

We examined soil chemical properties of our two data sets by
calculating mean and spread of the soil chemical properties
for all sample areas (Tables 2, 3). The sample areas used in
the assessment of soil community structure analyses, showed
a wide range in nutrient content (Table 2) as well as in soil
moisture levels across the different sample areas. Areas also
showed a wide range in microbial biomass (Table 2), which
persisted across different groups (Supplementary Figure S2).
The microbial biomass increased with decreasing relative soil
P-content (measured as molar C:P ratio and N:P) and was
positively correlated to soil moisture levels (Figure 2 and
Supplementary Table S3). The range of soil properties (nutrient
content and soil moisture) was even greater for the samples
examined by CLPP, though average soil chemical properties were
within the same general range (Table 3). Substrate utilization was
largely comparable between areas, though varied considerably
within areas (Table 3 and Supplementary Figures S3, S4).

Drivers of Soil Microbial Community
Structure at Different Spatial Scales

Soil microbial community structure was examined by PLFA
fingerprinting. In a first examination of PCA results (Figure 3),

TABLE 3 | Average and range [min;max] of local soil conditions of the different sampling areas (Q,R,S,T,U,Z) used in soil community functioning analyses (CLPP).

Variables Q R S T U z
pH 6.67 5.44 5.34 5.30 6.03 5.65
[4.74;7.84] [4.76; 6.4] [4.23; 6.62] [4.06; 6.24] [5.46; 7.43] [4.63; 6.03]
C (mg/g dry weight of soil) 121.17 228.0 255.4 156.51 220.6 268.9
[69.6; 273.9] [152.2; 284.1] [167.7; 298.3] [47.9; 410.49] [27.2; 315.9] [159.0; 329.0]
N (mg/g dry weight of soil) 8.23 16.6 19.55 10.05 16.54 21.31
[4.45; 17.46] [12.12; 20.53] [13.1;22.18] [3.66; 22.67] [1.64; 23.06] [14.29; 25.48]
P (mg/g dry weight of soil) 1.00 1.28 1.59 0.91 1.5 0.72
[0.39; 1.77] [0.94; 2.07] [1.21;2.07] [0.42; 1.28] [0.75; 2] [0.49; 1.15]
Moisture (%) 50.21 68.62 68.44 58.13 65.37 72.33
[14.83; 69.29] [66.12; 87.12] [65.4; 76.8] [34.82; 80.83] [31.54; 78.54] [49.52; 79.41]
Substrate utilization (h~") 0.0171 0.0103 0.010 0.0085 0.0102 0.0107
[0.006; 0.179] [0.005; 0.023] [0.003; 0.025] [0.003; 0.020] [0.006; 0.018] [0.0038; 0.027]
AWCD 0.73 0.64 0.73 0.5 0.65 0.64
[0.55; 0.89] [0.42; 0.9] [0.48; 0.89] [0.2;0.78] [0.47; 0.88] [0.24; 0.99]
Substrate richness 27 24.38 26.5 24.79 25.62 25.75
[22; 31] [16; 31] [23; 31] [19; 30] [21; 30] [19; 30]
Substrate diversity (Shannon) 22.78 20.62 22.56 19.77 21.18 20.91
[17.59; 25.54] [13.48; 25.21] [19.2; 26.72] [14.23; 25.53] [17.26; 27.82] [14.45; 26.77]
Substrate evenness 0.71 0.64 0.7 0.62 0.66 0.65
[0.55; 0.8] [0.42; 0.79] [0.6; 0.84] [0.44; 0.8] [0.54; 0.87] [0.45; 0.84]
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FIGURE 2 | Estimated standardized coefficients for AIC selected generalized
linear models of total, fungal, bacterial, G* bacterial and G~ bacterial biomass
explained by environmental drivers. Asterisks indicate significant coefficients
(***p < 0.001; **p < 0.01; *p < 0.05.) with a coefficient above 1 being a
positive and below 1 a negative correlation with the biomass component.

we found clear differences between the different polder areas
examined. A dbRDA of the PLFA data revealed that 19.8%
of the community variation could be explained by differences
between polders (Figure 4A and Supplementary Table $4C) and
a mere 4.0% could be explained within polders (Figure 4B and
Supplementary Table S4A). Nonetheless, we were able to identify
consistent, significant gradients explaining community structure
(Supplementary Table S4). At the local scale (Figure 4B), only
the NUT model proved to explain a significant portion of
community variation (Rzadj =4.0%, P < 0.01). This leaves large
parts of the total variation explained at the level of the full
dataset unaccounted for (Supplementary Table S5). A part of this
community variation was found to be explained at the landscape
scale instead (Figure 4A) by means of the SOIL, NUT and VEG
models. Only 2.9% (ns) of the variation was unique to the polder
model, and not captured by one of the other models (Figure 4A
and Supplementary Table S4A). The SOIL model was the most
important explaining environmental component (R?,4; = 16.1%),
encompassing large parts of the explained variation of the NUT
(2.7% + 1.1% = 3.8%) and VEG model (3.0% + 1.1% = 4.1%).
We ranked variables underlying the main drivers identified in
the variation partitioning in terms of their importance (Table 4).
At the landscape scale, PLFA structuring responded most

strongly to nutrient-related variables, the soil P content (10.3%),
inorganic N fertilization (3.1%), soil N content (1.7%), organic P
(1.0%) and N fertilization (0.6%). In addition to nutrient-related
parameters, soil type (7.8%), the presence of nature management
schemes (2.6%), agri-environmental schemes (0.2%), and the
resident vegetation composition (4.6%) were shown to be
important variables in explaining landscape level community
structure. At the local scale, less of the variation in PLFA data was
explained, with organic P fertilization being the most pronounced
driver (5.7%) of microbial community structure.

Drivers of Microbial Community
Functional Capacity at Different Spatial

Scales

Community level physiological profiling was used as a proxy for
the functional capacity of the microbial community. In a first
examination of PCA results (Figure 5), we found a strong overlap
between sites of the different polder areas under examination.
This was also reflected in RDA analyses of the data, with only
5.0% of the total variation in community functional capacity
being explained by the polder model (Figure 4C). Despite this
small part of the variation being explained, we did find that part
of the CLPP variation between landscapes was associated with
soil characteristics (Rzadj = 2.8%) and vegetation (Rzadj =2.2%)
(Figure 4C). Nutrient management was found to be non-
significant in explaining patterns in the full dataset (Table 1),
and it therefore did not explain any of the variation encompassed
by differences between polders. At a local scale (Figure 4D), we
could explain a larger part of the variation (13.9%), which was
attributed to the vegetation composition model (Rzadj = 8.7%,
P < 0.001) and spatial patterns in community functional capacity
(R? 445 = 8.8%, P < 0.001).

We identified the primary driving variables related to soil
microbial community functional capacity (Table 5). At a the
landscape scale, soil pH (1.1%) and soil type (0.9%) and soil
P ratios (soil N:P: 0.7% and soil C:P: 0.6%) were found to be
most explaining for the variation in functional capacity. The
local scale was explained by the vegetation community and a
spatial MEM model based on geographical distance between field
edges. The latter showed that most patterns were described by
the highest order MEM variable (7.7%), indicative of a relatively
coarse spatial patterning of community functioning.

Comparing Community Structure and
Functional Capacity

Comparing the two datasets, the two analyses of community
variation yielded highly disparate results with respect to the scale
at which different environmental factors could explain variation
in the data (Figure 4). Community structure data (PLFA) was
associated with environmental factors between different polders,
ie, at a large landscape scale (Figure 4 and Supplementary
Table S4). In contrast, functional data was poorly explained at
this scale; rather environmental variation within polders offered
the greatest level of explanatory power (Figure 4). Despite the
difference in total explained variation, at the landscape scale
the general partitioning and relative weight of the drivers was
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comparable for both PLFA structure and CLPP (Figure 4 and
Supplementary Table S4). Both microbial community properties
were most explained by the SOIL model with a small contribution
of the variance being explained by VEG. Moreover, variation was
highly collinear between the different models. On a local scale,
patterns were markedly different between community structure
and functional capacity.

DISCUSSION

Understanding the drivers of soil microbial processes at relevant
scales can help to improve management of agricultural peatlands
to protect and improve desired ecosystem functioning. Through
our analyses, we have examined the driving forces of microbial
community structure and functioning in field margins along
agricultural banks at two different scale levels; within polders
(local) and between polders (landscape). We found local and
landscape scale drivers to be distinct at different scale levels.
The underlying variables were found to be largely different
as well. This implies that the spatial scale of soil microbial
studies is important when talking about driving forces of soil
microbial community structure and functioning, enforcing the
idea that the scale of soil management and the scale of study

of soil microbial structure and functioning need to be well
aligned.

Local Functioning, Landscape
Structuring

While somewhat anecdotal due to the separate collection of the
datasets, we showed that soil microbial community structure
(PLFA) was more strongly regulated at the landscape scale, while
functional capacity (CLPP) was more strongly driven at the
local scale. Explained variation, while not being exceptionally
high (15-20%), was comparable to other studies using similar
multivariate community analysis approaches (Van der Gucht
et al., 2007; Sayer et al, 2017). Future studies could consider
integrated methods that address both structure and functioning
conjointly (e.g., 1*C PLFA, Yao et al., 2015). The inclusion of
additional environmental drivers, such as specific fractions of
bio-available nutrient pools, would potentially have increased
the amount of explained variation. Across polder regions, e.g.,
at the landscape scale, the results indicate a driving role for
soil characteristics, with vegetation being largely collinear with
soil characteristics (for similar findings see: Kuramae et al,
2010). We therefore conclude that, with respect to soil microbial
structure, differences in vegetation and nutrient management
between polders are well reflected in the soil characteristics.
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FIGURE 4 | Drivers of microbial community structure and functioning on local and landscape scale. Venn diagrams showing the variation partitioning of different
statistical dbRDA models: a soil characteristics model (SOIL), a nutrient management model (NUT) and a vegetation composition model (VEG) and a spatial model
(SPACE). These models are used to explain soil microbial structure (PLFA) at the landscape (A) and local (B), and functioning (CLPP) at the landscape (C) and local
scale (D) by different drivers. Stars indicate significance and numbers express the adjusted R? (%) of the model partitions.

Local microbial structure could only be led back to the applied
nutrient management of the field and explained little variation.
In contrast, variation in community functional capacity could be
explained better by vegetation composition and spatial patterns
at the local scale, with both explaining distinctly different parts of
the community variation. The overlap in drivers at the landscape
scale is likely due to the fact that the studied areas vary in land-
use, land-history and management, which leads to landscape-
scale vegetation and nutrient availability patterns that leave clear
imprints in the soil. Locally, the small-scale heterogeneity of
fields becomes more important in driving the specific microbial
function. This mismatch in scale between structure and function
has been described previously for specific microbes and their
functions (Veraart et al., 2017).

Drivers of Soil Microbial Community
Structuring and Functional Capacity

Drivers of community variation may differ strongly with scale
(Yergeau et al., 2010; Prober et al, 2015), and our analyses
support this premise. At both scale levels, community structure
was driven by nutrient management. The latter result is in

agreement with previous research (O’Donnell et al, 2001;
O’Brien et al, 2016) that has shown the importance of
fertilization regimes for soil microbial communities. In turn,
the supply and manner in which nutrients are added can
have direct consequences for ecosystem functions such as
nutrient retention and plant uptake (Heijboer et al., 2016).
We, however, did find clear differences in underlying drivers
of nutrient management of the within and between polder
scales, with organic P loading and inorganic N loading being
most important. This highlights the importance of identifying
underlying drivers (Martiny et al., 2011). By focusing on a single
scale level, important drivers may be overlooked and incorrect
conclusions may arise, potentially leading to mismanagement of
the agricultural landscape.

Our conclusions regarding landscape scale patterns are
complicated by the lack of extensive replication at the landscape
level, making formal testing of the drivers encapsulated within
the polder model problematic. While we acknowledge these
limitations within our study, our results are strengthened by the
strong significant patterns found in tests of the entire data set
(Supplementary Table S5). As large parts of the total variation
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TABLE 4 | Importance of variables underlying soil microbial community structure (PLFA) at both scale levels (local and landscape).

Explained variation*

Model Variable Local Landscape
Soil characteristics (SOIL) Soil P content - 10.3
Soil type: Organic top soil on deep peat layer - 7.8
Soil N content - 1.7
Nutrient management (NUT) Organic P fertilization 5.7 1.0
Management: Nature — Moist meadow-bird grassland 0.8 2.6
Inorganic N fertilization - 3.1
Organic N fertilization - 0.6
Management: AES - Meadow-bird nest protection - 0.2
Spatial patterns (SPACE) ns - -
Vegetation composition (VEG) Vegetation composition - 4.6

*Explained variation of each variable is given as R2 (%) of the variable. ~Variable was not selected in the forward selection of the specific model.
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FIGURE 5 | Principal component analysis (PCA) plots of soil microbial functional capacity data (CLPP) for the three different groups of drivers (Soil characteristics,
Nutrient management, and Vegetation), with projections of the shifts in the utilization of specific substrate types. Arrows are projected variables showing factors
variables with the highest squared correlation coefficients. Different colors indicate the different sampled areas (see Materials and Methods).

that can be explained by our models remain unexplained at the content). Specifically, soil N content was found as the only
local scale (e.g., Figure 4), it is reasonable to assume that this variable that was important in determining landscape scale
variation may be explained at the landscape scale. community structure, as well as the community functional

A surprising similarity in soil characteristic drivers of soil capacity. Additionally, for community structure, specifically
microbial community structure and functioning can be found P-related processes were important drivers at a local (organic
for nutrient-related drivers (soil N:P ratio, soil P and N P fertilization) and at a landscape scale (soil P content,
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TABLE 5 | Importance of variables underlying soil microbial functional capacity
(CLPP) at both scale levels (local and landscape).

Explained variation*

Model Variable Local Landscape
Soil characteristics (SOIL) Soil pH - 1.1
Soil type: Sand - 0.9
Soil N:P - 0.7
Bank angle - 0.6
Soil C:P - 0.6
Soil type: Clay on peat - 0.6
Soil N content - 0.6
Soil C:N - 0.3
Nutrient management (NUT) ns - -
Spatial patterns (SPACE)+ MEM1 7.7 -
MEM2 3.1 -
MEM3 1.4 -
Vegetation composition (VEG)  Vegetation composition 8.7 2.2

*Explained variation of each variable is given as R2 (%) of the variable. ~Variable
was not selected in the forward selection of the specific model. TSpatial patterns
model is composed of Moran Eigenvector Map (MEM) variables based on
geographical distance as per Dray et al. (2006). Variables of increasing order
indicated decreasing scale of spatial patterning.

Soil microbial
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O

Community
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@ Actual function
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FIGURE 6 | Schematic representation of the effects of reduced environmental
quality on soil microbial community structure and functioning. This conceptual
figure illustrates how reduced environmental quality of drivers relevant for
functional capacity will directly lead to shifts of soil microbial functioning away
from its desired function. Reduced environmental quality relevant for microbial
structural composition will cause shifts in the soil microbial community
structure box. This can ultimately also result in a shift in soil microbial
community function through its constraint on microbial function. Within the
context of the current study, the environmental drivers of microbial functioning
were found to be manifest at the local scale, while the drivers shaping
structure operated at the landscape scale.

organic P fertilization). Soil nutrient content and the relative
P availability compared to other nutrients were also primary
drivers of microbial biomass. In existing literature, little
attention has been paid to the effects of P on peatland
microbial communities and functioning (Lin et al, 2014;
Veraart et al, 2015). Our results suggest that these effects

of P enrichment on peatland microbial communities deserve
additional consideration.

The relevance of the resident vegetation community for local
microbial functional capacity, but not local microbial structure,
is a noteworthy result. This could be caused by the study
design in which we compare different polder areas with slightly
different plant communities. An ecological explanation for this
may be found in the stimulating role of plant presence and
diversity on the function of soil microbes by (e.g., Zak et al.,
2003). Furthermore, a well-developed, species-rich riparian zone
will influence water and nutrient retention (Hefting et al,
2005) and thereby microbial functioning (Korol et al., 2016).
This development of a riparian zone depends strongly on
local disturbance by mowing and cattle grazing. We did not
directly quantify these factors, although they should in part
be represented in the nutrient and land management schemes.
However, within these schemes, there is room for variation
in grazing and mowing regimes at the digression of the land
manager. As land managers tend to own different nearby fields
within a landscape, this variation in mowing a grazing is likely
to be spatially structured. Our results, where vegetation and
spatial structure explain local functional capacity, may thus
be (partially) explained by these unmeasured differences in
management regimes.

We found evidence for spatial patterns that could not be
explained by any of the measured environmental drivers at
the level of the local functional capacity (uniquely explained
variation of the SPACE model), which may represent a possible
signal of dispersal limitation (Dray et al., 2006). While dispersal-
limitation has been shown to be plausible within microbial
communities (Evans et al., 2017; Langenheder et al., 2017), it
is rarely a significant driver of microbial community structure
(Martiny et al., 2011; O’Brien et al., 2016). Hence, our observed
spatial patterns are likely to be caused by spatially structured
environmental variables (e.g., light climate, soil redox conditions,
readily available nutrient fractions, available substrates) that were
not taken into account in this study (Martiny et al., 2006; Yao
etal., 2011).

Management of Soil Microbial
Communities in Peatlands: An

Integrative Approach

Our results suggest that microbial function is regulated by
multiple different drivers that are distinct from those driving
soil microbial structure, and that these drivers act at different
spatial scales. This complicates the task of managing agricultural
peatlands for desired ecological functioning. The traditional
view maintains that environmental drivers influence community
structure and that this structure in turn influences community
functioning (Allison and Martiny, 2008). However, this paradigm
has been proven to be insufficient to explain microbial functional
patterns in nature (Strickland et al., 2009; Weedon et al., 2017).
Microbial functions have been shown to change independently
of microbial community structure (Tian et al., 2016; Weedon
et al., 2017) and respond to different variables than structure
(Boeddinghaus et al., 2015). However, disregarding community
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structure entirely and solely focusing on functioning is also
clearly inappropriate, as microbial community structure serves
as a constraint on the realized functioning of the community and
the ecosystem as a whole (Pérez-Valera et al., 2015; Heijboer et al.,
2016).

We argue that for effective management of desired functioning
to optimize the different societal benefits obtained from the
landscape, both soil microbial structure and functioning need
to be considered. Based on our study, environmental quality
changes relevant for soil microbial functional capacity were most
pronounced at the local scale. As local environmental quality
shifts, this may lead to a direct shift in realized functioning
away from the desired function (Figure 6, horizontal axis).
However, the magnitude of this shift may be limited by the
community structure, which constraints the extent of the shift in
function (e.g., compare Figure 6, central-right and bottom-right,
respectively unconstrained vs. constrained situation). Changes
in environmental drivers governing structure (Figure 6, vertical
axis) were primarily found to manifest themselves at the level
of the landscape within the context of this study. A change
in environment at the landscape level may hamper realization
of the desired function by constraining the realized function
negatively as well (e.g., Figure 6, top-left). Hence, a thorough
understanding of the community structure and its potential
to facilitate the desired function is an imperative first step in
soil microbial management, followed by optimization of the
conditions directly driving required soil microbial functioning.
Throughout this process, the spatial scale at which microbial
structure and functioning responds to these changes needs to
be taken into account. Landscape measures, such as water level
fluctuations and spatial planning set the constraints for the
potential functioning (i.e., structure), and once this stage has been
set, local management options such as mowing and fertilization
regimes are decisive in determining if the desired functioning can
be achieved.

CONCLUSION

Our study showed that soil microbial communities of
agricultural peatlands are driven by different factors at distinct,
management-relevant spatial scales. Furthermore, our study
provides a first indication that soil community structure and
function do not necessarily respond to the same factors, or
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