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Apoptosis, an indispensable innate immune mechanism, regulates cellular homeostasis
by removing unnecessary or damaged cells. It contains three signaling pathways: the
mitochondria-mediated pathway, the death receptor pathway and the endoplasmic
reticulum pathway. The importance of apoptosis in host defenses is stressed by the
observation that multiple viruses have evolved various strategies to inhibit apoptosis,
thereby blunting the host immune responses and promoting viral propagation. Porcine
Circovirus type 2 (PCV2) utilizes various strategies to induce or inhibit programmed
cell death. In this article, we review the latest research progress of the apoptosis
mechanisms during infection with PCV2, including several proteins of PCV2 regulate
apoptosis via interacting with host proteins and multiple signaling pathways involved
in PCV2-induced apoptosis, which provides scientific basis for the pathogenesis and
prevention of PCV2.
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INTRODUCTION

Porcine circovirus (PCV) from the genus Circovirus within the family Circoviridae is an
icosahedral, small, non-enveloped DNA virus with a circular, single negative-stranded genome
of approximately 1.76 kb (Tischer et al., 1982; Fauquet et al., 1995; Wei et al., 2016; Wang et al.,
2018). To date, three species of PCV have been confirmed: Porcine circovirus type 1 (PCV1),
PCV2 and Porcine circovirus type 3 (PCV3) (Alarcon et al., 2013; Segalés et al., 2013). PCV1
was first discovered in 1974 and widely acknowledged to be non-pathogenic (Tischer et al.,
1982). while PCV2 was the causative agent of PCVAD/PCVD, which include reproductive failure,
porcine dermatitis and nephropathy syndrome, proliferative and necrotizing pneumonia and
PCV2 systemic disease (PCV2-SD) (Allan et al., 1998, 1999; Ellis et al., 1998; Meehan et al.,
1998; Opriessnig et al., 2007). The main immunopathological features of PCV2-SD are peripheral
blood lymphopenia and T- and B-lymphocyte depletion in lymphoid tissue (Nielsen et al., 2003;
Resendes et al., 2004; Resendes and Segalés, 2015; Richmond et al., 2015). What’s more, severely

Abbreviations: AIF, apoptosis-inducing factor; Apaf-1, apoptosis-protease activating factor-1; ASK1, apoptosis signal-
regulating kinase 1; ATF6, activating transcription factor 6; [Ca2+]i, the intracellular free Ca2+ concentration; Cap, capsid;
Cyt c, cytochrome c; ER, endoplasmic reticulum; FHC, ferritin heavy chain; gC1qR, globular heads of complement
component C1q; Hsp40, heat-shock protein 40; Hsp70, heat-shock protein 70; IP3R, inositol 1,4,5-trisphosphate receptor;
IRE1, inositol requiring enzyme 1; JNK, c-Jun NH2-terminal kinase; MDM2, murine double minute 2 gene; MKRN1,
makorin-1 RING zinc-finger protein; MOMP, mitochondrial outer membrane permeabilization; NAP1, nucleosome assembly
protein-1; NPM1, nucleophosmin-1; ORFs, open reading frames; p38/MARK, p38 mitogen-activated protein kinase; Par-
4, prostate apoptosis response-4 protein; PAMs, pulmonary alveolar macrophages; PCV2, Porcine Circovirus type 2;
PCVAD/PCVD, porcine circovirus-associated diseases; PERK, PKR-like ER kinase; PMWS, post-weaning multi systemic
wasting syndrome; pPirh2, porcine Pirh2; PTPC, permeability transition pore complex; Rep, replicase; RGS, regulator of
G protein signaling; UPR, unfolded protein response; WNV, West Nile virus.
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PCV2-infected pigs could damage immune system and trigger
immunosuppression by replicating and inducing apoptosis in
lymphocytes (Kiupel et al., 2005; Li et al., 2013; Bin et al.,
2015), leading to poor immune response to vaccines and
increased susceptibility to other infectious diseases. Hence, even
though PCVAD is effectively controlled by commercial vaccines,
vaccination does not eliminate infection (Fort et al., 2008;
Opriessnig et al., 2008, 2010). PCV2 is also one of the most
important viruses in all pig-raising areas and is increasingly
considered as a serious threat to global pig industry (Segalés et al.,
2005; Xiang-Jin, 2013; Salgado et al., 2014; Zhai et al., 2014; Xiao
et al., 2015; Mao et al., 2017; Liu et al., 2018). Phan et al. (2016)
first isolated PCV3 from piglets with clinical disease of weight
loss, swollen joints and anorexia. In addition, the dermatitis and
nephropathy syndrome has been recently associated to PCV3
(however, this is still under discussion).

Porcine circovirus has 11 potential ORFs, so far to date,
four of them have been characterized as functional proteins in
replicating PCV2, including ORF1 to ORF4 (Hamel et al., 1998;
Lv et al., 2014a; Hong et al., 2015), while only three ORFs
have been recognized for PCV1 and PCV3: ORF1 to ORF3
(Saraiva et al., 2018). The ORF1 encodes two replicases (Rep
and Rep’), the Rep proteins of PCV-1 and PCV-2 are similar
in size and are responsible for the replication of the circoviral
genome (Mankertz, 2012). The capsid protein encoded by ORF2
is the sole structural protein of PCV2 and contains a highly
conserved basic amino acid sequence (Timmusk et al., 2008;
Latini et al., 2011); therefore, it contains the major antigenic
determinants of the virus (Nawagitgul et al., 2000). However,
the three proteins of PCV3 are less similar to those of PCV1
and PCV2 (Palinski et al., 2016; Phan et al., 2016). The proteins
encoded by ORF3 and ORF4 genes are not required for viral
replication, but are closely related to the spread and virulence
of the virus (Lv et al., 2015a). The protein encoded by ORF3
gene plays a vital role in the pathogenesis of the virus through
its apoptotic activity in vitro and in vivo (Liu et al., 2005,
2006; Lin et al., 2011). The ORF4 protein is capable of blocking
PCV2-induced apoptosis by bringing down caspases activities
(Gao et al., 2014a; Lv et al., 2015b). Besides this, a novel ORF5
protein has recently been discovered in PCV2-infected cells
and may be involve in activation of NF-κB pathway (Lv et al.,
2015a).

Apoptosis, also called programmed cell death, is an
indispensable defense mechanism for host resistance to
pathogens invasion (Jorgensen et al., 2017). Apoptosis is strictly
regulated and can be triggered by multiple stimuli such as
normal development, pathogen infection and several factors
leading to disruption of cellular functions (Tait and Green,
2010; Czabotar et al., 2014). Apoptotic cells exhibit characteristic
morphological abnormalities including chromatin condensation,
nuclear fragmentation, membrane blebbing, and apoptotic
body formation (Kroemer et al., 2005; Galluzzi et al., 2007).
Apoptosis classically occurs via the intrinsic pathway (also called
the mitochondrial pathway), the extrinsic pathway (also called
the death receptor pathway) and the ER pathway (Hong et al.,
2015). In brief, the mitochondrial pathway is induced by a variety
of intracellular signals, such as hypoxia, nutrient deprivation

and oxidative stress, which cause MOMP (Kroemer et al., 2006).
Subsequently, AIF, cyt c and Smac/DIABLO are released from
the mitochondrial membrane to the cytoplasm (Kroemer et al.,
2006; Galluzzi et al., 2012). Cyt c can recruit pro-caspase9
and apoptotic protease activating factor-1 (apaf-1) to form
an apoptosome, which subsequently activates downstream
executioner caspases to trigger apoptosis (Li et al., 1997; Acehan
et al., 2002). In addition, the mitochondrial pathway is mainly
regulated by Bcl-2 (B-cell lymphoma 2) family proteins, which
are classified into three types (Cory and Adams, 2002). One
is an anti-apoptotic sub-family, which includes Bcl-xL (B-cell
lymphoma-extra large) and Bcl-2. Another is pro-apoptotic
BH3 only proteins, such as Bid (BH3 interacting-domain
death agonist) and Bad (Bcl-2 associated death promoter),
these proteins are antagonists to the anti-apoptotic sub-family
proteins. The third sub-family includes Bak (Bcl-2 homologous
antagonist killer) and Bax (Bcl-2 associated x protein). On
the other hand, the death receptor pathway is activated by
the binding of a specific ligand to the corresponding death
receptor, resulting in activation of caspase8 and caspase3, which
finally leads to cleavage of cellular DNA (Lamkanfi et al., 2007;
Tummers and Green, 2017). What’s more, ER stress regulates
the concentration of Ca2+ and initiates the IRE1, PERK, and
ATF6 pathways, which are associated with the mitochondrial
pathway of apoptosis (Shore et al., 2011; Verma and Datta,
2012).

Porcine Circovirus type 2 infection induces apoptosis both
in vitro and in vivo (Chang et al., 2007a; Seeliger et al., 2007;
Galindocardiel et al., 2011; Resendes et al., 2011; Sinha et al.,
2012), it has been reported that PCV2 can induce B lymphocyte
deletion through apoptosis and macrophage apoptosis can be
detected in the spleen of PCV2 infected mice (Shibahara et al.,
2000), so apoptotic cell death may be one of the causes of
lymphopenia after PCV2 infection (Resendes et al., 2004).
Similarly, apoptosis is one of the causes of lymph node loss and
hepatocyte decline in pigs with PMWS (Krakowka et al., 2004).
Apoptosis has also been proposed as a natural part of the viral life
cycle (Young et al., 2007), in the early stage of PCV2 infection,
PCV2 may prevent apoptosis by expressing its anti-apoptotic
gene to accomplish its propagation, while apoptosis may be a
powerful strategy for the release and dissemination of progeny
virions in the late stage (Liu et al., 2005). However, the molecular
mechanism of PCV2-regulated apoptosis is still unclear. In this
article, we focus on reviewing the roles of PCV2 in the process of
apoptosis, which is useful for future research.

VIRAL PROTEINS AND THEIR
APOPTOSIS REGULATION
MECHANISMS

Cap and Its Mechanism of Apoptosis
Regulation
The Interactions Between Cap and Cellular Proteins
The ORF2 36 gene encodes the major immunogenic capsid
protein of 27.8 kDa. By investigating the replication and
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TABLE 1 | Interactions of cellular proteins with the proteins of PCV2 (Lv et al., 2014).

PCV2 protein Cellular interacting Functions Reference

proteins

ORF1/Rep protein Syncoilin Transport processes Timmusk et al., 2006a

c-myc Transcriptional regulation Timmusk et al., 2006a

ZNF265 Altemative splicing Finsterbusch et al., 2009a

TDG transcriptional regulation, DNA repair Finsterbusch et al., 2009a

VG5Q Angiogenesis Finsterbusch et al., 2009a

ORF2/Cap protein C1qB Complement factor Timmusk et al., 2006a

P-selectin Cell adhesion molecule Timmusk et al., 2006a

gC1qR C1qB receptor, multifunctional Finsterbusch et al., 2009a; Du et al., 2016; Kouokam Fotso et al., 2016

MKRN1 E3 ubiquitin ligase Finsterbusch et al., 2009a

NAP1 Transport, chaperonin Finsterbusch et al., 2009a

Par-4 Apoptosis, transport, cell mobility Finsterbusch et al., 2009a

NPM1 Ribosome biogenesis Finsterbusch et al., 2009a

Hsp40 Chaperonin Finsterbusch et al., 2009a

Hsp70 Chaperonin Liu et al., 2013b

ORF3 protein DDE-like transposase Transposase Timmusk et al., 2006a

poRGS16 Cell signaling, nuclear transport of ORF3 Levine and Oren, 2009 ; Hsu et al., 2010

pPirh2 E3 ubiquitin ligase Liu et al., 2007

ORF4 protein FHC Ferroxidase Lv et al., 2015b, 2016

SNRPN Pre-Mrna splicing Xiao et al., 2015

COX8A COX subunit Xiao et al., 2015

Lamin C Intermediate filament protein Xiao et al., 2015; Lin et al., 2018

ANT3 Adenine nucleotide translocase

ORF5 protein GPNMB Transmembrane glycoprotein Lv et al., 2015a

CYP1A1 Cytochrome P450 enzyme Lv et al., 2015a

YWHAB Adapter protein Lv et al., 2015a

ZNF511 Transcriptional regulator Lv et al., 2015a

SRSF3 RNA splicing factor Lv et al., 2015a

pathogenesis mechanisms of PCV2, the interactions between the
PCV2 Cap protein with nine different cellular proteins were
confirmed (Table 1), including complement factor C1qB, the
receptor protein for the gC1qR, MKRN1, cell adhesion molecule
P-selectin, prostate apoptosis response-4 (Par-4) protein, NAP1,
NPM1, Hsp70 and Hsp40 (Timmusk et al., 2006a; Finsterbusch
et al., 2009b; Liu et al., 2013b). However, only MKRN1 and
Hsp70 have been confirmed to participate in PCV2-induced
apoptosis.

Apoptosis Regulated by Cap and MKRN1
According to Gray et al. (2000) and Lee et al. (2013), MKRN1
is a transcriptional co-regulator and an E3 ubiquitin ligase that is
highly evolutionarily conserved in vertebrates, it can also mediate
apoptosis and p53-dependent cell cycle arrest. The interactions
between different types of PCVs and their hosts have been
analyzed by Finsterbusch’s group, the research demonstrated
that MKRN1 can interact with Cap proteins of both PCV1 and
PCV2, resulting a decreased concentration of MKRN1 in the
host (Finsterbusch et al., 2009a). The decreased MKRN1 can
in turn reduce the level of p53 ubiquitination, resulting in an
increase of p53 and thus promote cellular apoptosis. Under
normal conditions, p53 and p21 both are suppressed by MKRN1
through ubiquitin-dependent degradation (Lee et al., 2009).

Previous studies have showed that p21 is capable of activating
cell cycle arrest via suppressing apoptosis (Gartel and Tyner,
2002; Javelaud and Besancon, 2002; Abbas and Dutta, 2009;
Jung et al., 2010). Therefore, ubiquitination and degradation
of p21 mediated by MKRN1 may also contribute to trigger
apoptosis. However, under stresses such as DNA damage, only
p53 is suppressed by MKRN1; p21, which is not ubiquitinated by
MKRN1 can also inhibit p53. Therefore, when the suppression
of p53 by MKRN1 and p21 is reduced, the concentration of p53
will increase and thus promotes the apoptotic process (Lee et al.,
2009).

Apoptosis Regulated by Cap and Hsp70
Hsp70 is a chaperone whose expression is induced by a variety
of stimuli. A previous study confirmed that Hsp70 could inhibit
the production of apoptosome and apoptosis in varying degrees
by suppressing the activity of AIF (Garrido et al., 2006). In study
of PMWS pathogenesis using proteomics strategies, Ramírez-
Boo et al. (2011) reported that the down-regulation of Hsp70
was detected in inguinal lymph nodes of piglets after inoculation
with PCV2. Another study regarding the interaction between
PCV2 and target immune cells showed the expression of Hsp70
was up-regulated in PAMs during the initial stage of PCV2
infection (Liu et al., 2013a). A recent study showed that the
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FIGURE 1 | Anti-apoptotic and pro-apoptotic activities of Hsp70. Hsp70 can
be activated by PCV2 infection, whereas Hsp70 mainly exert an anti-apoptotic
function at an earlier stage of infection due to few interactions with PCV2 Cap
proteins. During later stages of infection, anti-apoptotic responses might be
weakened by down-regulation of Hsp70 due to the increased interaction with
the PCV2 Cap protein.

PCV2 Cap protein can interact with Hsp70 and activate it further,
then apoptosis could be inhibited via blockage the activation
of caspase-3 in 3D4/31 cells (Liu et al., 2013b). However, the
interaction between the PCV2 Cap protein and Hsp70 may
reduce Hsp70 levels, and activate caspase-3 which plays a key
role in the execution of apoptosis. Accordingly, Hsp70 might play
different roles on different stages of PCV2 infection (Figure 1).
For example, Hsp70 can be induced by PCV2 infection, but lack
of sufficient Cap protein in the early stage of viral infection
could result in inhibiting apoptosis by Hsp70. In contrast,
during the later stages of PCV2 infection, the anti-apoptotic
responses may be weakened by the down-regulation of Hsp70
levels due to the increased interaction with the PCV2 Cap
protein.

ORF3 and Its Mechanisms of Apoptosis
Regulation
Although the PCV2 non-structural protein ORF3 is not critical
for viral replication Lin et al. (2013), found that the nuclear
localization of ORF3 is correlated with triggering apoptotic
response in porcine PBMC, it was also involved in PCV2-
induced the extrinsic apoptosis pathway through activation of the
caspase8 and caspase3 (Kiupel et al., 2005; Liu et al., 2005).

During a study of modulation of cellular functions by the
PCV2 ORF3 protein, the ORF3 protein was found to directly
interacted with pPirh2 (also called RCHY1), Pirh2 is an E3
ubiquitin ligase targeting p53 and leading p53 to degradation.
The interaction between the pPirh2 and ORF3 protein could
suppress pPirh2 stabilization and increase p53 cellular levels,
thereby leading to apoptosis (Leng et al., 2003; Liu et al.,
2007). Furthermore, present research suggests the amino acid
residues of ORF3 protein are indispensable to compete with
the interaction with pPirh2 over p53 (Timmusk et al., 2008;

Karuppannan et al., 2010). p53 is a tumor suppressor as
well as a transcription factor (Levine and Oren, 2009); it
is also involved in regulation of diverse biological responses
such as apoptosis, DNA damage, cell cycle arrest, oncogenic
activities, erosion of telomeres, hypoxia and other physiological
processes (Vousden and Prives, 2009; Collavin et al., 2010;
Chang et al., 2013). It was reported that p53 was involved
in apoptosis through transcription-dependent or -independent
mechanisms during stress (Li et al., 2011; Xu et al., 2016).
In general, the p53 protein content in cells is maintained at
a very low level in the absence of stress through binding
to proteins such as MDM2 (denoted HDM2 in humans),
COP1, pPirh2 and JNK, which facilitates the degradation
of p53 by the ubiquitin/proteasome pathway (Table 2). In
stress situations such as cell cycle arrest, apoptosis may be
caused by a complex formed by p53 with pro-apoptotic and
anti-apoptotic members of the Bcl-2 family (such as Bcl-2,
Bcl-xL, Bak and Bax). Then, the complex triggers MOMP,
liberating essential apoptotic factors (such as Cyt c, AIF,
and Apaf-1) and ultimately causing a caspase cascade and
apoptosis via the intrinsic pathway (Marchenko et al., 2007;
Wolff et al., 2008; Green and Kroemer, 2009; Collavin et al.,
2010).

Based on these works, induction of apoptosis during PCV2
infection is a complex process that may involve cross-talk
between the intrinsic and the extrinsic apoptotic pathway.
Certainly, the mechanistic role of PCV2 ORF3 protein in the
regulation of apoptosis should be investigated in more detail in
future studies.

To date, more than twenty proteins have been shown to
be associated with pPirh2 (Jung et al., 2012). Additionally,
p53 is a highly connected protein that could form physical
complexes with a variety of cellular proteins (Collavin et al.,
2010); currently, more than 320 reported interactions with
human p53 are included in the APID web interface1, including
kinases, phosphatases, acetyltransferases, de-acetylases, ubiquitin
ligases, and other proteins. Accordingly, future investigation
should consider whether there are other factors regulate PCV2-
induced apoptosis by participating in the interactions of pPirh2
and ORF3.

ORF4 and Its Mechanisms of Apoptosis
Regulation
Studies indicated that the ORF4 protein is not required for
PCV2 replication in mice or in PK-15 cells, while present
research showed it plays a vital role in inhibiting apoptosis
after PCV2 infection (He et al., 2013). Subsequently, Gao
et al. (2014a) constructed two mutants of PCV2 ORF4:
M1-PCV2 and M2-PCV2. By comparing the ORF3 mRNA
levels of the wild-type and ORF4-deficient viruses in PK-
15 cell, it was found that the ORF3 transcription levels
of both ORF4 mutants were enhanced, indicating that the
ORF4 protein may play an important role in preventing
PCV2-induced apoptosis via inhibiting ORF3 transcription.
Significant increases in caspase-8 and caspase-3 activities in

1http://bioinfow.dep.usal.es/apid/index.html
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TABLE 2 | Selected interactions of cellular proteins with p53.

Protein Cell lines Reference

Kinases PLK1 COS-7, H1299 Ando et al., 2004

JNK1/2 A549 Oleinik et al., 2007

GSK3-beta H1299 Watcharasit et al., 2003

HIPK2 H1299, HeLa Li et al., 2007

CK1 MEFs Alsheich-Bartok et al., 2008

SKG2, PAK3 HFKs Baldwin and Munger, 2010

Ubiquitin ligases MDM2, MDMX MEFs, H1299 Brignone et al., 2004;
Wade et al., 2010;
Mancini et al., 2014

COP1 U2OS Dornan et al., 2004

Pirh2 MEFs, Saos2 Leng et al., 2003

Synoviolin HEK293T Yamasaki et al., 2014

CHIP MCF-7 Li et al., 2011a

TRIM24 U2OS, HEK293T, MCF-7 Allton et al., 2009

E4F1 U2OS Le Cam et al., 2006

Acetyltransferases P300 HCT116, Saos2, H1299 Mantovani et al., 2007

PCAF Liu et al., 1999

TIP60 U2OS Legube et al., 2004

Phosphatases PP2A MEFs Reid et al., 2013

Wip1 COS-7 Takekawa et al., 2014

De-acetylases Sirt1 HEK293T Langley et al., 2014

HDAC1/2 PC12 Zhang and Chen, 2007

Deubiquitinases HAUSP H1299 Li et al., 2002

USP10 HCT116, H1299 Yuan et al., 2010

Methyltransferases Smyd2 H1299 Huang et al., 2006

SUMO ligases Ubc9 HEK293T Lin et al., 2004

PIAS1 Sf-9 Kahyo et al., 2001

TOPORS HeLa Weger et al., 2005

SUMO-1 U2OS, Saos2 Wade et al., 2010;
Rodriguez et al., 2014

Others HMGA1 HEK293T, H1299 Pierantoni et al., 2014

Pin1, p21, Bax HCT116 Mantovani et al., 2007

Bcl-2, Bcl-xL H1299, HeLa Mihara et al., 2003

Anexin A2, PSF H1299 Sharathchandra et al., 2012

BRCA2 H1299 Rajagopalan et al., 2010

Hsp90 PBMCs Fukumoto and Kiang, 2011

BRCA1 MEFs Xu et al., 2001

TIAF1 U937 Schultz et al., 2004

CSA, CSB CS1AN, HeLa Latini et al., 2011

PTTG1 HCT116 Bernal et al., 2002

HBx Hep3B Sato et al., 2011

ARC H9c2 Li et al., 2008

SPARC, Pax6 Astrocytes Tripathi and Mishra, 2010

caspase3 WM115 Frank et al., 2011

ASPP HEK293T, H1299 Mantovani et al., 2007

Smad2, Smad3 HEK293T Cordenonsi et al., 2003

L2DTL/CDT2, PCNA, CUL4A/DDB1 MEFs, HEK293T Banks et al., 2006

Daxx, Axin H1299, HeLa Li et al., 2007

both ORF4 mutants compared to wild-type PCV2 further
confirmed this (Gao et al., 2014a). Subsequently Lv et al. (2016),
revealed a mechanism by which ORF4 exerts cytoprotective
function by resisting apoptosis in the early stage of PCV2

infection. Lv et al. (2015b) demonstrated the physical interaction
between PCV2 ORF4 protein and FHC for the first time,
and found that the decreased concentration of FHC can
effectively inhibit the accumulation of reactive oxygen species
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FIGURE 2 | A hypothetical model describes the mechanisms involved in
PCV2-ralated proteins induced apoptosis. On the one hand, Cap protein
expressed by PCV2, which subsequently inhibits p53 and its downstream
pro-apoptotic factors CytC, capases9, and caspase3 via MARNI pathway; it
can also suppress Hsp70 and further inhibition the production of AIF and
Apoptosome, depressing apoptosis. On the other hand, ORF3 and ORF4
proteins are largely involved in regulating apoptosis induced by PCV2: ORF3
protein interacts with pPirh2 to up-regulate the expression of p53 and its
downstream factors to initiate apoptosis; whereas ORF4 protein inhibits
apoptosis by suppressing activation of ORF3, it can also interact with FHC to
reduce the content of FHC, inhibiting the production of ROS and ultimately
suppression apoptosis.

in PCV2-infected cells, thereby inhibiting apoptosis. Recently,
Lin et al. (2018) found that ORF4 is a mitochondrial targeting
protein that ultimately induces apoptosis via the mitochondrial
pathway by interacting with adenine nucleotide translocase 3
(ANT3).

In summary, it is very significant to study how the apoptotic
processes are regulated by the proteins of PCV2 to promote its
infection (Figure 2). In addition to the factors mentioned above,
there are other reported mechanisms that could regulate PCV2-
induced apoptosis, including different pathways (PERK/eIF2α,
PI3K/Akt, and Fas/FasL), regulation of free Ca2+ concentration
and NF-κB activation. In the following sections, we will briefly
review these factors.

PCV2-INDUCED APOPTOSIS
REGULATED BY DIFFERENT
PATHWAYS

PERK/eIF2α Pathway
Mounting evidence indicates that a wide variety of viruses
could disturb ER homeostasis and lead to ER stress (Li et al.,
2015). To cope with this stress, cells evolve a series of adaptive
mechanisms called the UPR (Hetz, 2012). ER stress activates

three branches of the UPR: PERK (Shen et al., 2005), IRE1
(Chen and Brandizzi, 2013), and ATF6 (Yan et al., 2002).
Zhou et al. (2016) demonstrated that PCV2 initiated UPR by
activating the PERK/eIF2α pathway instead of IRE1 or ATF6
pathways, ultimately promoting viral replication in PK-15 cells
(Figure 3). Since PERK/eIF2α further activates downstream
factors ATF4 and CHOP, so PCV2 infection can selectively
activate apoptosis via the PERK-eIF2α-ATF4-CHOP axis. The
findings provide a basis for demonstrating that ER stress of
apoptotic responses plays an important role in the pathogenesis
of PCV2 infection.

PI3K/Akt and ASK1 Pathway
The phosphatidylinositol 3-kinase PI3K/Akt pathway plays
a vital role in multiple physiological processes, such as
inflammation suppression, carbohydrate metabolism, and
cellular proliferation (Hsu et al., 2010). The PI3K/Akt pathway
is also an indispensable target for a variety of viruses to inhibit
apoptosis (Cooray, 2004; Shin et al., 2007; Soares et al., 2009).
For example, PRRSV can trigger the PI3K/Akt pathway to
augment viral replication and promote cell survival (Wang
et al., 2014). Recently, Wei et al. (2012a) found that PCV2 can
transiently activate the PI3K/Akt pathway, and the activated
PI3K/Akt pathway could suppress premature apoptosis,
thereby improving virus growth (Figure 3). However, in the
early stage of PCV2 infection, inhibition of PI3K activation
greatly enhanced apoptotic responses, mainly manifested by
the cleavage of caspase3 and poly-ADP ribose polymerase
as well as DNA fragmentation. The ASK1 plays a target role
in the induction of apoptosis as an upstream enzyme that
activates the p38/MARK and JNK pathways (Gan et al., 2016).
During PCV2 infection, PI3K was activated first, followed by
phosphorylation of Akt. Activated Akt inhibits the production
of pro-apoptotic proteins such as JNK and p38/MAPK, thereby
suppressing JNK- and p38-dependent apoptosis (Wei et al.,
2013).

Interestingly, a previous study demonstrated that PCV2
infection regulates apoptosis by activating the p38/MAPK and
JNK1/2 cellular stress pathways (Tibbles and Woodgett, 1999;
Kyriakis and Avruch, 2001; Wada and Penninger, 2004; Wei et al.,
2009). In the absence of stress, non-phosphorylated JNK bonds to
p53, resulting in ubiquitination of p53 followed by proteasomal
degradation (Fuchs et al., 1998a,b). In contrast, dissociation of
p53 can be mediated by phosphorylated JNK, thus promoting
p53 stabilization (Fuchs et al., 1998b). Additionally, p38/MAPK
kinase plays a role not only in phosphorylation of p53 but also in
transcription of p53-regulated Bax (Bulavin et al., 1999; Huang
et al., 1999). Taken together, the activation and phosphorylation
of p38/MARK and JNK after PCV2 infection might contribute
to p53 stabilization, finally leading to apoptosis (Wei et al.,
2009).

Fas/FasL Pathway
Chang et al. (2007a) evaluated and compared the effects of
infection of both PCV2 and PRRSV, individually or together, on
co-cultured splenic (SLs), peripheral blood (PBLs) lymphocytes
and swine splenic macrophages (SMs) in vitro. The expression
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FIGURE 3 | Summarizes multiply host cellular signaling pathways involved in regulating PCV2-induced apoptosis. First, PCV2 infection can activate PERK via
PERK-eIF2α-ATF4-CHOP axis and then induce apoptosis, it can further activate JNK/p38 by activating the ASK1 pathway to ultimately promote apoptosis, whereas
P13K/AKT plays an opposite role. Second, it can activate Cyt C and caspase-3 via the IP3R-1-Ca2+-PITC and NFκB-p53 pathways to activate apoptosis. In
addition, PCV2 infection may activate caspase-8 via the Fas/FasL axis of the death receptor pathway to promote apoptosis.

levels of Fas ligant (FasL) and Fas were significantly increased
after PRRSV alone- and PCV2 and PRRSV dually inoculated
groups, and the latter was more obvious, while increased Fas/FasL
futher mediated apoptosis. Fas is also termed as CD95 (APO-1)
and is one of the death receptors, these receptors include TNF-
R1, CD95 (APO-1/Fas), DR3 (APO-3/TRAMP/Wsl-1/LARD),
DR4 (TRAIL-R1), and so on. Han et al. (2010) confirmed that
Fas could trigger apoptosis by binding to its cognate ligand,
FasL. Thus, PCV2 infection may be associated with Fas/FasL-
mediated apoptosis (Figure 3). However, the hypothesis of the
mechanism is still poorly understood and need to be further
demonstrated.

NF-κB Pathway
The transcription factor NF-κB is commonly activated during
viral infection and is a key molecule that regulates a variety of
cellular signal transduction pathways (Bonizzi and Karin, 2004;
Hayden and Ghosh, 2004). For example, Dengue virus, Reovirus,
infectious bursal disease virus, Hepatitis B virus and Sindbis

virus have been confirmed to trigger apoptosis via activating
NF-κB (Lin et al., 1998; Connolly et al., 2000; Jan et al., 2000;
Liu and Vakharia, 2006; Pan et al., 2011; Chen et al., 2013). In
these processes, NF-κB serves as a pro-apoptotic factor which
is able to activate the p53 signaling pathway (Fujioka et al.,
2004).

The present study found that after PCV2 infected cells, NF-
κB was activated simultaneously with viral replication, which was
characterized by translocation of NF-κB from the cytoplasm to
the nucleus, degradation and phosphorylation of IκBα protein
and increased DNA binding activity. However, treatment of cells
with CAPE, a selective inhibitor of NF-κB activation, reduced
progeny production and virus protein expression followed by
decreasing caspase activity, indicating the importance of NF-
κB in inducing apoptosis (Wei et al., 2008). However, the
exact details still to be further demonstrated. According to
the above discussions, there are many factors and multiply
pathways participate in regulating apoptosis induced by PCV2
(Figure 3).
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FIGURE 4 | A summary of mechanisms that can regulate PCV2-induced apoptosis.

PCV2-INDUCED APOPTOSIS
REGULATED BY CALCIUM

Calcium ions (Ca2+) are participated in multiple cellular
physiological processes, such as cytoplasmic Ca2+ signaling,
ATP production, hormone metabolism and apoptosis induction
(Drago et al., 2011). The intracellular free Ca2+ ([Ca2+]i) can
activate apoptosis by regulating numerous calcium-sensitive
enzymes and can also activate the mitochondrial apoptotic
pathway via its accumulation in the mitochondria (Hajnoczky
et al., 2003; Pathak et al., 2013). Lv et al. (2012) found
that PCV2 could lead to apoptosis of lymphocytes, this
apoptotic mechanism is affected by the increased [Ca2+]i
and is associated with the calmodulin (Lee et al., 2009)
protein. Possible mechanisms of [Ca2+]i induction include the
suppression of Ca2+ efflux by regulation of the Ca2+-ATPase
transporter on cytomembranes, and/or the induction of Ca2+

influx by promoting Ca2+ release from the ER by increased
expression of IP3R (Lv et al., 2012). IP3R can regulate the
mobilization of Ca2+ (Berridge, 2005), Ca2+ released from the
ER could activate the PTPC on mitochondria, causing Cyt
c release and inducing apoptosis (Figure 3; Garrido et al.,
2006).

CONCLUSION

Apoptosis is a very important host defense mechanism that
contributes to remove infected, damaged and excess amounts
of cells. The virus must evade host defense mechanisms
to proliferate and spread. Infection with PCV2 has been
demonstrated to trigger several signaling pathways such as
PERK/eIF2α and PI3K/Akt pathway (Wei et al., 2012a; Zhou
et al., 2016), resulting in activation or suppression of apoptosis.
On the other hand, to cope with the apoptotic responses
caused by viral infections, many viral proteins interact with
apoptotic signals molecules to regulate apoptosis. There may be a
discrepancy between induction and inhibition of apoptosis after
PCV2 infection, as the experimental situation can be different,
and close relationships between apoptosis and other factors that
regulate cell fate, such as Ca2+, can make it more complicated and
difficult.

This review is the first glimpse of PCV2 infection-induced
apoptosis based on a wide array of reported works concerning
PCV2 infection. It summarized currently findings which are
involved in PCV2 infection-induced apoptosis, containing
a vast panel of distinct pro-apoptotic and anti-apoptotic
mechanisms (Figure 4). In the future, more attention should
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be taken on host-virus interaction. Further investigation that
effect of different isoforms of PCV2, PCV1, and PCV3 on PCV-
induced apoptosis should be done. Taking the above ideas into
consideration will help us reach a deeper understanding of the
molecular mechanisms of PCV2-induced apoptosis and open a
new gate for further studies on the pathogenesis of PCV2.
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