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Fixed nitrogen (N) limits productivity across much of the low-latitude ocean. The
magnitude of its inventory results from the balance of N input and N loss, the latter largely
occurring in regionally well-defined low-oxygen waters and sediments (denitrification and
anammox). The rate and distribution of N input by biotic N2 fixation, the dominant N
source, is not well known. Here we compile N2 fixation estimates from experimental
measurements, tracer-based geochemical and modeling approaches, and discuss their
limitations and uncertainties. The lack of adequate experimental data coverage and the
insufficient understanding of the controls of marine N2 fixation result in high uncertainties,
which make the assessment of the current N-balance a challenge. We suggest that a
more comprehensive understanding of the environmental and ecological interaction of
marine N2 fixers is required to advance the field toward robust N2 fixation rates estimates
and predictions.

Keywords: marine N2 fixation, N-cycle balance, denitrification, marine productivity, marine heterotrophic
diazotrophy, nitrogen isotopes

INTRODUCTION

Marine N2 fixation, the largest source of fixed N to the ocean, maintains ocean fertility
by compensating for N-losses via denitrification. Global warming, likely inducing ocean
deoxygenation (Keeling et al., 2010), and increasing N load from the atmosphere and/or rivers, are
perturbing the N cycle leading to increasing N loss via denitrification on the one hand (Codispoti
et al., 2001; Codispoti, 2007) and to alterations of the niche of marine N2 fixers on the other
(Landolfi et al., 2017), with an unknown net effect on the N inventory. A prolonged mismatch
between N inputs and losses would cause changes to the oceanic fixed N inventory, potentially
affecting ocean productivity and ocean carbon (C) storage. Narrowing down the uncertainties in
current N2 fixation estimates is key to diagnosing any imbalance in the marine N budget and its
effect on the marine C budget.

N2 fixation can be inferred experimentally from incubation assays (Capone, 1993; Montoya
et al., 1996), and from its geochemical imprint on nutrient (Gruber and Sarmiento, 1997) and
stable N isotope distributions (Altabet, 2007). Geochemical estimates use the integrated N2
fixation signature over large scales of space and time, smoothing any small-scale variability
inherent in experimental N2 fixation measurements. Traditionally, geochemical (Gruber, 2004)
and experimental (Capone et al., 2005) estimates suggested highest N2 fixation rates in the
Tropical North Atlantic, remote from the region of largest pelagic N-loss in the Eastern Tropical
Pacific. Although such spatial separation was difficult to reconcile with paleo-oceanographic
evidence of a closely balanced N-cycle, considered to require tight stabilizing feedbacks between
N-loss and N2 fixation (Altabet, 2007), it was in line with the well-documented high energy and
iron requirements of diazotrophs (Kustka et al., 2003) that would restrict them to warm and
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iron-rich waters. This view has been challenged by a model-
based geochemical N2 fixation estimate suggesting prevailing
control by N deficits and close spatial coupling of N2 fixation
and N loss (Deutsch et al., 2007), and by new evidence
from molecular techniques demonstrating a wider diversity of
N2 fixers and N2 fixation strategies. This includes free-living
unicellular cyanobacteria (Zehr et al., 1998; Montoya et al.,
2004), cyanobacterial symbionts and heterotrophic phylotypes
(see Foster et al., 2011; Bombar et al., 2016; Caputo et al.,
2018), covering novel habitats such as aphotic waters (Bonnet
et al., 2013; Benavides et al., 2015, 2016, 2018) and oxygen
deficient zones (ODZs) (Fernandez et al., 2011; Jayakumar et al.,
2012; Bonnet et al., 2013; Löscher et al., 2014, 2016; Turk-
Kubo et al., 2014; Knapp et al., 2016). Recently, severe problems
in applying the N2 fixation assays came to light (Mohr et al.,
2010). Considering this new evidence, using a constant correction
factor of historical data, a doubling of N2 fixation has been
suggested (177 ± 8 Tg N y−1, Großkopf et al., 2012). Despite
the pace of new discoveries, global N2 fixation estimates remain
highly uncertain (Gruber, 2016). The incomplete knowledge of
the organisms involved and their physiological and ecological
controls prevent any robust prediction of their distribution
and activity. Here we present a brief overview of recent
work covering experimental, geochemical, and model-based N2
fixation estimates and discuss knowledge gaps. We suggest future
research strategies to reduce the current uncertainty.

EXPERIMENTAL ESTIMATES

The compilation of surface marine N2 fixation rate
measurements (MARine Ecosystem DATa) by Luo et al. (2012),
with more recent data from the North Pacific (Shiozaki et al.,
2015a,b, 2017), western Pacific (Bonnet et al., 2009, 2015, 2017,
2018; Shiozaki et al., 2013, 2014b; Berthelot et al., 2017), eastern
tropical South Pacific (Löscher et al., 2014, 2016; Knapp et al.,
2016), Indian Ocean (Shiozaki et al., 2014a), and the tropical
Atlantic (Großkopf et al., 2012; Singh et al., 2017), is presented
in Figure 1. The measurements reported are mostly from bulk
unfiltered upper ocean samples, including cyanobacteria and
potentially other diazotrophs. Although highly variable, the
highest depth-integrated N2 fixation rates are found in the
western tropical South Pacific (638 ± 1689 µmol N m−2 d−1,
201 profiles). These are larger than the traditionally high rates
in the subtropical North Atlantic (182 ± 479 µmol N m−2 d−1,
636 profiles) and North Pacific (118 ± 101 µmol N m−2 d−1,
272 profiles). In the phosphate-rich waters of the eastern South
Pacific average N2 fixation is 86 ± 99 µmol N m−2 d−1 (213
profiles). Low rates are found in the southern Indian Ocean
(<20 µmol N m−2 d−1, Shiozaki et al., 2014a), and in cold
Bering Sea waters (10 µmol N m−2 d−1, Shiozaki et al., 2017).
Based on the MAREDAT database, Luo et al. (2012) estimated
a global N2 fixation rate of 137 ± 9.2 Tg N y−1 (Table 1).
Global extrapolations are difficult as observations remain sparse
and highly variable in space and time (Figure 1). Only few
ocean regions have sufficient data coverage to assess spatial,
seasonal, or inter-annual variability (SD, Figure 1B). The large

standard deviation in the western tropical South Pacific suggests
a large spatio-temporal variability. The North Atlantic variability
appears related to the strong spatial and temporal gradients
of physical forcing and associated environmental factors (e.g.,
Mouriño-Carballido et al., 2011; Landolfi et al., 2016). The
variability in the North Pacific is mostly associated with seasonal
changes (Böttjer et al., 2016) and variable mesoscale activity (e.g.,
Church et al., 2009).

Experimental measurements have technical drawbacks. The
acetylene reduction assay (Capone, 1993), a proxy measurement
of both incorporated and exuded (gross) fixed N2, measures
the rate of ethylene production from added acetylene. Microbial
activity repression (Fulweiler et al., 2015), low sensitivity and
highly variable conversion factors for C2H4:N2 (Wilson et al.,
2012), limit the robustness of this technique. The more widely
(∼75% of the measurements) applied method involves adding
15N2 gas to a water sample and measuring the net incorporation
of 15N2 into plankton biomass after filtration (Montoya et al.,
1996). This method may result in significant underestimation of
N2 fixation rates if the added 15N2 gas is not equilibrated before
the start of the incubation (Mohr et al., 2010; Wilson et al., 2012;
Wannicke et al., 2018). The degree of underestimation is variable
and dependent on the experimental conditions (incubation
time, size of bottle, shaking vigor), making the correction of
historical data with a constant factor arbitrary. The 15N2 gas
stock contamination by 15NH4

+ or 15NOx, may result in N2
fixation overestimate (Dabundo et al., 2014). Fixation rates
may be underestimated if small cells (<2 µm) are lost during
filtration, particularly affecting rates where small diazotrophs
may dominate the N2-fixing community (Bombar et al., 2018).
Robust quantification of low rates is currently limited by the
low sensitivity and high potential errors of present methods
(Gradoville et al., 2017; Moisander et al., 2017). Inadequate
consideration of experimental biases must be warned against.
Community efforts are being made toward a consensus on
methods and protocols refinement1 for yielding more accurate
and comparable fixation rates.

GEOCHEMICAL ESTIMATES

Geochemical estimates of N2 fixation have been inferred
from excess NO3 with respect to the Redfield-equivalent
PO4 (the N∗ method), constructed from the high-quality
global nutrient surveys (e.g., JGOFS/WOCE; Conkright et al.,
2002), combined with information on ocean ventilation
ages derived from measurements of abiotic transient tracers
such as chlorofluorocarbons (CFCs). This method rests on
the assumption that nutrients’ departure from the global
average ratio of NO3:PO4 = 16:1 (RR, the Redfield ratio) is
due to N2 fixation adding (N:P > RR), and denitrification
removing (N:P < RR), nitrogen. This approach has
been used to compute North Atlantic N2 fixation rates
(Michaels et al., 1996; Gruber and Sarmiento, 1997; Hansell et al.,
2004, 2007; Kähler et al., 2010), and derive a global estimate of

1https://www.us-ocb.org/n-fixation-working-group/
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FIGURE 1 | 1 × 1 degree grid (A) average and (B) standard deviation (SD) of depth integrated N2 fixation rate (µmol N m−2 d−1) experimental measurements from
the MAREDAT database (Luo et al., 2012) and 800 additional data points (see text for details). Gray squares in SD plot indicate one-only data point. Data distribution
histogram is shown in the color bar. (C) Experimental (black)-, geochemical (blue)-, and model (red) -based estimated contribution (%) of the North Atlantic to global
N2 fixation rates. Models include those of the Coupled Model Intercomparison Project (CMIP5, see Table 1), a model with additional energetic costs of DOP uptake
(UVIC2.9-ESM, Landolfi et al., 2017) and amodel experiments of Landolfi et al. (2015) accounting for preferential phosphorus remineralization (PREF), P∗ and iron
limitation and DOP uptake without (P∗ and Fe and DOP), and with additional energetic and also N costs (P∗ and Fe and DOPcost).
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TABLE 1 | Experimental, geochemical, and ESM-based (1996–2005 average)
regional and global annual N2 fixation estimates (Tg N y−1).

Pacific Indian Atlantic Global

Source Tg N y−1 Tg N y−1 Tg N y−1 Tg N y−1

Luo et al., 2012 102 ± 20 – 34 ± 7 137 ± 9

Gruber and Sarmiento, l997 28 110 ± 40

Deutsch et al., 20071 95 22 20 137

CMIP5-MPI-ESM-LRa 132 32 38 213

CMIP5-GFDL-ESM2Gb 106 28 36 181

CMIP5-GFDL-ESM2Mb 75 30 40 154

CMIP5-CanESM2c 72 28 28 130

CMIP5-IPSL-CM52-LR2,d 54 14 16 89

CMIP5-CESMe 72 48 46 173

ESM-UVIC2.9f 73 31 24 128

1Estimate from the Standard model that includes DOP∗, which is 5% higher than
P∗-only estimate. Coupled Model Intercomparison Project (CMIP5) model output
has been retrieved from https://esgf-node.llnl.gov/projects/cmip5/. 2Estimated
from model C:N = 122:16. References a–f below list the model descriptions of
the respective biogeochemical modules. a Ilyina et al., 2013; bDunne et al., 2013;
cZahariev et al., 2008; dAumont et al., 2015; eMoore et al., 2013; and fLandolfi
et al., 2017.

110± 40 Tg N y−1 (Gruber and Sarmiento, 1997; Table 1). While
this method has the advantage of integrating over large scales of
space and time and implicitly includes potential contributions of
non-cyanobacterial N2 fixation, several potential shortcomings
have been discussed: Impacts of non-Redfield remineralization
of organic matter were addressed in Landolfi et al. (2008),
where we extended the inorganic N∗ concept to total nitrogen
excess, TNxs, to include organic nutrients. We found that for the
subtropical North Atlantic, N2 fixation rates estimated via TNxs
were approximately twice as high as those estimated by the N∗
method, but cautioned that other processes such as atmospheric
N deposition (Zamora et al., 2010) and non-Redfield uptake of
nutrients by phytoplankton (Mills and Arrigo, 2010; Weber and
Deutsch, 2012), can also affect regional patterns of oceanic N∗
and TNxs and thereby influence N2 fixation rate estimates. These
caveats also apply to the Pt

∗ method introduced by Deutsch
et al. (2007) that estimates N2 fixation from the consumption
of Pt

∗, which is defined as total excess P relative to the Redfield
N equivalent. In contrast to the classical N∗ tracer, but similar
to TNxs, Pt

∗ also accounts for organic nutrients. Deutsch et al.
(2007) estimated a global N2 fixation rate of 137 Tg N y−1

(i.e., about 25% higher than the N∗-based estimate), with a
very large contribution from surface waters in close proximity
to the largest ODZ in the eastern South Pacific and only a
small contribution from the Pt

∗-poor North Atlantic (Table 1).
The Pt

∗-based estimate contrasts with the prevailing view of
elevated N2 fixation rates in the North Atlantic, as indicated
both from N∗ and experimental evidence (Figure 1). Besides
the above mentioned non-Redfield processes other than N2
fixation errors in the rate estimates also arise from the assumed
ocean circulation that generally is not fully consistent with the
observed nutrient fields to which it is applied. While current-
generation global circulation models represent global-scale
patterns reasonably well, they have particular deficiencies in
reproducing low-oxygen regions (Cabré et al., 2015) and tracer

distributions in the tropical regions (Dietze and Löptien, 2013).
The refinement of global ocean GCMs is an on-going process.
However, improvements to the geochemical methods may be
limited given that the available nutrient distributions represent
composites of data from decad of observations from a turbulent
ocean, for which no underlying “mean” circulation may exist.
Errors may also stem from uncertainties in tracer-derived water
ages and age-based rate estimates: The differential effects of
mixing on water age versus nutrient tracers may lead to errors in
tracer-based N2 fixation estimates (Koeve and Kähler, 2016).

MODEL-BASED ESTIMATES

Global N2 fixation estimates have been derived from
models using both implicit (diagnostic) and explicit
(prognostic) N2 fixation parameterizations. Implicit N2
fixation parameterizations used in some IPCC-type earth-
system-models (ESM) are based on restoring-type approaches
that simulate N2 fixation by restoring upper-ocean nutrient
ratios toward Redfield NO3:PO4 stoichiometry (MPI-ESM,
Ilyina et al., 2013). This implies that N2 fixation is mainly
restricted to areas with observed low NO3:PO4 ratios. Other
models restrict N2 fixation to N limited areas, but account also
for light and temperature dependence (Can ESM, Zahariev
et al., 2008) and phosphate and iron limitation (IPSL-PISCES,
Aumont et al., 2015). These methods implicitly assume a
constant standing stock of diazotrophs and thereby require fewer
assumptions on not well-known ecophysiological processes
and parameters compared to models that explicitly model the
dynamics of diazotrophs. Explicit parameterizations of N2
fixation are mostly based on the assumption that diazotrophs
are slow-growing photosynthetic organisms that can fix N2.
This simple mechanistic approach results in diazotrophs being
outcompeted by the faster growing ordinary phytoplankton in
N-replete regions, yielding a control by excess PO4, or P∗, in
early on simple box-models (Tyrrell, 1999). Controls by other
environmental factors such as temperature, light, iron (CESM,
Moore et al., 2013) and also specific trade-offs (e.g., DOP-
uptake, Landolfi et al., 2015) or nitrate and oxygen inhibition
(GFDL-TOPAZ, Dunne et al., 2013) have been implemented
in more complex functional-types ecosystem-ocean circulation
models, modulating the rates and regional patterns of fixation.
Some studies also parameterize different groups of diazotrophs,
in particular Trichodesmium-type, unicellular cyanobacteria,
and diatom-cyanobacterial associations (Monteiro et al., 2010).
There is a significant spread in global and regional N2 fixation
estimates by ESMs (Table 1). This arises from differences in
model parameterizations and parameter values, and the different
underlying circulation fields. In restoring approaches, N2
fixation is strongly associated with regions of NO3 deficits, or
high P∗, from denitrification in low-oxygen waters (Ilyina et al.,
2013). This tight coupling is relaxed in parameterizations with
temperature-dependent and Fe-limited growth rates, and also
with NO3 uptake by diazotrophs (Moore et al., 2013; Landolfi
et al., 2017) or NO3 inhibition of N2 fixation (Zahariev et al.,
2008; Dunne et al., 2013; Aumont et al., 2015), which all tend to
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reduce the simulated rates of N2 fixation in NO3-replete regions
(e.g., Eastern Tropical South Pacific upwelling) and enhance
them toward warm, dusty and P-rich waters in line with the
traditional paradigm (Redfield et al., 1963; Falkowski, 1997).
Most models do not reproduce the observed high fixation rates
in the oligotrophic, dusty, North Atlantic due to the modeled low
supply of P∗ in this region. This implies that unaccounted factors
may also be important in controlling marine diazotrophs and
require to go beyond the traditional paradigm. In a recent model
study, we found that preferential phosphorus remineralization,
dissolved organic phosphors uptake (DOP), or Fe-limited
growth, were all not able to significantly enhance P∗ supply and
expand the diazotrophs’ niche in this region. Only accounting
for the elevated N-cost of dissolved organic P scavenging allowed
the success of diazotrophs in the N-rich P-poor North Atlantic
(Landolfi et al., 2015; Figure 1C). This theory, however, awaits
experimental testing. Current global models do not account for
non-cyanobacterial N2 fixation, which requires a more in-depth
understanding of the relevant players, their ecophysiology and
their environmental controls.

IMPLICATIONS FOR THE N BUDGET

As N2 fixation and denitrification may be uncoupled, the oceanic
N inventory is susceptible to imbalances. Despite the relatively
short residence time of oceanic N of less than 3000 years (e.g.,
Somes et al., 2013), the geological isotopic record suggests a
close-to-balanced budget over the past 3000 years (Altabet, 2007).
This indicates the existence of negative feedbacks that stabilize
the marine N reservoir. The nature, intensities and timescales
of these feedbacks are still debated. Their effect on time scales
shorter than those associated with the global ocean overturning
circulation is assumed to require a spatial proximity of regions of
N2 fixation and N removal, such that any N deficit generated by
denitrification in ODZs is rapidly compensated for by N2 fixation
(Deutsch et al., 2007). However, because denitrification consumes
more N than is fixed per mole of organic P, a too tight spatial
coupling would lead to net N removal (Landolfi et al., 2013). Thus
any N deficit may need to be transported and compensated for
far away from ODZ-influenced regions, suggesting that longer
(ocean-circulation) timescales may be required to counteract any
N imbalance (Landolfi et al., 2013; Somes et al., 2016).

Some studies suggested that N loss by denitrification may
exceed, by more than 100 Tg N y−1, the inputs of N
from N2 fixation, atmospheric and riverine supply, as a
result of anthropogenic perturbations (Codispoti et al., 2001;
Codispoti, 2007). While the recent revised estimates of N2
fixation (Table 1), atmospheric and river N supply (39 and
34 Tg N y−1, respectively, Jickellset al., 2017), and denitrification
(120–240 Tg N y−1, DeVries et al., 2013) may suggest a reduced
imbalance to less than 100 Tg N y−1, the annual rate
and distribution at which N enters the ocean is still highly
uncertain, making current and future N inventory projections
speculative. The persistence of a 50–100 Tg N y−1 imbalance for
100 years would cause the N inventory to decline by 0.75–1.5%

(N inventory of 6.6 105 Tg N, Gruber and Galloway, 2008)
possibly weakening the biological carbon pump.

Quantification of non-cyanobacterial N2 fixation is currently
hampered by the lack of reliable data (Moisander et al., 2017;
Benavides et al., 2018) and knowledge of their metabolisms and
environmental controls (Riemann et al., 2010; Bombar et al.,
2016). However, biogeochemical observations can provide strong
constraints on the potential magnitude of this process, which
should leave its imprint on the spatial and vertical cumulative
distributions of nutrients and the δ15NO3 signature in the ocean.
Although thermodynamically favorable (1G < 0), the reduction
of N2 to NH3 requires a large input of energy, from light
or organic matter degradation, to proceed at measurable rates
(Postgate, 1982) and maintain a low-oxygen cellular environment
for the functioning of the enzyme complex nitrogenase. In ODZs
the energy requirements may be reduced and iron limitation,
a further constraint in oxic surface waters, may be relaxed.
Here fixing N2 might be energetically advantageous compared
with NO3-uptake (Großkopf and LaRoche, 2012). However,
the low energetic efficiency of the anaerobic metabolism may
quantitatively constrain the rates of non-cyanobacterial N2
fixation, which may result in invisible (“cryptic”) nutrient
and isotopic tracer-distributions patterns as denitrification and
anammox may override its signature. Further investigations
should asses the contribution of this process.

Our current understanding of stabilizing N-inventory
feedbacks stands on the regulatory-competition between N2
fixers and non-fixing phytoplankton (Redfield, 1963; Gruber,
2004). N2 fixers fertilize the ocean with N until fixed N levels
are, relative to P, high enough for their competitive exclusion.
The potential for N inputs via non-cyanobacterial N2 fixation
independent of N deficits would fail this regulatory mechanism.
Overall, the detailed mechanisms by which N2 fixation responds
to N losses are not well understood to have high confidence of
marine nutrient cycles future predictions. In this context, the
extent to which the North Atlantic stands out as a region of high
N2 fixation may be a pivotal question. Answering it will help to
better understand how tight the feedback is between N2 fixation
and N loss processes.

SYNTHESIS AND OUTLOOK

All approaches to constrain global rates of N2 fixation
(experimental, geochemical, and model-based estimates) have
their own uncertainties and biases. Albeit the recent progress
we still lack a comprehensive knowledge of the relevant
environmental and ecological interactions, which prevent us
from making robust N2 fixation rates estimates and predictions.
To reduce the current level of uncertainty an improved
understanding of the players, their ecological interactions,
and the factors that control N2 fixation in the ocean must
be drawn from a collective research effort. This requires
to take novel approaches that go beyond assuming simple
correlations/sensitivities, but rather consider a combination of
environmental factors and emerging ecological interactions, both
in the field and in the laboratory. To this end, identifying essential
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traits and ecological interactions experimentally, and develop
mechanistic based models, may help us decipher the complexity
of marine N2 fixation and allow robust fixation estimates. As of
now, the large uncertainties in existing N2 fixation estimates and
in the underlying feedbacks with N loss processes rule out reliable
predictions. This task needs a fresh turn.
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