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The rumen is a complex ecosystem composed of anaerobic bacteria, protozoa, fungi,

methanogenic archaea and phages. These microbes interact closely to breakdown

plant material that cannot be digested by humans, whilst providing metabolic energy

to the host and, in the case of archaea, producing methane. Consequently, ruminants

produce meat and milk, which are rich in high-quality protein, vitamins and minerals,

and therefore contribute to food security. As the world population is predicted to
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reach approximately 9.7 billion by 2050, an increase in ruminant production to satisfy

global protein demand is necessary, despite limited land availability, and whilst ensuring

environmental impact is minimized. Although challenging, these goals can be met,

but depend on our understanding of the rumen microbiome. Attempts to manipulate

the rumen microbiome to benefit global agricultural challenges have been ongoing for

decades with limited success, mostly due to the lack of a detailed understanding of this

microbiome and our limited ability to culture most of these microbes outside the rumen.

The potential to manipulate the rumen microbiome and meet global livestock challenges

through animal breeding and introduction of dietary interventions during early life have

recently emerged as promising new technologies. Our inability to phenotype ruminants

in a high-throughput manner has also hampered progress, although the recent increase

in “omic” data may allow further development of mathematical models and rumen

microbial gene biomarkers as proxies. Advances in computational tools, high-throughput

sequencing technologies and cultivation-independent “omics” approaches continue to

revolutionize our understanding of the rumen microbiome. This will ultimately provide the

knowledge framework needed to solve current and future ruminant livestock challenges.

Keywords: rumen, microbiome, host, diet, production, methane, omics

GLOBAL AGRICULTURAL CHALLENGES

There are currently 7.5 billion humans on the planet, and
the world Hunger Map estimates that 795 million people
(over 10%) do not have access to sufficient food (WFP,
2015). Whilst some models predict the world population to
peak at 9.7 billion in 2050, others estimate a population
of 11.2 billion in 2100 (United Nations, 2015). To meet
an increasing demand for food, the Food and Agriculture
Organization of the United Nations (FAO) predicts that total
agricultural production (including crops and animals) will
need to be 60% higher than in 2005. With animal protein
demand rising at a proportionally faster rate, estimates suggest
that global meat and milk production will have to increase
by 76 and 63%, respectively (Alexandratos and Bruinsma,
2012).

This extensive population growth, coupled with an increased
consumption of ruminant products by developing countries,
will add to the strain on the availability of safe and nutritious
ruminant products. Due to land constraints, the number
of pastured ruminants cannot increase and therefore efforts
should be directed toward increasing production efficiency.
Indeed, efficient utilization of feed by the rumen microbiome
results in enhanced nutrient availability to the host, and thus
improved production efficiency is central to ensuring food
security. Feed for ruminants typically accounts for 60–70%
of total expenditure in beef production (Karisa et al., 2014;
Fouhse et al., 2017), whilst requiring substantial land mass
for plant growth. Residual feed intake (RFI), which is the
difference between the predicted (based on energy demands)
and actual intake, has been proposed as a more meaningful
measure for calculating feed efficiency (Berry and Crowley,
2012; Shabat et al., 2016). RFI values of 1.45 (high RFI)
and −1.64 kg/day (low RFI) have been noted for crossbred

steers (with 0 being the expected and values <0 inferring
that the animal has greater feed efficiency than expected),
resulting in high RFI animals requiring approximately 1,000 kg
more feed/annum than low RFI animals to achieve the
same production parameters (Fouhse et al., 2017). Therefore,
understanding the underlying mechanisms for RFI, particularly
with respect to the involvement of the rumen microbiome,
could aid efficiency and sustainability of ruminant production
(Mizrahi, 2011).

Ruminant livestock production has been estimated to be
responsible for approximately 14% of anthropogenic methane,
a potent greenhouse gas (GHG), released annually into the
atmosphere due to the activity of rumen methanogens (Gerber
et al., 2013). The released methane, produced by rumen
methanogens, is a major problem for the environment, but
also a great concern to livestock production as around 2–
8% of the dietary energy can be lost to methane (CH4)
production (IPCC, 2006); values as high as 12% have been
reported for low quality feeds (Johnson and Johnson, 1995).
Nonetheless, reductions in methane emissions do not always
result in a redirection of energy, leading to enhanced animal
production. For example, 3-nitrooxypropanol (3-NOP) has been
shown to reduce methane emissions by up to 30% (Hristov
et al., 2015; Jayanegara et al., 2018). However, a meta-analysis
of all available animal data following supplementation with
3-NOP only shows modest increases in animal production,
possibly due to decreased volatile fatty acid (VFA) produced
from breakdown of cellulose and increased H2 production;
both processes requiring energy input (Jayanegara et al.,
2018).

The rumen microbiome is also pivotal to nitrogen (N)
use efficiency due to its role in proteolysis and catabolism
of amino acids, resulting in microbial N, which contributes
60–90% of protein absorbed at the duodenum (Wallace
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et al., 1997). Ruminant N use efficiency also needs to be
improved to optimize production and reduce the environmental
footprint of the industry as ruminants excrete approximately
70% of ingested N (Macrae and Ulyatt, 1974; Dewhurst
et al., 1996; Edwards et al., 2008; Kingston-Smith et al.,
2008, 2010). Once in soil, a portion of the N can be
converted by bacteria into N2O, a GHG with a 298-fold
greater global warming potential than CO2 (Hristov et al.,
2013).

In summary, the rumen microbiome is central to addressing
the grand challenges facing agriculture globally. A better
understanding of the roles played by the constituent microbes is
central to the development of advanced methods to manipulate
the rumen microbiome in a manner that improves ruminant
production whilst reducing environmental impact (Yáñez-Ruiz
et al., 2015).

THE RUMEN MICROBIOME

The rumen is a complex, dynamic ecosystem composed ofmainly
anaerobic bacteria, protozoa, anaerobic fungi, methanogenic
archaea and phages. These microbes interact with each other
and have a symbiotic relationship with the host, providing
energy from the breakdown of plant cell wall carbohydrates
that are largely inedible by humans (Mizrahi, 2013). Recently,
it has also been hypothesized that these microbes display
niche specialization in terms of nutrient utilization and they
also engineer the rumen ecosystem in terms of subsequent
microbial colonization and nutrient utilization (Pereira and
Berry, 2017; Shaani et al., 2018). As a consequence of their
highly evolved rumen microbiome, ruminants provide human-
edible nutritious foods derived from marginal land, without
competing with food crop production (Kingston-Smith et al.,
2010).

Rumen Bacteria
The seminal work of Robert Hungate, the father of rumen
microbiology, resulted in many of the culture technologies
for anaerobic bacteria that are still widely used throughout
the world (Hungate, 1966). These cultivation techniques
enabled researchers to show that the rumen bacteria are
the most abundant and diverse group of microorganisms in
the rumen ecosystem. As a whole, they possess a multitude
of enzymatic activities (i.e., amylases, cellulases, proteases,
lipases) that carry out digestion of starch, plant cell walls,
proteins and lipids in the rumen. Whilst there have been
significant technological advancements during the last
decade, the function of the rumen bacteria and their
interactions with other members of the rumen microbiome
is still poorly understood and consequently there are
only a few examples where direct manipulation of the
composition of this community has generated beneficial
outcomes.

One of these successes relates to Leucaena leucocephala,which
is a leguminous plant, that is high in protein and used as
a ruminant feed in tropical countries. Nonetheless, the plant
also produces toxins, causing salivation, live weight losses and

generally poor animal performance. L. leucocephala contains
the toxin mimosine which is converted in the rumen to 4-
hydroxy-4(H)-pyridone (DHP), an effective goitrogen (Wallace,
2008) The rumen microbiomes of Hawaiian goats were shown
to be tolerant to L. leucocephala (Jones and Megarrity, 1986)
and further investigations revealed that these goats possessed a
bacterium, Synergistes jonesii which was capable of degrading
DHP. This is a unique example whereby understanding the
role of the rumen bacteria transformed livestock nutrition,
as S. jonesii is now used as an inoculum in many tropical
countries as means of counteracting DHP toxicity (Wallace,
2008).

Rumen Archaea
The archaeal domain in the rumen is composed largely
of methanogenic archaea from the phylum Euryarchaeota.
These methanogens are responsible for methane production
in the rumen, which is then eructed and released to the
environment. Methane is produced primarily via the
hydrogenotrophic pathway (Figure 1) as a result of the
reduction of CO2, and less so through the utilization of methyl
groups (methylotrophic pathway), or even less commonly
from acetate (acetoclastic pathway; Morgavi et al., 2010;
Tapio et al., 2017). Hydrogenotrophic methanogens include
Methanobrevibacter (Mbb.), which is sub-divided into the
SMT clade (Mbb. smithii, Mbb. gottschalki, Mbb. millerae, and
Mbb. thaurei) or the RO clade (Mbb. ruminantium and Mbb.
Olleyae; Tapio et al., 2017). Methylotrophic methanogens are
less abundant and include Methanosarcinales, Methanosphaera,
and Methanomassiliicoccaceae. Recently, methylotrophic
methanogens and their functionality were found to be highly
enriched in young ruminants whilst being less abundant and
showing decreased functionality in mature animals (Friedman
et al., 2017). Nonetheless, some published data show that
Methanomassiliicoccaceae can represent approximately 50–70%
of the rumen archaea (Huang et al., 2016; Wang P. et al.,
2016). The Methanosarcinales can also produce methane
via the acetoclastic pathway (Morgavi et al., 2010). Whilst
methanogenesis has major implications for the environment,
it serves an important purpose of elimination fermentative
hydrogen from the rumen (Wright and Klieve, 2011).
Strategies to reduce methane emissions must therefore take
into account the need to remove excess hydrogen rom the
rumen.

Bacteriophage
Lytic phages were first isolated from rumen fluid and the bacterial
genera Serratia and Streptococcus as far back as 1966 (Adams
et al., 1966). Whilst much research ensued to isolate phage in
the 1970s and 1980s, only those with potential biotechnological
applications were further characterized and retained in culture
collections (Gilbert and Klieve, 2015). Recently, Gilbert et al.
(2017) isolated and obtained complete genome sequences for
lytic phages, belonging to the order Caudovirales, capable of
infecting Bacteroides, Ruminococcus, and Streptococcus. Whilst
it is known that phage alter the ecology and evolution of
microbial communities (Koskella and Brockhurst, 2014), the
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FIGURE 1 | The hydrogenotrophic methane production pathway including

enzyme classifications (EC) for enzyme involved in the process. Reproduced

from Shi et al. (2014).

effects of phage on the rumen microbiome remains to be
determined.

Rumen Protozoa
Whilst the rumen bacteria are the most numerate, the rumen
protozoa represent a large proportion of the microbial biomass
within the rumen (approximately 20% and up to 50% in some
conditions) due to their cell volume. Rumen protozoa were
first described by Gruby and Delafond in 1843 (Gruby and
Delafond, 1843) and, along with fungi, make up the rumen
eukaryote members of the microbiota (Williams and Coleman,
1997; Newbold et al., 2015). Ciliates dominate in the rumen,
with flagellates such asTrichomonas sp.,Monocecromonas sp. and
Chilomastix sp. occasionally seen, but in much lower densities
(Williams and Coleman, 1997). Ruminants commonly harbor
distinct protozoal populations from birth, with only minor
changes in diversity throughout life, although the abundances of
species fluctuate with changes in diet (Williams and Coleman,
1997). For example, Dastrychia and Entodinium were shown to
be the predominant genera in rumen fluid taken from dairy
cows and Dastrychia has been shown to be more predominant
in the rumen fluid taken from cows fed corn stover as compared

FIGURE 2 | Light microscopy image of rumen contents taken from a ruminant

possessing B-type protozoal diversity and showing close interactions of

Epidinium spp. with fresh perennial ryegrass. Scale bar: 200µM.

with those fed alfalfa hay and corn silage (Zhang et al., 2015).
Protozoal populations in the rumen have also been categorized
as A-type (characterized by an abundance of Polyplastron
multivesiculatum), B-type (characterized by an abundance
of Epidinium caudatum or Eudiplodinium maggii), O-type
(characterized by an abundance of Entodinum, Dasytrycha, and
Isotricha), or lastly K-type (characterized by an abundance of
Elytroplastron bubali; Kittelmann and Janssen, 2011).

The contribution of protozoa to rumen fermentation remains
controversial. It is known that protozoa can be removed from the
rumen, a process known as defaunation, and the animal will still
survive (Williams and Coleman, 1992; Newbold et al., 2015). A
recent meta-analysis used 23 in vivo defaunation studies in an
effort to determine the function of rumen protozoa (Newbold
et al., 2015). Based on their analysis, Newbold and colleagues
found evidence that the removal of protozoa from the rumen
caused a decrease in organic matter degradation, especially of
neutral and acid detergent fiber. This confirmed the original
data of Williams and Coleman (1992) that some of the rumen
protozoa (i.e., Epidinium, Polyplastron and Entodinium spp.)
possess fibrolytic activity. Indeed, light microscopy of rumen
contents clearly shows that Epidinium spp. are strongly associated
with plant cells and are capable of scavenging plant chloroplasts,
which are rich in protein and lipids (Huws et al., 2009, 2012;
Figure 2). In addition to their capacity to degrade fiber, protozoa
have been linked to methanogenesis as defaunation reduces
methane output by approximately 11% (Hegarty, 1999; Morgavi
et al., 2010; Newbold et al., 2015). This is likely due to the
fact that rumen protozoal hydrogenosomes produce H2, which
then serves as a substrate for methanogens to reduce CO2

to methane via the hydrogenotrophic pathway (Vogels et al.,
1980; Belanche et al., 2014). This suggests that removal of
protozoa may be a strategy to reduce production of methane by
ruminants. However, rumen protozoa vary substantially in their
contributions to plant degradation and methane production.
For example, Epidinium spp. contribute substantially to plant
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degradation (Huws et al., 2009) and generally holotrichs support
methanogens and methanogenesis (Belanche et al., 2014). As a
consequence, a strategy which eliminates all protozoa may not
be the best approach, nonetheless, elimination of a sub-group of
protozoa is a major challenge which currently is technologically
challenging.

Rumen Fungi
The flagellated zoospores of anaerobic fungi
(Neocallimastigomycetes) were first observed in the early
1900’s. However, it was not until the 1970’s that their true
identity was confirmed (Orpin, 1974, 1977a). To date, nine
anaerobic fungal genera have been characterized with many
other uncultivated taxa known to exist (Koetschan et al.,
2014; Edwards et al., 2017; Paul et al., 2018). Paul et al. (2018)
attempted to get consensus on the diversity of anaerobic fungi
inhabiting the guts of herbivores and concluded that among
the cultured genera, Piromyces was the most represented with
Buwchfawromyces being the least represented in sequence data
obtained from the Genbank database. Paul et al. (2018) also
suggest that possibly another 25 new genera exist in the guts
of herbivores, which remain uncharacterized. Irrespective,
anaerobic fungi are among the most potent fiber-degrading
organisms in the known biological world, primarily due to their
efficient and extensive set of enzymes for the degradation of plant
structural polymers (Solomon et al., 2016). Furthermore, their
rhizoids have the ability to physically penetrate plant structural
barriers (Orpin, 1977a,b). The latter ability benefits other rumen
microbes by increasing the plant cell surface area available for
colonization. Rumen fungi also possess amylolytic (Gordon and
Phillips, 1998) and proteolytic activity (Gruninger et al., 2014).

The activity of anaerobic fungi is enhanced by methanogenic
archaea (Cheng et al., 2009), which are known to physically
attach to anaerobic fungal biomass. Anaerobic fungi are clearly
beneficial, and have been shown to improve feed intake,
feed digestibility, feed efficiency, daily weight gain and milk
production (Lee et al., 2000; Dey et al., 2004; Paul et al., 2004;
Tripathi et al., 2007; Saxena et al., 2010; Puniya et al., 2015).
Chitin measurements (Rezaeian et al., 2004) and rRNA transcript
abundance (Elekwachi et al., 2017) indicate that anaerobic
fungi represent 10–20% of the rumen microbiome. However,
like protozoa, they are not routinely studied despite suitable
cultivation independent tools being available (Edwards et al.,
2017).

Despite the importance of the rumen eukaryotes, our
understanding of their function is far less than that of rumen
bacteria. Beyond the study of their fiber degrading enzymes,
much of the activity and metabolism of anaerobic fungi remains
unknown, particularly due to the limited annotation of the
multiple genome sequences and transcriptomes now available
(Edwards et al., 2017). As with protozoa, key challenges include
their cultivation, lack of genomic information, and lack of
consensus on best practices to analyse sequence data (Ishaq et al.,
2017). Thus, there are still many challenges which need to be
overcome to enable a comprehensive understanding of the rumen
microbiome as a whole.

FIGURE 3 | Biofilm community on the adaxial surface of fresh perennial

following in vitro incubation in the presence of rumen fluid as outlined in Huws

et al. (2014). Scale bar: 10µM.

IMPORTANCE OF THE BIOFILM
PHENOTYPE AND MEMBRANE VESICLE
PRODUCTION TO HOST NUTRIENT
AVAILABILITY

Similar to most other microbiomes in nature, the rumen
microbiome is dominated by microbes existing within biofilms,
which are defined as a consortia of microbes attached to a
surface, encased in a self-produced extracellular polymericmatrix
(EPS; Figure 3; Cheng et al., 1979; Cheng and Costerton, 1980;
Mcallister et al., 1994; Huws et al., 2013, 2014, 2016; Zhao
et al., 2018). The biofilm phenotype has many advantages,
including the concentration of digestive enzymes within the
EPS in proximity to the substrate, an arrangement that enables
effective hydrolysis of plant material within the rumen (Minato
et al., 1966; Wolin et al., 1997; Michalet-Doreau et al., 2001;
Leng, 2014). The EPS is also rich in DNA, protein, and lipids,
which possibly play a role in biofilm stability, whilst also being
a source of nutrients for the ruminant following its out-flow
from the rumen to the lower digestive tract (Shukla and Rao,
2017; Sugimoto et al., 2018). Whilst protein concentration within
EPS is greater than within the attached bacteria, very little
consideration has been given to this structure in terms of
contribution to the nutrition of the host.

Membrane vesicles are often blebbed from the bacterial cell
membrane, that extend into the EPS. Numerous bacterial pure
culture studies have shown that bacteria are adept at producing
membrane vesicles (Schooling and Beveridge, 2006). These
membrane vesicles are packed with DNA, proteins and lipids
(Schooling et al., 2009) and likely promote biofilm stability. These
membrane vesicles have been recently observed in the rumen
bacterium Fibrobacter succinogenes (Arntzen et al., 2017). These
membrane vesicles can contain high concentrations of glycosyl
hydrolases, allowing F. succinogenes to effectively degrade plant
cellulose (Arntzen et al., 2017). Also, Prevotella ruminocola
is suggested to produce membrane vesicles, but their role
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FIGURE 4 | Membrane vesicles isolated from Prevotella ruminocola incubated

in vitro in Hungate tubes. Scale bar: 200 nM.

in plant degradation remains to be defined (Huws, personal
communication; Figure 4).

UNTANGLING THE INFLUENCE OF DIET
ON THE RUMEN MICROBIOME AND
CONSEQUENTLY HOST PHENOTYPE

Adult Animals
A recent global comparison study of the rumen microbiome
in 742 samples across 32 species from various geographical
locations (Henderson et al., 2015), identified that 30 of the most
abundant bacterial groups were present in over 90% of the
samples. Members of the methanogen cladesMethanobrevibacter
gottschalkii and Methanobrevibacter ruminantium were found
in nearly all samples and accounted for 74% of the archaea.
The consistency of common microbes across a wide variety
of ruminants led Henderson et al. (2015) to conclude that
global evolutionary pressures selected for common microbial
components within the fermentatative microbiomes. This
reasons with Darwin’s theory of natural selection, considering
a natural diet high in forage is common amongst ruminants.
This study also concluded that the composition of the rumen
microbiome was mainly driven by the diet (Henderson et al.,
2015). Indeed, dietary interventions have been historically used
to improve upon ruminant phenotypes due to their influence on
the rumen microbiome (Table 1).

Among these dietary interventions, the modification of the
forage:concentrate ratio is the most studied (Fernando et al.,
2010). Ruminants have traditionally been fed high forage diets
to decrease feeding costs, and to avoid competition with plant
sources that can be used as food for humans. Moreover, a
linear relationship has been noted between the proportion of
fresh grass within the diet, and milk fat composition and butter
properties in dairy cattle (Couvreur et al., 2006). In particular,

fresh grass in comparison to grass hay promotes an accelerated
feed colonization by rumen microbes and subsequent digestion
(Belanche et al., 2017). Furthermore, microbial protein synthesis
is increased and methane emissions lowered (Belanche et al.,
2016). However, most of the intensive ruminant production
systems, particularly beef feedlot systems, use high-grain diets
to maximize growth rates and feed efficiency. Supplementation
of the diet with easily digestible carbohydrates minimizes the
negative effects of dietary protein shortage (Belanche et al.,
2012) and promotes a modification of the rumen microbiome
(Fernando et al., 2010), due to a simplification of the rumen
microbial community. As a result, animals fed high-grain diets
tend to have lower bacterial diversity and lower concentrations of
fibrolytic microbes (i.e., protozoa and anaerobic fungi), which are
generally associated with lower rumen proteolysis and ultimately
higher feed efficiency (Belanche et al., 2012). Moreover, high
grain diet was shown to affect the composition of the rumen
methanogenic community via its effect on the rumen redox
potential, with a specific effect on the Methanomicrobiales order
(Friedman et al., 2017). However, this strategy often leads to a
decrease in rumen pH due to high VFA and lactate accumulation
and ultimately to digestive disorders (rumen acidosis with lactate
accumulation occurring in severe cases only) and energy spilling
reactions (Russell and Strobel, 1993). To prevent lactic acidosis,
antibiotics such as ionophores, which select against Gram
positive bacteria that produce lactate are often included in high-
grain diets. However, globally antibiotics and growth promoters
have been drastically reduced in livestock production, with a ban
enforced in the EU (Russell and Houlihan, 2003). Novel cost-
effective strategies to modulate rumen microbial fermentation
need to be identified.

Feeding red clover to ruminants results in increased nitrogen
efficiency due to the fact that it possesses the enzyme polyphenol
oxidase (PPO; Broderick, 1995; Lee, 2014). PPO is a copper
metallo-protein that, in the presence of oxygen, catalyzes the
oxidation of endogenous phenols to quinones (Lee et al., 2004).
PPO protects plant protein from ruminal degradation, allowing
intact protein to by-pass to the abomasum. The mechanism of
protein protection seems to be related to the deactivation of plant
proteases by the PPO enzyme as well as PPO mediated protein-
quinone binding (Mayer and Harel, 1979; Lee, 2014). PPO is
located in the chloroplast and until recently the substrate for
activating PPO was thought to exist only in the plant vacuole.
Recent data now indicates that PPO preferentially protects
proteins within chloroplasts, suggesting that there are also PPO-
activating substrates within chloroplasts (Hart et al., 2016; Boeckx
et al., 2017). It is also known that feeding red clover silage alters
rumen microbial diversity compared with a perennial ryegrass
silage-based diet, which contributes to changes seen in animal
phenotype when red clover is fed (Huws et al., 2010).

Sodium bicarbonate and yeast (Saccharomyces cerevisiae)
supplementation both have shown some success in preventing
sub-acute acidosis (SARA; Keunen et al., 2003; González et al.,
2012; Ishaq et al., 2017). Due to its oxygen scavenging activity
in the rumen (Newbold et al., 1996), S. cerevisiae can increase
the density of fibrolytic bacteria and hence feed efficiency
(Desnoyers et al., 2009). Ishaq et al. (2017) also showed that
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TABLE 1 | Examples of dietary interventions that have been used to modulate the rumen microbiome.

Dietary intervention Effects Mode of action References

High quality forage Improve milk fat content and quality Favor fibrolytic microbes and microbial

diversity (resilience)

Couvreur et al., 2006

High concentrate diet Increase animal productivity Favor propionate production and decrease

microbial diversity

Fernando et al., 2010; Belanche

et al., 2012

Antibiotics Increase productivity and decrease rumen

acidosis

Favor propionate-producers Schelling, 1984

Red Clover Increase productivity Protein complexing with polyphenol

oxidase allowing more protein to by-pass

rumen

Broderick, 1995; Lee, 2014; Hart

et al., 2016

Bicarbonate Prevention rumen acidosis Limit the rumen pH depression and the

negative impact on rumen microbes

Keunen et al., 2003; González

et al., 2012

Probiotics (Yeast) Prevention rumen acidosis and increase

feed efficiency

Oxygen scavenging Newbold et al., 1996; Desnoyers

et al., 2009

Essential oils Prevention rumen acidosis Shift in the microbial community Calsamiglia et al., 2007;

Macheboeuf et al., 2008

Tannins Improve the flow of digestible rumen

by-pass protein

Formation of phenol-dietary protein

complexes

Mcsweeney et al., 2001; Patra,

2010

Saponins Methane inhibition and increased microbial

protein synthesis

Antiprotozoal effect Patra and Saxena, 2009b;

Ramos-Morales et al., 2017

Unsaturated fats Methane inhibition Antiprotozoal effect Martin et al., 2010

Methane analogs Methane inhibition Inhibition of rumen methanogens Knight et al., 2011; Abecia et al.,

2012; Hristov et al., 2015

dairy cows with diet-induced SARA had a higher abundance
of rumen fungi and lower abundances of rumen protozoa
compared with healthy cows. Ishaq et al. (2017) then fed active
dry yeast to the dairy cows with induced SARA and noted
an increase in pH and rumen protozoal abundance. Moreover,
in recent years, a variety of plant bioactive compounds,
including saponins, essential oils, tannins and flavonoids have
also been evaluated for their ability to modulate rumen microbial
fermentation (Patra and Saxena, 2009a,b). Essential oils have
been proven to slow down starch and protein degradation,
decreasing the risk of acidosis while causing minor reductions
in rumen methanogenesis (Calsamiglia et al., 2007). However,
their application has been limited because of their adverse effects
on fiber digestion and rumen fermentation (Macheboeuf et al.,
2008). Phenolic compounds such as condensed and hydrolysable
tannins can also have anti-nutritional effects due to their
interaction with enzymes and their antimicrobial properties.
However, if fed at the right level, it is well established that
tannins protect dietary protein from degradation in the rumen
without significantly affecting the efficiency of carbohydrate
digestion (Mcsweeney et al., 2001). Additionally, it has been
suggested that tannins may also decrease methanogenesis by
inhibition of rumen protozoa, methanogens and, to a lesser
extent, hydrogen-producing microbes (Patra, 2010). Saponins,
a group of plant secondary compounds derived mainly from
Yucca shidigera and Quillaja saponaria, have also shown
potential for modifying rumen fermentation primarily through
the inhibition of protozoa. Furthermore, saponins can decrease
methane production by selectively targeting certain groups of
rumen protozoa, methanogens, fungi and bacteria (Patra and
Saxena, 2009b). However, the antiprotozoal effect of saponins is

transitory as when saponins are deglycosylated to sapogenins by
rumen microorganisms, they become inactive (Newbold et al.,
1997). This presents a challenge for the practical application
use of saponins in ruminant nutrition (Ramos-Morales et al.,
2017).

One of the most promising compounds for reducing ruminal
methanogenesis is 3-NOP, which is an analog of the methyl-
coenzyme M subunit of the nickel enzyme methyl-coenzyme M
reductase in rumen archaea. This enzyme catalyzes the last step of
methane-forming reactions (Duin et al., 2016) and its inhibition
can result in a reduction in rumen methanogenesis (up to 30%)
without negative effects to the animal (Hristov et al., 2015).
Nonetheless, benefits for ruminant production are comparatively
low, likely due to high H2 accumulation (Jayanegara et al., 2018).
However, a recent study has shown that benefits for animal
productivity could be enhanced (Martinez-Fernandez et al.,
2017). Supplementation of phloroglucinol together with 3-NOP
promotes capture of excess hydrogen from methanogenesis and
generates valuable metabolites for the host (Martinez-Fernandez
et al., 2017). The addition of acetogenic rumen bacteria to
remove excess hydrogen has also been widely suggested as an
effective intervention which may work in combination with 3-
NOP (Wright and Klieve, 2011)

In summary, more multidisciplinary studies are needed to
uncover the mode of action of these nutritional interventions
and their true potential to modulate the rumen microbiome
under farm conditions. Furthermore, data shows that in
mature ruminants, dietary changes can be short-lived.
Instead, interventions in the early life of the ruminant
may offer a better longer-term strategy to improve animal
phenotype.
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Early-Life
In contrast to the developed rumen, where a stable and resilient
microbial community is established, during the development of
the rumen after birth a succession of different microbial groups
colonize and start occupying the different ecological niches. The
instability occurring during this period potentially allows for
manipulation to assemble a specific community composition that
persist later in life for better health and productivity within a
given production system (Yáñez-Ruiz et al., 2015).

At birth, ruminants display a non-developed reticulo-rumen.
Until the system is fully matured, they function as monogastrics,
whereby the milk fed is not digested in the rumen but flows
to the abomasum via an esophageal groove (Church, 1988).
Colonization of the developing rumen begins immediately after
birth and progresses through the first few months of life until a
stable community establishes (Jami et al., 2013). The dynamics of
the gut microbial community establishment in young ruminants
occurs in three successive steps (Rey et al., 2014; Abecia et al.,
2017): (i) initial colonization (0–2 days post-partum) originated
from a combination of sources such as microbiota of mother’s
vagina, skin, colostrum and microbes within the environment
(Van Nimwegen et al., 2011; Yeoman et al., 2018); (ii) transitional
stage (3–15 days) during the transition from colostrum to
milk, and iii) maturation stage in which solid feed intake
progressively increases and the distribution of main bacterial
phyla and other microbial groups is comparable to that in
adult animals. It is important to note that although the rumen
microbiome establishes before intake of solid feeds, the type of
feed consumed plays a significant role in shaping the established
rumen microbiome. Hence, the early phases of solid feed intake
represents a window of opportunity to modulate the composition
of the initial colonizers of the different ecological niches in the
rumen according to dietary and management strategies (Yáñez-
Ruiz et al., 2015). Indeed, the use of probiotics, such as lactic
acid bacteria, in early life to mitigate incidence of digestive and
respiratory diseases has shown promise (Timmerman et al., 2005;
Signorini et al., 2012). Yáñez-Ruiz et al. (2010) also reported
that feeding forage vs. concentrate around weaning modifies
the bacterial population colonizing the rumen of lambs and
that the effect persists over 4 months. It is also known that
feeding concentrate in early life stimulates the development
of the epithelium, while feeding high fiber diets can stimulate
development of rumen muscularization and volume (Zitnan
et al., 1998). Nonetheless, little is known regarding the impact
of management practices, such as milk intake, delayed weaning
etc. on early-life programming of the rumen microbiome and its
implications for ruminant productivity.

Another factor that promotes differences in rumen
colonization is the presence of the dam and the associated
increase in the availability of microorganisms in the
environment. This can allow earlier (and different) inoculation
of microbes in the digestive tract of naturally raised newborns
as compared to those fed milk replacer and kept in isolation
(Abecia et al., 2017). Direct contact with the mother offers a
constant source of microbes through the mouth, feces, skin and
milk (Yeoman et al., 2018), sources that are not available for
calves raised in isolation on milk replacer. This explains the

greater number of Operational Taxonomic Units (OTUs) and
bacterial diversity observed in naturally reared calves. Another
distinctive feature between natural and artificial rearing systems
is the near absence of protozoa in the rumen of artificially reared
calves, as protozoa can only be inoculated in the rumen by direct
contact with the dam or other mature animals through saliva
(Abecia et al., 2014). A relatively recent study by Ishaq et al.
(2015) showed that exposure of neonate lambs to the dam for 1
week followed by subsequent separation was enough to ensure
the establishment of a stable rumen protozoal population for
their lifetime.

Nutritional interventions in early-life may include (i) the
direct inoculation of specific microorganisms or (ii) the use
of additives that prevent or facilitate the colonization of some
microbial groups. Feeding live microorganisms to ruminants is
not a novel concept and extensive work has been published on
the use of “direct-fedmicrobials” (DFM;Martin andNisbet, 1992;
Jeyanathan et al., 2014). The effect of supplementing S. cerevisiae
on rumen development and growth performance in neonatal
dairy calves has also been evaluated (Lesmeister et al., 2004).
Although yeast cultures are widely used in ruminant nutrition,
the concept of applying them in the diet of pre-ruminants
deserves further assessment, especially in terms of their long term
effects on the microbiome (Alugongo et al., 2017). A different
approach that uses compounds to inhibit the establishment of
certain microbial groups or favor the development of others is
also now starting to attract attention. It has been shown that
application of bromochloromethane (BCM) to young goat kids
modified archaeal colonization of the rumen, and was linked to
a reduction in methane emission of around 50%, with the effects
persisting for 3 months after weaning (Abecia et al., 2013, 2014).

Despite some promising results from early-life dietary
interventions, the ecological dynamics underpinning the
microbial colonization, the most effective window of time for
intervention and the long-term implications have yet to be
identified.

UNTANGLING THE INFLUENCE OF HOST
GENOMICS ON THE RUMEN
MICROBIOME AND CONSEQUENTLY
HOST PHENOTYPE

Consistent with human twin heritability studies (Goodrich et al.,
2016), it is reasonable to hypothesize that animals possessing
similar genomes should have more similar rumen microbiomes.
Evidence of the influence of the host on the rumen microbiome
was first postulated by Weimer et al. (2010) who found that
after near total exchange of the rumen contents between
cows, individuals restored their bacterial composition back to
pre-exchange conditions, which also returned rumen pH and
volatile fatty acid (VFA) concentration to pre-exchange values.
Furthermore, in another near-total rumen content exchange
between high- and low-efficiency Holstein cows, Weimer et al.
(2017) demonstrated the hosts ability to return the rumen
bacterial community to the original status, whilst linking the
rumen microbiome to milk production efficiency.
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Whilst Henderson et al. (2015) postulated that diet was
the main driver for rumen microbiome composition, they also
identified some differences in the relative abundance of certain
bacterial populations across ruminant species. Similarly, when
the microbiome of water buffalo (Bubalus bubalis) and Jersey
cows were compared under comparable feeding conditions
variations in bacterial, protozoa and methanogen populations
were found between the two species (Iqbal et al., 2018),
suggesting that the rumen microbiome is controlled, to a certain
extent, by the genetics of the host. In a beef cattle experiment,
Roehe et al. (2016) ranked beef sire progeny groups based on
relative archaeal abundance and reported that group ranking
remained consistent overall and within diet, suggesting that
archaeal abundance in ruminal digesta is also, in part under host
genetic control. Using sire progeny groups in dairy cattle, further
evidence of genetic control was documented by the discovery
that 22 bacterial OTUs, exhibited a heritability estimate of 0.7
or greater in dairy cattle (Sasson et al., 2017). In addition, these
heritable OTUs were found to be correlated with traits such as
DMI (dry matter intake) and RFI. Pinares-Patiño et al. (2011)
and Pinares-Patiño et al. (2013) demonstrated that methane
production is also regulated by host genetics in sheep and that
selection of low methane emitting animals by genotyping is
possible.

Nonetheless, De Mulder et al. (2018), stated that the
differences in rumen microbiome composition may be due to
other factors other than host genomics, including early life events
and the fact that some breeds of cattle, such as Belgian Blue
cattle, have a higher rate of cesarean section birth. The host
immune system also likely plays an influential role on the rumen
microbiome. For example, secretory immunoglobulin A (SIgA),
which favors commensal bacteria in the gut (Gutzeit et al.,
2014), has been shown to coat rumen bacteria (Fouhse et al.,
2017) and control the host’s recognition of certain microbial
species. In addition, the rumen epithelium plays an important
role in both nutrient uptake and immunity. The physiology of
the rumen has also been highlighted as a potential factor that
influences the rumen microbiome. For example, differences in
rumen and camelid foregut volume, physiology as well as feeding
frequencies, was suggested as a reason for the proportionally
higher abundance of unclassified Veillonellaceae in camelids,
deer and sheep compared to cattle (Henderson et al., 2015).
In addition, methane yield is associated with retention time in
the rumen (Pinares-Patiño et al., 2003) correlating increased
passage rate in the rumen with reduced methane yield. Janssen
(2010) provides a thorough review of these studies which in
essence show that increased passage rate leads to less feed
being fermented in the rumen and subsequently less substrate
is available for methanogenesis (Tapio et al., 2017). It has also
been demonstrated that both a shorter rumen retention time
and a smaller rumen result in reduced methane yield (Goopy
et al., 2014). Additionally, variation in the rumination behavior
of animals can influence particle retention time (Mcsweeney
et al., 1989). Therefore, genetic influence of the host on rumen
passage rate is likely to be one host factor that influences the
rumen microbiome, but other factors should also be considered
(Pinares-Patiño et al., 2013).

Whilst there is increased evidence that host genetics has an
influential role on themicrobial population residing in the rumen
(Tapio et al., 2017), our current understanding of the extent of
this influence and the underlying mechanisms (Sasson et al.,
2017) remains incomplete, although a region on chromosome 6
was recently associated with Actinobacteria, Euryarchaeota, and
Fibrobacteres densities (Golder et al., 2018).

CONTRIBUTIONS OF THE LOWER
GASTROINTESTINAL TRACT
MICROBIOMES TO RUMINANT
PHENOTYPE

Typically, scientists have focussed their attention on
understanding the rumen in order to deliver upon global
livestock challenges. However, the lower gastrointestinal (GI)
tract microbiomes also play an important role, particularly in
early life (Meale et al., 2017). The microbial composition of
the post-ruminal gastrointestinal tract is shaped by pH, gut
motility, redox potential, and host secretions present in different
compartments of the digestive tract. Most microbes flowing
from the rumen into the abomasum are lysed by the low pH
and enzymatic activity within the organ. As a consequence of
the harsh environmental conditions prevailing in the abomasum
and at the beginning of the small intestine, microbial numbers
and diversity plummet by several orders of magnitude in the
abomasum, duodenum and jejunum as compared to the rumen
(Frey et al., 2010; He et al., 2018; Yeoman et al., 2018). From the
ileum onwards, including caecum, colon and feces, favorable
fermentation conditions are present again and microbial density
and phylogenetic diversity increase to a level comparable to that
of the rumen (Frey et al., 2010; De Oliveira et al., 2013; Popova
et al., 2017; He et al., 2018; Yeoman et al., 2018).

The post-ruminal microbial community is composed
predominantly of bacteria, but methanogenic archaea and
anaerobic fungi have been described (Davies et al., 1993),
although the later phylogentic group has not been targeted
intensively with high-throughput sequencing techniques. There
are significant difference in the microbial community assemblage
depending on the region of the GI tract (i.e., rumen vs. post-
rumen; Mao et al., 2015; Bergmann, 2017; Zeng et al., 2017;
Yeoman et al., 2018), and the post rumen microbiota differ
further between the small (duodenum, jejunum, and ileum)
and the large (cecum, colon, and rectum) intestine (Mao et al.,
2015; Bergmann, 2017; Wang et al., 2017; Yeoman et al., 2018).
In general terms, compared to the rumen, the proportion of
Bacteroidetes decrease and that of Firmicutes and Proteobacteria
increase. Prevotella, Bacteroides, Ruminococcus, Treponema, and
Desulfovibrio genera were detected in all segments of the GI tract
of ruminant animals, while Fibrobacter was only present in the
foregut (Zeng et al., 2017). Prevotella, Bacteroides, Ruminococcus,
Faecalibacterium, Roseburia and Clostridium are consistently
identified in fecal samples from ruminants and are considered
part of the core microbiota (Dowd et al., 2008; Durso et al.,
2012). As for the rumen, the rectal microbiota shows important
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inter-individual variation (Durso et al., 2010) and are affected by
diet (Shanks et al., 2011).

The mucosa-associated microbial community is also an
important modulator of immunological function and health
(Malmuthuge et al., 2015). Mucosa-associated communities
differ from those associated with luminal contents; and also
vary among intestinal regions (Malmuthuge et al., 2014; Mao
et al., 2015; Yeoman et al., 2018). Potential pathogens such as
Escherichia, Shigella, Salmonella and Treponema spp. are most
frequently found in the mucosa-associated bacterial microbiota
(Mao et al., 2015; Song et al., 2018). Recently, differences in
both the mucosa-associated microbiota of the rectoanal junction
and fecal microbiota of cattle have been shown to influence the
shedding of the human pathogen Escherichia coli O157 in cattle
feces (Stenkamp-Strahm et al., 2018; Wang et al., 2018).

The role of the intestinal microbiota in feed degradation
appears to be less important than that of the rumen (Al-Masaudi
et al., 2017). Its main function has been suggested to be related
to animal health and cross-talk interaction with the animal
host (Lyte et al., 2018), although work in this area is only in
its nascent phase and these aspects need further investigation.
Notwithstanding, it is highlighted that feces and samples from
the intestines cannot be used as proxies of rumen function on
a microbiome biomarker level (Tapio et al., 2016). Nonetheless,
concentrations of the compound archaeol in feces has been
shown to correlate with methane emissions in cattle (Mccartney
et al., 2014).

DEVELOPING MICROBIOME
BIOMARKERS FOR PREDICTION OF
RUMINANT PHENOTYPE

The sheer size of the rumen (12–15% of body mass) and
connectedness with the vascular, respiratory and immune
systems mean that it is well-placed to both affect, and be affected
by, animal function. There is a growing number of examples
where the interaction between host and intestinal microbial
metabolism can be used to explain, or act as a biomarker for,
complex traits such as nutrient efficiency, responses to stressors
such as disease and adverse environments, as well as to predict
animal behavior.

Nucleic acids have long been used as biomarkers for
rumen microbial processes. Early work focussed on rumen
microbial protein synthesis and RNA (Mcallan and Smith,
1969), while purine bases (Zinn and Owens, 1986) were also
used as biomarkers for microbial (protein) synthesis in studies
with intestinally cannulated animals. More recent attempts
to develop non-invasive biomarker approaches to estimate
microbial protein synthesis have used urinary metabolites
derived from microbial purines (allantoin and uric acid; Chen
et al., 1990). Recent advances in analytical technologies and
bioinformatics have now greatly expanded our capacity to
investigate the role of the rumen and its microbiome in complex
traits by studying the composition of microbial DNA and RNA
(metataxonomics, metagenomics and metatranscriptomics), as
well as microbial metabolites in blood or urine (metabolomics).

In terms of metataxonomics, microbial correlations to feed
efficiency and/or methane production in ruminants, using rRNA
genes or the Methyl coenzyme M reductase (mcrA) gene in
methanogens are difficult to interpret, due to the confounding
factors such as animal type, feed, and rumen sample processing
and analysis (see Metataxonomy section). Recent studies suggest
that methanogen diversity, and not density, is critically important
to methane output, with more diversity being associated with
higher emissions (Janssen and Kirs, 2008; Carberry et al.,
2014). However, most studies involve a small number of
animals, making it difficult to clearly confirm the link between
methanogen diversity and methane emissions (Morgavi et al.,
2010). When investigating the rumen bacterial associations with
methane production, density of Sharpea has been shown to be
significantly lower in low methane emitting animals (Kamke
et al., 2016). Positive correlations between Eubacterium sp.
and reduced feed efficiency were also reported by Hernandez-
Sanabria et al. (2012). Jami et al. (2014) also reported a positive
correlation between RFI and the uncultured rumen bacterium
RF39, whereas Shabat et al. (2016), suggested that an increase
in the acrylate pathway coded by Megasphaera elsdenii and
Coprococcus catus in the rumen may increase feed efficiency
and reduce methane. It has been suggested also that the ratio
of bacteria:archaea reflects methane output from the animal
with positive correlations reported in a few studies (Wallace
et al., 2014; Auffret et al., 2017b), but results are not consistent
(Tapio et al., 2017). Recent data also suggest that the rumen
microbiome of feed efficient ruminants is less diverse than their
inefficient counterparts (Shabat et al., 2016; Li and Guan, 2017).
The microbial diversity within the rumen offers the animal
resilience from dietary related perturbations, such as acidosis.
Therefore, care must be taken to ensure that breeding for
increased feed efficiency in ruminants does not negatively impact
resilience of the microbiome and increase the susceptibility of
the host to digestive diseases. Irrespective, metataxonomic data
is highly variable due largely to the differences in techniques
employed across published datasets (see Metataxonomy section)
and animal variation. As such the use of gene biomarkers
using metagenomics and/or metranscriptomic approaches may
be more useful given that rumen microbes possess genes coding
for a high level of functional redundancy (Edwards et al., 2008;
Weimer, 2015).

Recent work using metagenomics and/or
metatranscriptomics has confirmed significant relationships
between the abundances of key rumen microbial genes and feed
efficiency (Roehe et al., 2016; Shabat et al., 2016; Li and Guan,
2017) and/or methane production (Roehe et al., 2016). Due
to the vastness of these datasets it is difficult to compare and
investigate whether studies commonly find consensus genes
that would serve as good global biomarkers in their correlation
studies. Microbial gene correlations with RFI, data from Shabat
et al. (2016) and Li and Guan (2017) showed some consensus
as both showed that genes involved in amino acid metabolism
were less abundant in feed efficient animals (Table 2). These
data corresponds with observations that feed efficient animals
excrete less urinary ammonia suggesting better rumen nitrogen
use efficiency (Bach et al., 2005; Broderick and Reynal, 2009).
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Consensus of other genes across the three published datasets
were not found (Table 3). Likewise, genes correlating to methane
emissions show very little consensus amongst the five papers
investigated. Nevertheless, in four datasets the methyl coenzyme
reductase enzyme, which is involved in the last step of the
hydrogenotrophic methane pathway (Figure 1), showed the
most correlation to methane. The lack of consensus across
experiments, whilst perhaps being biologically correct, likely
also reflects the challenges associated with comparing of datasets
from different animals, variation in diet, as well as differences in
sampling method, sample preparations and data interpretation.
Clearly more comparative large datasets are required to develop
microbiome based biomarkers for estimation of RFI andmethane
output. Alongside this is the need to obtain samples that are
representative of the rumen microbiome in a non-invasive
manner. Recently it was suggested that the oral microbiome of
ruminants reflects the microbial diversity seen in the rumen
(Tapio et al., 2016), raising the possibility that buccal swabbing
may be used as a proxy for rumen samples.

PROSPECTS FOR ENHANCING RUMEN
MICROBIOME UNDERSTANDING AND
ANIMAL PHENOTYPE PREDICTIONS VIA
MATHEMATICAL MODELING

Mathematical models can be used to integrate our understanding
of feed, intake, digestion and passage rates on the resulting
energy available to the microbiome and ultimately the host.
The development of rumen models has been deployed mainly
via the consolidation of four model structures (Molly, Karoline,
Cornell, and Dijkstra models) that have been improved over the
years to enhance the understanding of rumen function (Mills
et al., 2014; Huhtanen et al., 2015; Van Amburgh et al., 2015;
Gregorini et al., 2016). These models represent relevant aspects
that determine the nutritional and emission responses for a given
diet but do not attempt to provide a detailed description of the
microbiota or its function (Ellis et al., 2008). This gap between the
available omics data of the rumen microbiome and the models
needs to be bridged to improve our understanding of rumen
function (Bannink et al., 2016; Muñoz-Tamayo et al., 2016). To
make these model applications possible, rumen modeling should
embrace the framework of genome-scale metabolic models
(GEMs). The basis of a GEM is the stoichiometry matrix that
links metabolites and biochemical reactions that the microbe
is able to perform as a result of its genetic potential. The
stoichiometry matrix is organism-specific and results from a
genome-scale network reconstruction obtained by a protocol
that includes functional genome annotation, curation of a draft
reconstruction of metabolic reactions and finally translation of
the reconstructed network into a computational model (GEM).
The full process capitalizes on high-throughput network-wide
and bibliomic data (Feist et al., 2009), and on dedicated software
(Henry et al., 2010; Aite et al., 2018). The construction of a
rumen microbiome GEM will need to address central questions
that remain to be elucidated due to the early stage of microbial
community modeling (Zengler and Palsson, 2012). One of these

key questions is howmicrobial species, their metabolic networks,
and interspecies interactions should be represented (Biggs et al.,
2015). Once this question is elucidated, a plethora of constraint-
based reconstruction and analysis (COBRA) methods can be
deployed to investigate genotype–phenotype relationships (Lewis
et al., 2012).

The COBRA methods rely on the principle that
microbial metabolism is bound by constraints that include
thermodynamics, substrate and enzyme availability. These
methods mainly operate under steady-state. The most popular
COBRAmethod is flux balance analysis (FBA; Varma et al., 1993;
Varma and Palsson, 1994), which looks at finding the network
reaction fluxes that optimize a regulatory condition (e.g.,
microbial growth). Overall, COBRA approaches provide rational
tools for metabolic engineering. The number of applications is
broad and includes the development of tools for (i) studying
interactions among different microbial groups, i.e., protozoa,
fungi, archaea, bacteria and viruses or bacteriophages, (ii)
developing selective cultivation strategies for as yet uncultured
rumen microbes (Pope et al., 2011), (iii) designing methane
mitigation strategies by exploiting the metabolic networks
of genome-sequenced rumen archaea (Leahy et al., 2010;
Pope et al., 2011), and (iv) developing prediction tools that
exploit microbiome biomarkers for fiber hydrolysis (Dai
et al., 2015; Comtet-Marre et al., 2017, 2018) and methane
production (Popova et al., 2013; Shi et al., 2014; Auffret et al.,
2017b).

Clearly rumen GEMs must be further integrated into whole
rumen digestion models to provide a system-level picture
of the dynamic interplay between the diet, the animal host
and the rumen microbiota. Central to this task and for the
development of novel strategies to enhance ruminant production
and reduce environmental impact is the need for data sharing
and collaboration. The co-authors of this paper are all members
of the Global Research Alliance’s Rumen Microbial Genomics
Network, which is set up to allow global collaborations and
data sharing for this very purpose. This integration task is
far from trivial due to multiple time scales, among other
aspects such as parameter identifiability (Muñoz-Tamayo et al.,
2018). Moreover, since COBRA approaches mainly operates
at steady-state, dynamic frameworks (Mahadevan et al., 2002;
Baroukh et al., 2014) will need to be adapted to account
for the dynamic fluctuations within the rumen environment.
A great challenge is to deploy different model structures,
capitalizing on “omics” data, and responding to different
goals varying from supporting livestock management within a
precision farming context to guiding microbial programming
strategies.

TECHNOLOGICAL ADVANCES TO
FURTHER OUR UNDERSTANDING OF THE
RUMEN MICROBIOME

Genomics/Culturomics
Large culture collections are incredibly powerful as the organisms
in the collection can be studied both in vitro and in vivo.
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TABLE 2 | Potential gene biomarkers indicative of feed efficiency in ruminants.

KEGG

number

Description E.C number Pathway Published papers

K00075 UDP-N-acetylmuramate

dehydrogenase

EC:1.3.1.98 Amino acid sugar and nucleotide sugar metabolism;

Peptidoglycan biosynthesis; Metabolic pathways

Roehe et al., 2016

K00121 S-(hydroxymethyl)glutathione

dehydrogenase/alcohol

dehydrogenase

EC:1.1.1.284

or 1.1.1.1

Glycolysis/Gluconeogenesis; Fatty acid degradation;

Tyrosine metabolism; Chloroalkane and chloroalkene

degradation; Naphthalene degradation; Methane

metabolism; Retinol metabolism; Metabolism of

xenobiotics by cytochrome P450; Drug

metabolism–cytochrome P450; Metabolic pathways;

Biosynthesis of secondary metabolites; Microbial

metabolism in diverse environments; Biosynthesis of

antibiotics; Carbon metabolism; Degradation of aromatic

compounds; Chemical carcinogenesis

Li and Guan, 2017

K00179 Indolepyruvate ferredoxin

oxidoreductase, alpha subunit

EC:1.2.7.8 - Roehe et al., 2016

K00230 Menaquinone-dependent

protoporphyrinogen oxidase

EC:1.3.5.3 Porphyrin and chlorophyll metabolism; Metabolic

pathways; Biosynthesis of secondary metabolites

Li and Guan, 2017

K00240 Succinate

dehydrogenase/fumarate

reductase, iron-sulfur subunit

EC:1.3.5.1 or

1.3.5.4

Citrate cycle (TCA cycle); Oxidative phosphorylation;

Butanoate metabolism; Carbon fixation pathways in

prokaryotes; Metabolic pathways; Biosynthesis of

secondary metabolites; Microbial metabolism in diverse

environments; Biosynthesis of antibiotics; Carbon

metabolism

Li and Guan, 2017

K00260 Glutamate dehydrogenase EC:1.4.1.2 Arginine biosynthesis; Alanine, aspartate and glutamate

metabolism; Taurine and hypotaurine metabolism;

Nitrogen metabolism; Metabolic pathways

Shabat et al., 2016

K00270 Phenylalanine dehydrogenase EC:1.4.1.20 Tyrosine metabolism; Phenylalanine metabolism;

Phenylalanine, tyrosine and tryptophan biosynthesis;

Metabolic pathways; Biosynthesis of secondary

metabolites; Biosynthesis of antibiotics

Shabat et al., 2016; Li and

Guan, 2017

K00278 L-aspartate oxidase EC:1.4.3.16 Alanine, aspartate and glutamate metabolism; Nicotinate

and nicotinamide metabolism; Metabolic pathways

Roehe et al., 2016

K00281 Glycine dehydrogenase EC:1.4.4.2 Glycine, serine and threonine metabolism; Glyoxylate

and dicarboxylate metabolism; Metabolic pathways;

Biosynthesis of secondary metabolites; Biosynthesis of

antibiotics; Carbon metabolism

Li and Guan, 2017

K00290 Saccharopine dehydrogenase

(NAD+, L-lysine forming)

EC:1.5.1.7 Lysine biosynthesis; Lysine degradation; Metabolic

pathways; Biosynthesis of secondary metabolites;

Biosynthesis of antibiotics; Biosynthesis of amino acids

Shabat et al., 2016

K00315 Dimethylglycine dehydrogenase EC:1.5.8.4 Glycine, serine and threonine metabolism; Metabolic

pathways

Li and Guan, 2017

K00330 NADH-quinone oxidoreductase

subunit A

EC:1.6.5.3 Oxidative phosphorylation; Metabolic pathways Shabat et al., 2016

K00340 NADH-quinone oxidoreductase

subunit K

EC:1.6.5.3 as above Shabat et al., 2016; Li and

Guan, 2017

K00350 Na+-transporting

NADH:ubiquinone

oxidoreductase subunit E

EC:1.6.5.8 - Shabat et al., 2016; Li and

Guan, 2017

K00360 Assimilatory nitrate reductase

electron transfer subunit

EC:1.7.99.- Nitrogen metabolism; Microbial metabolism in diverse

environments

Shabat et al., 2016

K00362 Nitrite reductase (NADH) large

subunit

EC:1.7.1.15 Nitrogen metabolism; Microbial metabolism in diverse

environments

Li and Guan, 2017

K00375 GntR family transcriptional

regulator/MocR family

aminotransferase

- - Roehe et al., 2016

K00380 Sulfite reductase (NADPH)

flavoprotein alpha-component

EC:1.8.1.2 Sulfur metabolism; Metabolic pathways; Microbial

metabolism in diverse environments

Shabat et al., 2016

(Continued)
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TABLE 2 | Continued

KEGG

number

Description E.C number Pathway Published papers

K00394 Adenylylsulfate reductase,

subunit A

EC:1.8.99.2 Sulfur metabolism; Metabolic pathways; Microbial

metabolism in diverse environments

Roehe et al., 2016

K00400 Methyl coenzyme M reductase

system, component A2

- Methane metabolism; Metabolic pathways; Microbial

metabolism in diverse environments

Shabat et al., 2016

K00471 Gamma-butyrobetaine

dioxygenase

EC:1.14.11.1 Lysine degradation Li and Guan, 2017

K00480 Salicylate hydroxylase EC:1.14.13.1 Dioxin degradation; Polycyclic aromatic hydrocarbon

degradation; Naphthalene degradation; Metabolic

pathways; Microbial metabolism in diverse environments;

Degradation of aromatic compounds

Li and Guan, 2017

K00520 Mercuric reductase EC:1.16.1.1 - Li and Guan, 2017

K00521 Ferric-chelate reductase EC:1.16.1.7 - Li and Guan, 2017

K00633 Galactoside O-acetyltransferase EC:2.3.1.18 - Li and Guan, 2017

K00670 N-alpha-acetyltransferase 30 EC:2.3.1.256 - Li and Guan, 2017

K00680 Uncharacterized

N-acetyltransferase

EC:2.3.1.- - Shabat et al., 2016

K00730 Oligosaccharyl transferase

complex subunit OST4

- N-Glycan biosynthesis; Various types of N-glycan

biosynthesis; Metabolic pathways; Protein processing in

endoplasmic reticulum

Li and Guan, 2017

K00766 Anthranilate

phosphoribosyltransferase

EC:2.4.2.18 Phenylalanine, tyrosine and tryptophan biosynthesis;

Metabolic pathways; Biosynthesis of secondary

metabolites; Biosynthesis of antibiotics; Biosynthesis of

amino acids

Roehe et al., 2016

K00770 1,4-beta-D-xylan synthase EC:2.4.2.24 Amino sugar and nucleotide sugar metabolism;

Metabolic pathways

Li and Guan, 2017

K00785 Beta-galactosamide-alpha-2,3-

sialyltransferase

EC:2.4.99.- - Li and Guan, 2017

K00790 UDP-N-acetylglucosamine

1-carboxyvinyltransferase

EC:2.5.1.7 Amino sugar and nucleotide sugar metabolism;

Metabolic pathways; Peptidoglycan biosynthesis

Li and Guan, 2017

K00860 Adenylylsulfate kinase EC:2.7.1.25 Purine metabolism; Sulfur metabolism; Metabolic

pathways; Microbial metabolism in diverse environments

Li and Guan, 2017

K00868 Pyridoxine kinase EC:2.7.1.35 Vitamin B6 metabolism; Metabolic pathways Roehe et al., 2016

K00900 6-Phosphofructo-2-kinase EC:2.7.1.105 Fructose and mannose metabolism Li and Guan, 2017

K00908 Calcium/calmodulin-dependent

protein kinase kinase 1

EC:2.7.11.17 Alcoholism Li and Guan, 2017

K00920 1-Phosphatidylinositol-5-

phosphate

4-kinase

EC:2.7.1.149 Inositol phosphate metabolism; Phosphatidylinositol

signaling system; Regulation of actin cytoskeleton

Li and Guan, 2017

K00941 Hydroxymethylpyrimidine/

phosphomethylpyrimidine kinase

EC:2.7.1.49

or 2.7.4.7

Thiamine metabolism; Metabolic pathways Roehe et al., 2016

K00956 Sulfate adenylyltransferase

subunit 1

EC:2.7.7.4 Purine metabolism; Monobactam biosynthesis;

Selenocompound metabolism; Sulfur metabolism;

Metabolic pathways; Microbial metabolism in diverse

environments; Biosynthesis of antibiotics

Roehe et al., 2016

K00974 tRNA nucleotidyltransferase

(CCA-adding enzyme)

EC:2.7.7.72

or 3.1.3.-

3.1.4.-

RNA transport Roehe et al., 2016

K01051 Pectinesterase EC:3.1.1.11 Pentose and glucuronate interconversions; Metabolic

pathways

Li and Guan, 2017

K01055 3-Oxoadipate enol-lactonase EC:3.1.1.24 Benzoate degradation; Metabolic pathways; Microbial

metabolism in diverse environments; Degradation of

aromatic compounds

Li and Guan, 2017

K01104 Protein-tyrorsine phosphatase EC:3.1.3.48 - Roehe et al., 2016

(Continued)
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TABLE 2 | Continued

KEGG

number

Description E.C number Pathway Published papers

K01129 dGTPase EC:3.1.5.1 Purine metabolism Roehe et al., 2016

K01195 Beta-glucuronidase EC:3.2.1.31 Pentose and glucuronate interconversions; Metabolic

pathways; Glycosaminoglycan degradation; Porphyrin

and chlorophyll metabolism; Flavone and flavonol

biosynthesis; Drug metabolism–other enzymes;

Biosynthesis of secondary metabolites; Lysosome

Roehe et al., 2016

K01269 Aminopeptidase EC:3.4.11.- - Roehe et al., 2016

K01358 ATP-dependent Clp protease,

protease subunit

EC:3.4.21.92 Cell cycle–Caulobacter; Longevity regulating

pathway–worm

Roehe et al., 2016

K01493 dCMP deaminase EC:3.5.4.12 Pyrimidine metabolism; Metabolic pathways Roehe et al., 2016

K01613 Phosphatidylserine

decarboxylase

EC:4.1.1.65 Glycerophospholipid metabolism; Metabolic pathways;

Biosynthesis of secondary metabolites

Roehe et al., 2016

K01784 UDP-glucose 4-epimerase EC:5.1.3.2 Galactose metabolism; Amino sugar and nucleotide

sugar metabolism; Metabolic pathways

Roehe et al., 2016

K01814 Phosphoribosylformimino-5-

aminoimidazole carboxamide

ribotide isomerase

EC:5.3.1.16 Histidine metabolism; Metabolic pathways; Biosynthesis

of secondary metabolites; Biosynthesis of amino acids

Roehe et al., 2016

K01818 L-fucose/D-arabinose isomerase EC:5.3.1.25

or 5.3.1.3

Fructose and mannose metabolism; Microbial

metabolism in diverse environments

Roehe et al., 2016

K01876 Aspartyl-tRNA synthetase EC:6.1.1.12 Aminoacyl-tRNA biosynthesis Roehe et al., 2016

K01924 UDP-N-acetylmuramate–alanine

ligase

EC:6.3.2.8 D-Glutamine and D-glutamate metabolism;

Peptidoglycan biosynthesis; Metabolic pathways

Roehe et al., 2016

K01928 UDP-N-acetylmuramoyl-L-

alanyl-D-glutamate−2,6-

diaminopimelate

ligase

EC:6.3.2.13 Lysine biosynthesis; Peptidoglycan biosynthesis Roehe et al., 2016

K02006 Obalt/nickel transport system

ATP-binding protein

- ABC transporters Roehe et al., 2016

K02008 Cobalt/nickel transport system

permease protein

- ABC transporters Roehe et al., 2016

K02030 Polar amino acid transport

system substrate-binding protein

- - Li and Guan, 2017

K02313 Chromosomal replication initiator

protein

- Two-component system; Cell cycle–Caulobacter Roehe et al., 2016

K02343 DNA polymerae III gamma/tau EC:2.7.7.7 Purine metabolism; Pyrimidine metabolism; Metabolic

pathways; DNA replication; Mismatch repair;

Homologous recombination

Roehe et al., 2016

K02377 GDP-L-fucose synthase EC:1.1.1.271 Fructose and mannose metabolism; Amino sugar and

nucleotide sugar metabolism; Metabolic pathways

Roehe et al., 2016

K02907 Large subunit ribosomal protein

L30

- Ribosome Roehe et al., 2016

K03111 Single-strand DNA binding

protein

- DNA replication; Mismatch repair; Homologous

recombination

Roehe et al., 2016

K03410 Chemotaxis protein CheC - Bacterial chemotaxis Li and Guan, 2017

K03426 NAD+ diphosphatase EC:3.6.1.22 Nicotinate and nicotinamide metabolism; Metabolic

pathways; Peroxisome

Roehe et al., 2016

K03458 Nucleobase:cation symporter-2,

NCS2 family

- - Roehe et al., 2016

K03501 16S rRNA (guanine527-N7)-

methyltransferase

EC:2.1.1.170 - Roehe et al., 2016

K03581 Exodeoxyribonuclease V alpha

subunit

EC:3.1.11.5 Homologous recombination Roehe et al., 2016

K03615 Electron transport complex

protein RnfC

- - Roehe et al., 2016

(Continued)
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TABLE 2 | Continued

KEGG

number

Description E.C number Pathway Published papers

K03631 DNA repair protein RecN

(Recombination protein N)

- - Roehe et al., 2016

K03657 DNA helicase II/ATP-dependent

DNA helicase PcrA

EC:3.6.4.12 Nucleotide excision repair; Mismatch repair Roehe et al., 2016

K03694 ATP-dependent Clp protease

ATP-binding subunit ClpA

- - Roehe et al., 2016

K04112 Benzoyl-CoA reductase subunit

C

EC:1.3.7.8 Benzoate degradation; Metabolic pathways; Microbial

metabolism in diverse environments; Degradation of

aromatic compounds

Li and Guan, 2017

K04130 Muscarinic acetylcholine

receptor M2

- Calcium signaling pathway; cAMP signaling pathway;

Neuroactive ligand-receptor interaction; PI3K-Akt

signaling pathway; Cholinergic synapse; Regulation of

actin cytoskeleton

Li and Guan, 2017

K04517 Prephenate dehydrogenase EC:1.3.1.12 Phenylalanine, tyrosine and tryptophan biosynthesis;

Novobiocin biosynthesis; Metabolic pathways;

Biosynthesis of secondary metabolites; Biosynthesis of

antibiotics; Biosynthesis of amino acids

Roehe et al., 2016

K04974 Transient receptor potential

cation channel subfamily V

member 5

- Parathyroid hormone synthesis, secretion and action;

Endocrine and other factor-regulated calcium

reabsorption

Shabat et al., 2016

K08483 Phosphotransferase system,

enzyme I, PtsI

EC:2.7.3.9 Phosphotransferase system (PTS) Roehe et al., 2016

K08602 Oligoendopeptidase F EC:3.4.24.- - Roehe et al., 2016

K09811 Cell division transport system

permease protein

- ABC transporters Roehe et al., 2016

K11752 Diaminohydroxyphosphoribosyl

aminopyrimidine

deaminase/5-amino-6-(5-

phosphoribosylamino)uracil

reductase

EC:3.5.4.26

or 1.1.1.193

Riboflavin metabolism; Metabolic pathways;

Biosynthesis of secondary metabolites; Quorum sensing

Roehe et al., 2016

K13542 Uroporphyrinogen III

methyltransferase/synthas

EC:2.1.1.107

or 4.2.1.75

Porphyrin and chlorophyll metabolism; Metabolic

pathways; Biosynthesis of secondary metabolites;

Microbial metabolism in diverse environments

Roehe et al., 2016

For simplicity only genes from Shabat et al. (2016) with significant correlation to amino acid metabolism are shown. Genes that lacked function annotation were removed. Genes identified

consistently across experiments and therefore representing the most promising marker genes are highlighted in gray.

However, they may also be limited to, or biased toward,
strains that are easy to culture, highly abundant organisms and
organisms which are of specific interest to research. Since the
seminal work of Robert Hungate published in his book “The
rumen and its microbes” in 1966 (Hungate, 1966), technologies
have rapidly advanced. The foundational work of Robert Hungate
formed the backbone of the Hungate1000 project (Seshadri et al.,
2018) led by AgResearch, New Zealand and formed a major
project within the Global Research Alliance’s Rumen Microbial
Genomics Network. It’s aims were to sequence 1,000 cultured
rumen microbial genomes to aid our understanding of the
rumen microbiome. The Hungate1000 project recently finished
having sequenced 420 representatives of rumenmicrobes (mainly
bacteria), and thus providing a major tool for the community
(Seshadri et al., 2018).

However, many of the rumen bacteria remain uncultured
and uncharacterized, with genomic information on the rumen
eukaroytes being especially sparse in the Hungate1000 genomes
as a result of the challenges of sequencing the A-T rich genomes

of these microbes. Our ability to culture rumen bacteria has
improved in recent years through the development of culture
media (Kenters et al., 2011). A recent study by Poelaert et al.
(2018) showed that reducing agents were not required to
culture all rumen bacteria and that when removed they resulted
in higher microbial diversity. Techniques such as dilution to
extinction have also improved our ability to culture bacteria
in many ecosystems, including the rumen (Kenters et al.,
2011). Another method, which has had success for culturing
marine bacteria, is the microdroplet encapsulation technique
(Zengler et al., 2002). This involves using a version of the
natural environment by using a dilution to extinction technique,
followed by encapsulation in a gel and suspending microdroplets
in a column. The medium from the environment in which
the bacterium was isolated can then be flowed through to
provide nutrients for growth (Stewart, 2012). Indeed, there
are many technologies emerging that should be investigated
for their ability to culture the as yet unculturable rumen
bacteria.
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TABLE 3 | Potential gene biomarkers indicative of methane production from ruminants.

KEGG

number

Description E.C number Pathway Published papers

K00123 Formate dehydrogenase, alpha

subunit

EC:1.17.1.9 Glyoxylate and dicarboxylate metabolism; Methane

metabolism; Metabolic pathways; Microbial metabolism

in diverse environments; Carbon metabolism

Wallace et al., 2015; Roehe

et al., 2016; Auffret et al.,

2017b

K00125 Formate dehydrogenase, beta

subunit

EC:1.17.98.3

or 1.8.98.6

Methane metabolism; Metabolic pathways; Microbial

metabolism in diverse environments; Carbon metabolism

Roehe et al., 2016

K00150 Glyceraldehyde-3-phosphate

dehydrogenase [NAD(P)]

EC:1.2.1.59 Glycolysis/Gluconeogenesis; Carbon fixation in

photosynthetic organisms; Metabolic pathways;

Biosynthesis of secondary metabolites; Microbial

metabolism in diverse environments; Biosynthesis of

antibiotics; Carbon metabolism; Biosynthesis of amino

acids

Auffret et al., 2017b

K00169 Pyruvate ferredoxin

oxidoreductase, alpha subunit

EC:1.2.7.1 Glycolsis/Gluconeogenesis; Citrate cycle (TCA); Pyruvate

metabolism; Nitrotoluene degradation; Propanoate

degradation; Butanoate degradation; Methane

metabolism; Carbon fixation in proaryotes; Metabolic

pathways; Microbial metabolism in diverses

environments; Biosynthesis of antibiotics; Carbon

metabolism

Roehe et al., 2016; Auffret

et al., 2017b

K00170 Pyruvate ferredoxin

oxidoreductase, beta subunit

EC:1.2.7.1 As above Roehe et al., 2016; Auffret

et al., 2017b

K00200 Foormylmethanofuran

dehydrogenase subunit A

EC:1.2.7.12 Methane metabolism; Metabolic pathways; Microbial

metabolism in diverse environments; Biosynthessis of

antibiotics; Carbon metabolism

Wallace et al., 2015; Roehe

et al., 2016; Auffret et al.,

2017b

K00201 Formylmethanofuran

dehydrogenase subunit B

EC:1.2.7.12 As above Wallace et al., 2015; Roehe

et al., 2016; Auffret et al.,

2017b

K00203 Formylmethanofuran

dehydrogenase subunit D

EC:1.2.7.12 As above Auffret et al., 2017b

K00205 Formylmethanofuran

dehydrogenase subunit F

EC:1.2.7.12 As above Roehe et al., 2016

K00311 Electron-transferring-flavoprotein

dehydrogenase

EC:1.5.51 One carbon pool by folate; Carbon fixation pathways in

prokaryotes; Metabolic pathways; Microbial metabolism

in diverse environments

Kamke et al., 2016

K00323 NAD(P) transhydrogenase EC:1.6.1.2 Nicotinate and nicotinamide metabolism; Metabolic

pathways

Kamke et al., 2016*

K00399 Methyl coenzyme M reductase

alpha subunit

EC:2.8.4.1 Methane metabolism; Metabolic pathways; Microbial

metabolism in diverse environments; Carbon metabolism

Shi et al., 2014; Wallace

et al., 2015; Kamke et al.,

2016; Roehe et al., 2016;

Auffret et al., 2017b

K00400 Methyl coenzyme M reductase

system, component A2

EC:2.8.4.1 As above Roehe et al., 2016; Auffret

et al., 2017b

K00401 Methyl coenzyme M reductase

system, beta subunit

EC:2.8.4.1 As above Shi et al., 2014; Wallace

et al., 2015

K00402 Methyl coenzyme M reductase

system, gamma subunit

EC:2.8.4.1 As above Shi et al., 2014; Auffret

et al., 2017b

K00441 Coenzyme F420 hydrogenase

beta subunit

EC:1.12.98.1 Methane metabolism; Metabolic pathways; Microbial

metabolism in diverse environments

Roehe et al., 2016

K00539 Oxidoreducatase EC: 1.97.1.- - Kamke et al., 2016

K00577 Tetrahydromethanopterin

S-methyltransferase subunit A

EC:2.11.86 Methane metabolism; Metabolic pathways; Microbial

metabolism in diverse environments; Biosynthessis of

antibiotics; Carbon metabolism

Roehe et al., 2016

K00580 Tetrahydromethanopterin

S-methyltransferase subunit D

EC:2.11.86 As above Roehe et al., 2016; Auffret

et al., 2017b

K00581 Tetrahydromethanopterin

S-methyltransferase subunit E

EC:2.11.86 As above Roehe et al., 2016; Auffret

et al., 2017b

K00584 Tetrahydromethanopterin

S-methyltransferase subunit H

EC:2.11.86 As above Roehe et al., 2016; Auffret

et al., 2017b

(Continued)
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TABLE 3 | Continued

KEGG

number

Description E.C number Pathway Published papers

K00666 Fatty-acyl-CoA synthase EC:6.2.1.- - Kamke et al., 2016

K00672 Formylmethanofuran-

tetrahydromethanopterin

N-formyltransferase

EC:2.3.1.101 Methane metabolism; Metabolic pathways; Microbial

metabolism in diverse environments; Biosynthessis of

antibiotics; Carbon metabolism

Roehe et al., 2016; Auffret

et al., 2017b

K00758 Thymidine phosphorylase EC:2.4.2.4 Pyrimidine metabolism; Drug metabolism–other

enzuymes; Metabolic pathways; Bladder cancer

Kamke et al., 2016 (DNA

and RNA)

K00814 Alanine transaminase EC: 2.6.12 Arginie biosynthesis; Alanine, aspartate and glutamate

metabolism; Carbon fixation in photosynthetic

organisms; Metabolic pathways; Microbial metabolism in

diverse environments; Carbon metabolism;

2-oxocarboxylic acid metabolism; Biosynthesis of amino

acids

Kamke et al., 2016*

K00827 Alanine-glyoxylate

transaminase/(R)-3-amino-2-

methylpropionate-pyruvate

transaminase

EC:2.6.1.44

or

EC:2.6.1.40

Metabolic pathways; Biosynthesis of secondary

metabolites; Alanine, aspartate and glutamate

metabolism; Glycine, serine and threonine metabolism;

Cysteine and methionine metabolism; Valine, leucine and

isoleucine degradation

Kamke et al., 2016

K00953 FAD synthetase EC:2.7.7.2 Riboflavin metabolism; Metabolic pathways;

Biosynthesis of secondary metabolites

Kamke et al., 2016

K01160 Crossover junction

endodeoxyribonuclease RusA

EC:3.1.22.4- - Kamke et al., 2016

K01342 Subtilisin EC:3.4.21.62 Quorum sensing Kamke et al., 2016

K01479 Formiminoglutamase EC:3.5.3.8 Histidine metabolism Shi et al., 2014; Kamke

et al., 2016*

K01499 Methenyltetrahydromethanopterin

cyclohydrolase

EC:3.5.4.27 As above Roehe et al., 2016; Auffret

et al., 2017b

K01631 2-Dehydro-3-

deoxyphosphogalactonate

aldolase

EC:4.1.2.21 Galactose metabolism; Metabolic pathways Kamke et al., 2016

K01673 Carbonic anhydrase EC:4.2.11 Nitrogen metabolism Auffret et al., 2017b

K01792 Glucose-6-phosphate

1-epimerase

EC:5.1.3.15 Glycolysis/Gluconeogenesis; Metabolic pathways;

Biosynthesis of secondary metabolites; Microbial

metabolism in diverse environments; Biosynthesis of

antibiotics

Kamke et al., 2016

K01846 Methylaspartate mutase EC:5.4.99.1 C5-Branched dibasic acid metabolism; Purine

metabolism

Shi et al., 2014

K01846 Methylaspartate mutase EC:5.4.99.1 Carbon metabolism; Glyoxylate and dicarboxylate

metabolism; C5-Branched dibasic acid metabolism;

Metabolic pathways

Kamke et al., 2016

K01912 Phenylacetate-CoA ligase EC:6.2.1.30 Phenylalanine metabolism; Microbial metabolism in

diverse environments; Biofilm formation–Vibrio cholerae

Kamke et al., 2016

K01913 Trans-2-methyl-5-isopropylhexa-

2,5-dienoate-CoA

ligase

- - Kamke et al., 2016

K01959 Pyruvate carboxylase subunit A EC:6.4.1.1 Citrate cycle (TCA cycle); Pyruvate metabolism; Carbon

fixation pathways in prokaryotes; Metabolic pathways;

Microbial metabolism in diverse environments; Carbon

metabolism; Biosynthesis of amino acids

Auffret et al., 2017b

K02117 V-type H+-transporting ATPase

subunit A

EC:3.6.3.14

or

EC:3.6.3.15

Oxidative phosphorylation; Metabolic pathways Wallace et al., 2015; Auffret

et al., 2017b

K02118 V-type H+-transporting ATPase

subunit B

EC:3.6.3.14

or

EC:3.6.3.15

Oxidative phosphorylation; Metabolic pathways Wallace et al., 2015; Auffret

et al., 2017b

K02319 DNA polymerase EC:2.7.7.7 Pyrimidine metabolism Shi et al., 2014)

K02319 DNA polymerase I EC:2.7.7.7 Metabolic pathways; Purine metabolism; Pyrimidine

metabolism; DNA replication

Kamke et al., 2016

(Continued)
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TABLE 3 | Continued

KEGG

number

Description E.C number Pathway Published papers

K02674 Type IV pilus assembly protein

PilY1

- - Kamke et al., 2016

K02683 DNA primase EC:2.7.7.- DNA replication Kamke et al., 2016

K02856 L-rhamnose-H+ transport

protein

- - Kamke et al., 2016

K03045 DNA-directed RNA polymerase

subunit B
′′

EC:2.7.7.6 Purine metabolism; Pyrimidine metabolism; Metabolic

pathways; RNA polymerase

Kamke et al., 2016*

K03053 DNA-directed RNA polymerase

subunit H

EC:2.7.7.6 Purine metabolism; Pyrimidine metabolism; Metabolic

pathways; RNA polymerase

Kamke et al., 2016*

K03124 Transcription initiation factor

TFIIB

- Basal transcription factors; Epstein-Barr virus infection;

Viral carcinogenesis

Kamke et al., 2016*

K03167 DNA topoisomerase VI subunit B EC:5.99.1.3 - Kamke et al., 2016*

K03219 Type III secretion protein SctC - Bacterial secretion system Kamke et al., 2016

K03222 Type III secretion protein SctJ - as above Kamke et al., 2016

K03223 Type III secretion protein SctL - as above Kamke et al., 2016

K03224 ATP synthase in type III secretion

protein SctN

EC:3.6.3.14 as above Kamke et al., 2016

K03226 Type III secretion protein SctR - as above Kamke et al., 2016

K03227 Type III secretion protein SctS - as above Kamke et al., 2016

K03228 Type III secretion protein SctT - as above Kamke et al., 2016

K03229 Type III secretion protein SctU - as above Kamke et al., 2016

K03230 Type III secretion protein SctV - as above Kamke et al., 2016

K03579 ATP-dependent helicase HrpB EC:3.6.4.13 - Kamke et al., 2016

K04058 Type III secretion protein SctW - Bacterial secretion system Kamke et al., 2016

K04795 Fibrillarin-like pre-rRNA

processing protein

- - Kamke et al., 2016*

K04801 Replication factor C small

subunit

- - Kamke et al., 2016*

K04835 Methylaspartate ammonia-lyase EC:4.3.1.2 C5-Branched dibasic acid metabolism Shi et al., 2014

K04857 Voltage-dependent calcium

channel L type alpha-1S

- MAPK signaling pathway; Calcium signaling pathway;

cGMP-PKG signaling pathway; cAMP signaling pathway;

Cardiac muscle contraction; Adrenergic signaling in

cardiomyocytes; Vascular smooth muscle contraction;

Retrograde endocannabinoid signaling; Cholinergic

synapse; Serotonergic synapse; GABAergic synapse;

Insulin secretion; GnRH signaling pathway; Oxytocin

signaling pathway; Renin secretion; Aldosterone

synthesis and secretion; Cortisol synthesis and secretion;

Cushing’s syndrome; Alzheimer’s disease; Hypertrophic

cardiomyopathy (HCM); Arrhythmogenic right ventricular

cardiomyopathy (ARVC); Dilated cardiomyopathy (DCM)

Kamke et al., 2016*

K04874 Potassium voltage-gated

channel Shaker-related subfamily

A member 1

- - Kamke et al., 2016

K05830 Acetylornithine/LysW-gamma-L-

lysine

aminotransferase

EC:2.6.1.11 Arginine biosynthesis; Lysine biosynthesis; Metabolic

pathways; Biosynthesis of secondary metabolites;

Biosynthesis of antibiotics; 2-Oxocarboxylic acid

metabolism; Biosynthesis of amino acids

Kamke et al., 2016

K06863 (Beta)-D-ribofuranosyl

5′-monophosphate synthetase

EC:6.3.4.- Purine metabolism Shi et al., 2014

K06863 5-Formaminoimidazole-4-

carboxamide-1-(beta)-D-

ribofuranosyl 5′-monophosphate

synthetase

EC:6.3.4.23 Purine metabolism; Metabolic pathways; Biosynthesis of

secondary metabolites; Biosynthesis of antibiotics

Kamke et al., 2016*

K06907 Phage tail sheath protein FI - - Kamke et al., 2016*

(Continued)
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TABLE 3 | Continued

KEGG

number

Description E.C number Pathway Published papers

K06927 Diphthine-ammonia ligase EC:6.3.1.14 - Kamke et al., 2016*

K06937 7,8-dihydro-6-

hydroxymethylpterin

dimethyltransferase

EC:2.1.1.- - Auffret et al., 2017b

K07249 Retinal dehydrogenase EC:1.2.1.36 Retinol metabolism; Metabolic pathways Kamke et al., 2016

K07283 Putative salt-induced outer

membrane protein

- - Kamke et al., 2016

K07318 Adenine-specific

DNA-methyltransferase

EC:2.1.1.72 - Kamke et al., 2016*

K07463 Archaea-specific RecJ-like

exonuclease

- - Kamke et al., 2016*

K07558 tRNA nucleotidyltransferase

(CCA-adding enzyme)

EC:2.7.7.72 - Kamke et al., 2016*

K07569 RNA-binding protein - - Kamke et al., 2016*

K07732 Riboflavin kinase, archaea type

[EC:2.7.1.161]

EC:2.7.1.161 Riboflavin metabolism; Metabolic pathways Kamke et al., 2016*

K07796 Cu(I)/Ag(I) efflux system outer

membrane protein CusC/SilC

- - Kamke et al., 2016

K08605 Coccolysin [EC:3.4.24.30] EC:3.4.24.30 Quorum sensing Kamke et al., 2016

K08635 Membrane

metallo-endopeptidase-like 1

- - Kamke et al., 2016

K08636 Phosphate-regulating neutral

endopeptidase

EC:3.4.24.- - Kamke et al., 2016

K08641 D-alanyl-D-alanine dipeptidase

[EC:3.4.13.22]

EC:3.4.13.22 Vancomycin resistance; Two-component system Kamke et al., 2016

K09482 Glutamyl-tRNA (Gln)

amidotransferase subunit D

EC:6.3.5.7 Aminoacyl-tRNA biosynthesis Shi et al., 2014

K09482 Glutamyl-tRNA(Gln)

amidotransferase subunit D

EC:6.3.5.7 Aminoacyl-tRNA biosynthesis; Metabolic pathways Kamke et al., 2016*

K09610 Endothelin-converting

enzyme-like 1

EC:3.4.24.- - Kamke et al., 2016

K10060 C-type lectin domain family 4

member F

- - Kamke et al., 2016

K10639 E3 ubiquitin-protein ligase

CCNP1IP1

EC:6.3.2.19 - Kamke et al., 2016

K10725 Archaeal cell division control

protein 6

- - Kamke et al., 2016*

K10896 Fanconi anemia group M protein - Fanconi anemia pathway Kamke et al., 2016*

K11382 MFS transporter, OPA family,

phosphoglycerate transporter

protein

- Two-component system Kamke et al., 2016

K11404 Histone deacetylase 3 EC:3.5.1.98 Thyroid hormone signaling pathway; Alcoholism; Human

papillomavirus infection; Viral carcinogenesis

Kamke et al., 2016

K11900 Type VI secretion system protein

ImpC

- Biofilm formation–Pseudomonas aeruginosa Kamke et al., 2016

K12204 Defect in organelle trafficking

protein DotC

- - Kamke et al., 2016

K12206 Intracellular multiplication protein

IcmB

- - Kamke et al., 2016

K12217 Intracellular multiplication protein

IcmO

- - Kamke et al., 2016

K12221 Intracellular multiplication protein

IcmS

- - Kamke et al., 2016

K12434 Polyketide synthase 7 - - Kamke et al., 2016

(Continued)
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TABLE 3 | Continued

KEGG

number

Description E.C number Pathway Published papers

K12448 UDP-arabinose 4-epimerase EC:5.1.3.5 Amino sugar and nucleotide sugar metabolism;

Metabolic pathways

Kamke et al., 2016

K12739 Peptidyl-prolyl cis-trans

isomerase-like 6

EC:5.2.1.8 - Kamke et al., 2016*

K13085 Phosphatidylinositol-4,5-

bisphosphate

4-phosphatase

EC:3.1.3.78 Bacterial invasion of epithelial cells; Shigellosis;

Salmonella infection

Kamke et al., 2016

K13600 Chlorophyllide a oxygenase EC:1.14.13.122 Porphyrin and chlorophyll metabolism; Metabolic

pathways; Biosynthesis of secondary metabolites

Kamke et al., 2016

K13670 Putative glycosyltransferase EC:2.4.-.- - Kamke et al., 2016

K13812 Bifunctional enzyme Fae/Hps EC:4.2.1.147

or 4.1.2.43

Pentose phosphate pathway; Methane metabolism;

Metabolic pathways; Microbial metabolism in diverse

environments; Carbon metabolism; Biosynthessis of

amino acids

Roehe et al., 2016; Auffret

et al., 2017b

K13886 Coronin-1B - -

K13893 Microcin C transport system

substrate-binding protein

- ABC transporters Kamke et al., 2016

K14123 Energy-converting hydrogenase

B N

- - Roehe et al., 2016

K14128 F420-non-reducing hydrogenase

subunit G

EC:1.12.99.-

or

EC:1.8.98.5

Methane metabolism; Metabolic pathways; Microbial

metabolism in diverse environments; Carbon metabolism

Roehe et al., 2016; Auffret

et al., 2017b

K14275 D-xylonate dehydratase EC:4.2.1.82 Pentose and glucuronate interconversions Kamke et al., 2016

K14324 Histone deacetylase complex

subunit SAP18

- RNA transport; mRNA surveillance pathway Kamke et al., 2016

K14333 2,3-dihydroxybenzoate

decarboxylase

EC:4.1.1.46 Benzoate degradation; Aminobenzoate degradation Shi et al., 2014

K14333 2,3-dihydroxybenzoate

decarboxylase

EC:4.1.1.46 Benzoate degradation; Aminobenzoate degradation;

Microbial metabolism in diverse environments

Kamke et al., 2016

K14414 Transcriptional regulatory protein

RtcR

- - Kamke et al., 2016

K14426 Solute carrier family 12

(sodium/chloride transporter),

member 3

- - Kamke et al., 2016

K14429 Solute carrier family 12

(potassium/chloride

transporters), member 9

- - Kamke et al., 2016

K14995 Solute carrier family 38

(sodium-coupled neutral amino

acid transporter), member 9

- mTOR signaling pathway Kamke et al., 2016*

Data are from metagenomics sequences unless marked with an asterisk. *Indicates metatranscriptomic datas. Genes that lacked functional annotation were removed. Genes identified

consistently across experiments and therefore representing the most promising marker genes are highlighted in gray.

Metataxonomy and Inference of Function
The onset of next generation sequencing resulted in an explosion
in publications exploring the metataxonomy of the rumen
microbiome under differing parameters. Although these studies
are of great value, interpretation of the data generated across
different publications remains a challenge. Differences among
studies exist with respect to DNA extraction, primers and cycling
parameters, as well as downstream computational analysis,
resulting in conflicting data (Yu and Morrisson, 2004a,b;
Edwards et al., 2007; Huws et al., 2007; Kim et al., 2011;
Ishaq and Wright, 2014; Vaidya et al., 2018). With respect
to DNA extraction Yu and Morrisson (2004a) evaluated three

extraction techniques (a modified phenol-free bead-beating
method (referred to as repeated bead beating plus column
(RBB + C) method, FastDNA SPIN Kit (MP Biomedicals,
California) and the QIAamp DNA Stool Mini Kit (Qiagen,
Germany). They concluded that the RBC + C method yielded
more DNA and that bead beating was crucial. Vaidya et al.
(2018) further tested 4 DNA extraction methods (Repeated bead
beating (RBB) developed by Yu and Morrisson (2004a), phenol
dependent bead beating (PBB), Fast SPIN DNA kit for soil (MP
Biomedicals, California), and the PQIAmini) using both rumen
fluid and fibrous rumen samples. The authors concluded that
each method was effective but gave different results, for example
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PBB extracted DNA extracted resulted in higher abundances
of Ruminococcaceae compared with abundances obtained using
the FDSS method, whereas abundances of Fibrobacteraceae was
lower compared with the RBB method. They conclude that
each method has advantages and disadvantages which need
to be considered based on sample type, but bead beating is
critical. Further downstream many authors have investigated the
importance of primer choice for metataxonomic investigations
of the rumen microbiome (Yu and Morrisson, 2004b; Edwards
et al., 2007; Huws et al., 2007; Kim et al., 2011; Ishaq and
Wright, 2014). Yu and Morrisson (2004b) investigated primer
choice in terms of diversity observed on denaturing gradient
gel electrophoresis (DGGE) gels and concluded that primers
targeting the V3 region were the best. Huws et al. (2007) and
Edwards et al. (2007), however showed that the V3 primers were
non-specific to bacteria and could amplify plant chloroplastic
DNA as well as archaeal 16S rDNA and protozoal 18S rDNA
sequences. The amplification of plant chloroplast sequences is
a substantial issue for samples taken from animals fed fresh
forage (these are often assigned taxonomically as cyanobacteria),
with an abundance of intact chloroplast DNA being present
in the rumen, and often masks microbial sequences (Edwards
et al., 2007). This is the case when investigated using DGGE
and NGS based sequencing (Huws, personal communication).
Nonetheless, if animals are not fed fresh forage and primers
which are more broad are required to cover a greater proportion
of the microbes as a whole is required then the V3 region
is perhaps a justifiable choice. However, Huws et al. (2007)
concluded that for specific bacterial 16S rRNA V6-V8 primers
were more appropriate. Edwards et al. (2007) also developed
a primer pair based on the V6-V8 region which reduce the
amplification of chloroplastic DNA. Nonetheless, the amplicon
size obtained using the Edwards et al. (2017) primers are
often too large for effective sequencing, therefore the reverse
primer has been changed to enable avoidance of chloroplast
identification and production of a smaller amplicon for NGS
sequencing (Belanche et al., 2017). The annealing temperatures
and number of cycles used for PCR are also clearly going to bias
results somewhat. Nonetheless, using a basic set of standardized
protocols may not be possible, due to the differing hypotheses
and the complex nature of the ecosystem (i.e., host animal),
however ensuring data accuracy by using internal standards
represents one approach to ensure that comparisons among
datasets are valid. Pollock et al. (2018) attempted to describe
the guidelines and consensus best practices for metataxonomic
studies and concluded that bead beating is critical for DNA
extraction as is the use of internal standards for metataxonomic
studies amongst other recommendations. Also the construction
of rumen microbiome databases to aid accurate taxonomical
assignment, such as RIM-DB (for methanogens; Seedorf et al.,
2014), the ureC database (ureolytic bacteria; Jin et al., 2017), and
AF-RefSeq (anaerobic fungi; Paul et al., 2018) drastically improve
our ability to monitor rumen microbial diversity.

Irrespective, metataxonomic rDNA data have provided
insights into the composition of the rumen microbiome under
differing parameters, but these techniques are limited in terms
of providing insight into microbial function. Nonetheless, due

to their low cost, these techniques are the most published
and will continue to be important in microbiome research for
the near future. Software to predict microbial function from
metataxonomic data, such as PICRUSt (Langille et al., 2013),
has been applied to many different ecosystems, including the
rumen. Although this approach saves on the cost associated
withmore thorough and accurate shotgunmetagenomic analysis,
it has limitations in accurately represent microbiome function
(Wilkinson et al., 2018). The accuracy of PICRUSt prediction,
originally intended for humanmicrobiota data, has recently been
tested for the rumen microbiome using datasets with 16S rDNA
data and accompanying metagenomics or metatranscriptomic
datasets (Wilkinson et al., 2018). The data shows poor correlation
of predicted function with the actual function seen within the
metagenomics/metatranscriptomic datasets (Wilkinson et al.,
2018). Wilkinson et al. (2018), developed CowPI an improved
16S rDNA inference platform for the rumen which is based on
PICRUSt but uses the Hungate1000 genomes as the searchable
genomes (http://www.cowpi.org/). Other platforms allowing
inference of function from 16S rDNA data have also been
developed, such as Tax4Fun (Aßhauer et al., 2015) and PanFP
(Jun et al., 2015), and have been proposed to provide more
accurate functional annotations than PICRUSt (Koo et al., 2017).
However, the ability of these programs to predict the function
of the rumen microbiome has not been investigated. Regardless,
inferring metabolic function from phylogenetic data allows the
scientific community to obtain retrospective value from these
datasets in order to understand the rumen microbiome in light
of global agricultural challenges.

Metagenomics
The benefits of metagenomics include the ability to assemble
whole- and fragmented-genomes, predict genes, map enzymes
and pathways, discover new enzymes and pathways, and quantify
the abundance of functional genomic elements across and
between samples. Shotgun metagenomics was first applied to
the rumen in order to discover novel biomass degrading
enzymes from switchgrass-associated microbes (Hess et al.,
2011). Subsequently, metagenomics has been used to study many
aspects of rumen microbiology, including methane emissions
in cattle (Wallace et al., 2015) and sheep (Shi et al., 2014),
biomarkers to predict ruminal methanogenesis (Auffret et al.,
2017b), the effect of feed-conversion-ratio, and breed and host
genetics on the composition of the rumen microbiome (Roehe
et al., 2016), nutrient acquisition (Mayorga et al., 2016; Rubino
et al., 2017), and effects of diet (Auffret et al., 2017a,b), and
investigate impact of feed additives (Thomas et al., 2017) on
the abundance of antimicrobial-resistance genes. The rumen also
remains a source of valuable bioactives for the biotechnology
industry, and metagenomics is a key tool for such bioprospecting
(Oyama et al., 2017; Roumpeka et al., 2017). More recently,
metagenomic sequences have also resulted in an enhanced
understanding of niche specialization within rumen bacteria
(Rubino et al., 2017). Rubino et al. (2017) showed that, within
metagenome sequences from 14 silage-fed cows, that the genus
Prevotella possessed higher levels of glycosyl hydrolase (GH)
isoforms relating specifically to the degradation of hemicellulose,
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whilst Clostridium contained higher levels of GH isoforms for
enzymes specifically involved in cellulose degradation. Their data
suggests that isoform diversity maintains selective advantage and
niche specialization within these genera.

Binning Genomes From Metagenomes
Another major advancement in understanding the capacity of
rumen bacteria has been our increased ability to bin genomes
from metagenomes. Assembly binning refers to the construction
of complete or near complete microbial genomes directly from
metagenomic sequencing data, and was first achieved by Tyson
et al. (2004) from an acidophilic biofilm. Hess et al. (2011)
were the first to apply this to ruminants, assembling 15 draft
microbial genomes from the switchgrass associated microbiome
of cattle. Subsequently, Svartstrom et al. (2017) assembled 99
microbial genomes from the moose rumen, Stewart et al. (2018)
assembled 913 microbial genomes from the rumen of cattle, and
Parks et al. (2017) assembled over 8,000 novel microbial genomes
from 1,500 public datasets, some of which originated from
the rumen. Traditional metagenomic binning takes an in silico
approach whereby metagenomic assembled contigs are clustered
by base-composition and abundance across multiple datasets—
the hypothesis being that contigs from the same organism will
follow a very similar abundance profile across multiple samples,
and will have a roughly similar base composition. The success
of such binning procedures is validated by investigating the
number of single-copy core-genome genes within each bin, as
implemented by software such as CheckM (Parks et al., 2015).
More recently, physical methods of metagenomic binning such
as the use of Hi-C have been published (Beitel et al., 2014).
In Hi-C experiments, parts of the chromosome that are in
contact with one another inside the cell are cross-linked using
formaldehyde; cells are then lysed, the DNA is fragmented using
a restriction enzyme, followed by random ligation, amplification
and sequencing. Each pair of paired-end reads therefore comes
from two separate fragments of the same original chromosome,
and that information can be used to collate assembled contigs
into genomes. Hi-C binning has been used effectively on human
feces (Press et al., 2017) as well as in ruminants (Stewart et al.,
2018).

Metatranscriptomics
Metatranscriptomics involves the profiling of community-wide
expressed genes (mRNA), and is often termed RNA-seq. Whilst
metagenomics allows us to evaluate diversity and the potential
functional capacity of a microbiome, metatranscriptomes
provide insight into the actual function of microbiomes via gene
expression. Due to the abundance of rRNA, metatranscriptomics
requires either very deep sequencing to obtain sufficient mRNA
sequences coupled with computational binning of the rRNA
genes (these can also be useful for metataxonomics) or use
of kits to deplete rRNA pre-sequencing. Deep sequencing is
of course expensive and the kits used to remove rRNA for
metranscriptomics of the rumen microbiome, have varying
degrees of success (Huws personal communication). These
kits are also bespoke for the removal of bacterial or eukaryotic
rRNA, and thus for the complex rumen microbiome, a variety of

kits are required to remove prokaryotic and eukaryotic rRNA.
This is both costly and laborious, with the time required likely
resulting in partial RNA degradation, which will ultimately bias
down-stream analysis. Nonetheless Comtet-Marre et al. (2017)
developed a bespoke rRNA kit which was effective in removing
rumen microbial rRNA, providing a potential solution for future
experiments.

Despite these developments, it has also been shown that
the correlation between mRNA and protein levels can be weak
and variable, possibly due to post-transcriptional modifications
(Greenbaum et al., 2003; Csárdi et al., 2015). Ribosome
profiling (riboseq) has been developed as a direct method
to quantify and characterize translation (Ingolia et al., 2009).
Riboseq takes advantage of the fact that during translation, the
ribosome protects around 30 nucleotides of the mRNA from
nuclease activity. High-throughput sequencing of these ribosome
protected fragments offers a precise record of the number and
location of the ribosomes at the time translation ceases. Mapping
the position of the ribosome-protected fragments is indicative
of the translated regions within the transcriptome. Nonetheless,
whilst the use of this technique on pure cultures has been
effective, the development of the technique (MetaRibo-Seq) at
a metatranscriptomic level is in its infancy and still requires
validation for the rumen micobiome.

Metaproteomics
Metaproteomics falls between the established DNA and RNA
sequencing and metabolomics procedures as an approach to
characterize the functional activity of the microbial community.
While still an emerging technology, the concept was introduced
by Wilmes and Bond (2004), who used 2D PAGE methods to
separate and identify proteins from a complex sample extracted
from waste water treatment. As a concept, it has some theoretical
advantages over RNA sequencing methods in that the half-life
of proteins can be significantly longer than RNA transcripts.
Therefore, if the data represent a “snapshot” of microbial activity
at a single time point, then identification of the proteins arguably
will provide a more accurate picture than sequencing mRNA.
Moreover, as individual proteins can be identified by their amino
acid sequence, function can still be linked to taxa using protein
sequence alignment tools e.g., UniPept (Mesuere et al., 2018).

The 2D PAGE methodology involves using a pH gradient
firstly to separate proteins in one dimension based on
their isoelectric point. The proteins are then subject to gel
electrophoresis to separate them by size. This results in a spot
pattern representing the metaproteome. Individual spots can
then be excised, digested and the resulting peptides identified
using mass spectrometry. This method has been used to identify
proteins in waste water samples (Abram et al., 2009) soils,
sediments (Benndorf et al., 2009; Chourey et al., 2010), the
rhizosphere (Wu et al., 2011) and human feces (Klaassens et al.,
2007). However, when applied to rumen digesta samples this
approach revealed a major shortcoming (Snelling and Wallace,
2017), as the rumen contains high levels of plant secondary
compounds, such as tannins and other phenolics that complex
with the proteins, and interfere with protein extraction and
purification (Snelling and Wallace, 2017). Snelling and Wallace
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(2017) reported that repeated wash steps and microfiltration
were not effective in removing the contaminants, which prevent
accurate protein quantitation and obscure spot patterns in gels.
Humic acid is also highly abundant in soil and feces, which cause
similar implications for recovery for good metaproteomic data
in these systems. One possible solution to this problem is to use
acid precipitation to separate peptides (Qian and Hettich, 2017).
The authors concluded that sample quality was a key factor, with
best results obtained from fresh digesta or samples with high
microbial protein content relative to contaminants. Despite these
limitations, Snelling and Wallace (2017) did identify proteins
directly associated with the functional activity of the rumen
microbial community from 2D PAGE spots. Abundant structural
proteins were identified including actin, alpha and beta tubulin,
and axonemal isoforms dynein light chain, which are all involved
in the locomotion of ciliates. Among prokaryotic proteins were
enzymes from the Phyla Firmicutes and Bacteroidetes involved
in central metabolism. Archaeal proteins were also found in
surprisingly high abundance considering the relatively small
proportion of the microbial community that this group occupies
in the rumen. This may be a reflection of the persistence of
archaeal proteins after the original transcripts are degraded.
These archaeal proteins, were identified as key enzymes involved
in the synthesis of methane. This finding was particularly relevant
to the efforts to understand the mechanisms behind methane
production.

As a consequence of these technical challenges, very few
studies have attempted to characterize the rumen microbial
community using metaproteomics. However, in recent years,
the development of next generation mass spectrometers and
accompanying software have provided the means to identify
proteins en masse in an approach to analogous to shotgun
DNA sequencing. Using this technique Deusch and Seifert
(2015) described over 2,000 proteins associated with the rumen
microbial community. Research recently conducted by Hart
et al. (2018) explored the potential to develop a metaproteomic
approach to analyse the rumen that allowed comparison of data
with meta-transcriptomic information. Although in its infancy,
the meta-proteomic methodology did allow for the identification
of members of the protein families that were associated with the
transcriptome of the rumen microbiome (Hart and Kingston-
Smith, Personal Communication). The development of software
for meta-proteome analysis such as Meta-proteome Analyzer
(Muth et al., 2015) can also aid in the analysis and interpretation
of meta-protein data. As it stands the method shows great
potential and is a complement to other omics technologies to
determine the functionality of the rumen microbiome.

Metabolomics
Like the field of proteomics, the study of metabolomics within
the rumen is also in its infancy. Metabolomics can be defined
as the comprehensive (qualitative and quantitative) analysis of
metabolites by gathering as much metabolic information as
possible from an organism or biological system (Yi et al., 2016).
Metabolomics focuses mainly on low molecular mass molecules
(<1,000 Da), which can be related to the functional status of
the organism (Bundy et al., 2009). The main challenges for

analyzing these metabolites include their chemical complexity
and heterogeneity. Sample preparation for metabolomics can
be as simple as a liquid-liquid extraction procedure, but using
assertive methods is key to ensure effective metabolite extraction
(Patejko et al., 2017). Various analytical instruments can be
used for metabolomics, differing mainly on sensitivity and
coverage. To date, the majority of rumen metabolome studies
have used liquid chromatography-mass spectrometry (LC-MS),
gas chromatography-mass spectrometry (GC-MS) and nuclear
magnetic resonance (NMR), with the latter the most used due
to reliability and absolute quantification (Goldansaz et al., 2017).
There is growing interest for LC-MS due to recent advances
in instrument sensitivity, high processing capacity, data analysis
and the development of data repositories where the community
can curate large data sets have brought interest to tandem
mass spectrometry (MS). Furthermore, with the introduction
of the online tool Global Natural Products Social Molecular
Networking, a crowd-sourced knowledge repository and analysis
infrastructure, wherebyMS/MS spectra can be clustered based on
spectral similarity data, and greatly improving data interpretation
(Wang M. et al., 2016).

Usually, two approaches can be used for metabolic
investigations: targeted and untargeted analysis. The targeted
analysis focuses on examination of a group of knownmetabolites,
usually for hypothesis-driven studies (Patti et al., 2012), whereas
untargeted analysis evaluates large numbers of compounds.
One of the main advantages of using an untargeted approach is
the prospection of novel compounds and metabolic pathways
(Patti et al., 2012). To date, most studies regarding the rumen
metabolome used the targeted approach and had an interest
in the effect of diets on the rumen metabolome (Ametaj et al.,
2010; Saleem et al., 2012, 2013; Zhao et al., 2014; Zhang et al.,
2015; Mao et al., 2016, 2017; Zhang R. et al., 2017; Do Prado
et al., 2018; O’callaghan et al., 2018). Using a combination of
several metabolomics platforms, the pioneer study by Saleem
et al. (2013) demonstrated that the rumen metabolome is not
as simple as previously anticipated. Indeed, 246 compounds
were reported as part of the rumen metabolome, including:
phospholipids, inorganic ions, gases, amino acids, dicarboxylic
acids, fatty acids, volatile fatty acids, glycerides, carbohydrate
and cholesterol esters (Saleem et al., 2013). As part of this study
Saleem et al. (2013) also set up a searchable rumen metabolome
database to improve metabolite assignments in the rumen
(www.rumendb.ca). Recent studies have mainly explored how
rumen metabolites are affected by different levels of roughages
and concentrate. For example, there is alteration to organic
acids, amino acids, amines, sugars and nucleosides/nucleotides
when cows were fed diets low on concentrate (40%, DM basis)
compared to high concentrate (70%, DM basis; Zhang R. et al.,
2017). In another study using dairy cows fed diets varying in
roughage to concentrate ratio (80:20, 60:40, 40:60, and 20:80)
ruminal amino acids, lipids, organic acids, and carbohydrates
were affected (Zhang J. et al., 2017).

Metabolites of microbial origin are also precursors of
ruminant products (e.g., meat and milk), which might suggest
biochemical insights into the role played by rumen-diet
interactions (Saleem et al., 2013; Sun et al., 2015). Also,
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metabolites such as phosphatidylcholine have been suggested as
biomarkers for protozoa abundance (Saleem et al., 2012). Finally,
the rumen fluid metabolome can be used to identify potential
differences in rumen function. Recently, Artegoitia et al. (2017)
reported 33 metabolites differing in cattle having high or low
average daily gain. Kingston-Smith et al. (2013), using Fourier
Transform Infra-Red (FT-IR) spectroscopy-based metabolite
profiling, also showed that it was possible to discriminate
differences in the rumen plant-microbe interactome when three
different cultivars of perennial ryegrass were used as substrate.
This suggests that FT-IR could be used as an approach to
improve forages for livestock production (Kingston-Smith et al.,
2013). However, there are few studies to date combining both
sequencing and metabolomics to provide a more comprehensive
analysis of the rumen system that would contribute information
regarding metabolic expression of the genetic potential of the
microbiota (Mao et al., 2016; Zhang J. et al., 2017; O’callaghan
et al., 2018).

The rumen environment is composed of a myriad of
molecules of microbial, plant and animal origins. Currently,
studies have focused on characterizing how the ruminal
environment is affected by diet. There is an opportunity to extend
this to explore microbial interactions and how ruminal microbes
cope with stressors. Concentrating on exploring the ecological
foundations of the rumen microbiota might deliver an improved
comprehension of the rumen, novel compounds and unexplored
pathways.

Data Integration for Enhanced
Understanding of the Rumen Microbiome
Each of the previously described technological approaches
provide novel and fascinating insights into aspects of the
structure, function and/or activity of the rumen microbiome.
However, if these different types of information were to
be integrated into a model that describes microbial activity
at all levels recorded, our understanding would be further
enhanced. At the simplest level we can use the central
dogma of molecular biology that describes the manner in
which genetic information is transcribed and translated to
proteins (DNA => RNA => Protein) to allow the “functional
potential” in whole sequenced genomes from cultured rumen
microbes, metagenomically assembled genomes (MAGs) or de
novo assembled metagenomes to be linked to the actively
transcribed genes captured using whole transcriptomes from
cultured microbes, or meta-transcriptomic data from rumen
samples. This level of data integration has provided some novel
insights missed by either approach alone, such as by Shi et al.
(2014) who demonstrated that differences inmethane production
were not due to differences in the abundances of the genes
responsible, but rather a result of their differential expression.
It would not have been possible to make this distinction
without integration of both types of data. Similarly, the
comparison of proteomic data to transcriptomic or genomic data
from the same samples can allow better protein identification
(using tools such as MASCOT) and provide results that

TABLE 4 | Outstanding questions.

• What role do the rumen eukaryotome play in animal phenotype?

• What role do phages play in shaping the rumen microbiome?

• How can we harvest the ability of the rumen microbes to produce biofilms and

membrane vesicles to address global livestock challenges?

• Are early life dietary interventions effective in enhancing animal phenotype in the

long-term?

• What role do the lower GI tract microbiomes potentially play in the animal

phenotype?

• Can we use host genomics and develop ruminant breeding programs to

beneficially manipulate the rumen microbiome to enhance animal phenotype?

• How effective would a strategy involving enhanced ruminant genomics coupled

with effective early life dietary management of the animal be in enhancing animal

phenotype?

• Is mathematical modeling a feasible accurate approach to predicting ruminant

feed efficiency and methane output?

• Can we develop gene based biomarkers to predict feed efficiency and/or

methane output from ruminants?

• How resilient are ruminants with an improved phenotype to perturbations e.g.,

acidosis? Given that preliminary data shows that these animals have a less

diverse rumen microbiome?

• How can we ensure comparability of data generated globally to form a

consensus on best practices for achieving the global livestock challenges?

are more relevant to the rumen environment (Hart et al.,
2018).

This, however, is only scratching the surface of what is
possible. For example, online databases, such as the Kyoto
Encyclopedia of Genes and Genomes (KEGG; Kanehisa et al.,
2017) and BioCyc (Caspi et al., 2016), which provide collections
of characterized metabolic pathways and software tools for
exploring them, have been used to provide a better understanding
of rumen microbial activity in a variety of contexts (Hess
et al., 2011; Shi et al., 2014; Rubino et al., 2017; Seshadri
et al., 2018). However, many of these databases are targeted
toward human pathogens or model aerobic organisms, such
as Escherichia coli, and do not necessarily reflect the functions
important to the facultative anaerobic lifestyle of rumen
microbes. With nearly 500 genomes from rumen organisms
currently available, an opportunity exists to generate rumen-
specific databases of known and predicted metabolic functions,
similar to INTERMINE (Kalderimis et al., 2014) although this
will likely require a parallel concerted effort to generate better
phenotypic information for these cultured organisms in vitro and
in vivo.

The ultimate goal is to be able to combine information from
all types of “omics” data, and provide a true “systems” overview of
the rumenmicrobiome. Progress toward achieving this continues
for a few other model microbiomes, where the goal has been
to identify interactions in order to interpret biological data and
ultimately model in silico how microbial communities behave
(Bittner et al., 2010; Faust and Raes, 2012). This is generally
accomplished through three tasks: firstly by identifying the
“scaffold” of interactions between organisms (Faust and Raes,
2012; Friedman and Alm, 2012); secondly, decomposing these
interactions into “important components” (Lee and Tzou, 2009);
and thirdly, carrying out cellular-systems modeling and analysis
(Nobu et al., 2015; Mcgeachie et al., 2016). It is easy to see how
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such an approach could also be integrated with the mathematical
models of the rumen environment described earlier.

Network-based approaches are likely to provide the best
hope of integrating all this information by allowing a complete
overview of the rumen microbiome as they are capable of
capturing the fundamental properties of the microbial ecosystem
including taxonomy (Barberan et al., 2012), functional similarity
(Martiny et al., 2015), metabolic processes (Shlomi et al.,
2008), co-expression (Zhang and Horvath, 2005) and gene-
sharing (Smillie et al., 2011). Network-based approaches have
proven successful for generating insight into the functional and
genetic potential of microbial communities, bringing clarity to
the complex history of microbes, providing tools that allow
analyses of mosaic sequences (Adai et al., 2004), and identify
genomes harboring sequences of multiple origins (Lima-Mendez
et al., 2008; Fondi and Fani, 2010; Kloesges et al., 2011;
Halary et al., 2013). Network-based approaches also provide
a framework where genetic diversity can be compared and
quantified, even when analyzing highly divergent sequences
(Bhattacharya et al., 2013). We are only in the early stages of
applying these approaches to the rumen microbiome, and while
network scaffolds for specific animal studies have been generated
(Roehe et al., 2016), large-scale, integrative models have yet to be
developed.

CONCLUSIONS

The terminology of microbiome is often misused within the
rumen context as there is a tendency to focus on the study of the
rumen bacteria alone, without consideration of the eukaryotes.
This undoubtedly limits our ability to understand the rumen
microbiome, as these groups of microbes interact with each
other, consequently affecting production and the environmental
impact of ruminants (Table 4). Also, little emphasis is given to
understanding ecological interactions, niche specialization and
consequences of the biofilm phenotype and membrane vesicles
on animal phenotype. An increased fundamental understanding
of the rumen microbiome as well as that of the lower GI
tract of ruminants is essential to develop novel approaches for
improving livestock production and reducing environmental
impact. Irrespective, much emphasis has been given to using
plant/additive/supplement strategies to manipulate the rumen
microbiome in a manner that improves efficiency of animal
production. Although, these have had limited success when
applied to the mature animal, recent data show that ruminant
breeding programs coupled with a defined dietary management
protocols from birth may be the best ways to achieve lifelong

animal phenotype benefits with limited financial and labor

input. Further research is required to assess the role of the
host genome on the rumen microbiome and animal phenotype
on a global geographic scale (Table 4). Likewise, application
of these innovative techniques to early life ruminant nutrition
is in its infancy, and a global effort is required to define the
best practices in early life which will differ based on geography
(Table 4). Improving our ability to measure phenotype using
rumen microbiome gene based biomarkers may also allow high
throughput phenotype predictions (Table 4). Irrespective, the
ruminant sector has made major strides to improving animal
phenotype, through understanding the rumen microbiome, and
further advances will no doubt be accomplished, especially given
the exponential advances in “omic” technologies.
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