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Transcriptomes not only reflect the growth status but also link to the genome in
bacteria. To investigate if and how genome or cellular state changes contribute to the
gene expression order, the growth profile-associated transcriptomes of an assortment
of genetically differentiated Escherichia coli either exponentially growing under varied
conditions or in response to environmental disturbance were analyzed. A total of 168
microarray data sets representing 56 transcriptome variations, were categorized by
genome size (full length or reduced) and cellular state (steady or unsteady). At the
genome-wide level, the power-law distribution of gene expression was found to be
significantly disturbed by the genome size but not the cellular state. At the regulatory
network level, more networks with improved coordination of growth rates were observed
in genome reduction than at the steady state. At the single-gene level, both genome
reduction and steady state increased the correlation of gene expression to growth
rate, but the enriched gene categories with improved correlations were different. These
findings not only illustrate the order of gene expression attributed to genome reduction
and steady cellular state but also indicate that the accessory sequences acquired during
genome evolution largely participated in the coordination of transcriptomes to growth
fitness.

Keywords: transcriptome, power law, gene expression, genome reduction, growth rate, cellular state,
Escherichia coli

INTRODUCTION

Genome reduction performed in bacterial cells is a practical approach not only to study the
essential gene set of a living cell but also to estimate the potential contribution of redundant
genomic sequences. An assortment of reduced genomes has been constructed in Escherichia coli
(Posfai et al., 2006; Kato and Hashimoto, 2007; Mizoguchi et al., 2008; Karcagi et al., 2016) and
Bacillus subtilis (Morimoto et al., 2008; Reuss et al., 2017). In addition to these achievements in
genetic engineering, multilevel evaluations of the effect of genome reduction to cell life (Karcagi
etal., 2016; Kurokawa et al., 2016; Nishimura et al., 2017) are performed because characterization of
reduced genomes can help researchers achieve the potential function of deleted genome sequences
(Karcagi et al., 2016). In particular, those deleted sequences, e.g., phages/IS in common, are
supposedly largely acquired by horizontal gene transfer (HGT) during genome evolution (Dougan
et al., 2001; Warnefors et al., 2010; Pal and Papp, 2013), indicating that genome reduction is a
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reverse process to HGT (Kurokawa et al., 2016). Although the
mechanisms of HGT have been intensively studied in both
prokaryotic and eukaryotic organisms during the past decades
(Kurland et al., 2003; Boto, 2010), a direct and global comparison
between the genomes of full length and reduced size in the same
species (e.g., E. coli) would provide novel insights compared
to the studies either focusing on specific genes horizontally
transferred or comparing genomes of different species.

To acquire an overview of the cellular state, analysis of
the genome-wide gene expression is one of the representative
approaches (Passalacqua et al., 2009; Elliott, 2014). Previous
studies have reported the differentiation in gene expression
triggered by either genome reduction (Karcagi et al., 2016;
Reuss et al, 2017) or changes in cellular states (Durfee
et al, 2008; Jozefczuk et al., 2010). Thus far, only a few
common phenomena have been reported in a global view of
transcriptomes. The power law, a well-known theory of complex
networks (Barabasi and Albert, 1999), has been experimentally
demonstrated in gene expression across species (Ueda et al,
2004). This universal phenomenon reflects the static gene
expression order at the genomic level. In addition, quantitative
evaluation of transcriptomes linking to growth, which is a global
parameter representing the activity and/or fitness of living cells,
has demonstrated the correlations of gene expression to growth
rate in E. coli of both the wild type genomes (full length)
(Grondin et al,, 2007; Nahku et al, 2010) and the reduced
genome (Matsumoto et al., 2013). These studies relied on either a
single genotype under diverse growth conditions or a number of
genotypes or species in a defined condition. Thus, the difference
and/or similarity in the order of gene expression between genome
size and cellular state is under investigation.

It remains unclear if and how genome reduction and cellular
state interrupt the order of global gene expression. To address this
question, we analyzed 168 growth profile-associated microarray
data sets of an assortment of E. coli strains, and we investigated
the common properties of the gene expression order at genome-
wide, regulatory network and single-gene levels. The power-law
distribution of gene expression and the growth rate-correlated
expression of both single genes and transcriptional networks
were examined. The multilevel analyses were performed in a
comparative manner, i.e., genome size (full length or reduced) vs.
cellular state (steady or unsteady).

RESULTS

E. coli Transcriptomes Categorized by

Genome Size and Cellular State

The E. coli microarray data sets that varied in strains, culture
conditions, and growth status were collected from previously
published studies (Matsumoto et al., 2013; Murakami et al., 2015;
Yama et al., 2015; Ying et al., 2015, 2016). Total 168 microarray
data sets, which were all accompanied by the precise growth
information, e.g., growth rates, were used in the present study.
Following data mining, normalization and average of biological
repeats, as described in the Section “Materials and Methods,”
a total of 56 various transcriptomes were finally determined

and associated with the mean growth rates (Figure 1A). These
transcriptomes were manually categorized based on the genome
size and the cellular state. That is, the full length (FL, 44
variations) and reduced (12 variations) genomes, and the steady
(34 variations) and unsteady (22 variations) cellular states
(Figure 1B). The details of the data sets, experimental conditions,
and the analytical results were summarized in Supplementary
Table S1.

Common clustering analysis showed that all 56 transcriptomes
were roughly in the order of the differentiation in cellular states
and genome size (Figure 1B) independent of the analytical
methods (Supplementary Figure S1). It demonstrated that
the manual categorization of the transcriptomes based on
genome size and cellular states was reasonable. In addition, the
transcriptomes of the steady cellular states showed high similarity
regardless of genome size (Figure 1B, filled bars). It indicated that
the genome reduction did not alter the regulatory mechanisms of
gene expression that determined cellular states.

Power-Law Distributions of Gene

Expression

To achieve an overall insight of the gene expression order
attributed to genome size and cellular states, the power-law
distributions of gene expression were evaluated. The power law,
also called Zipf’s law (Furusawa and Kaneko, 2003), is supposed
to be a universal principle that governs the global gene expression
in actively growing cells across species (Ueda et al., 2004), and
thus, we investigated if this law correlated to the cellular state or
genome reduction. Here, we used the cumulative probability to
normalize the noise that often occurred at the large K of low P(K)
as previously reported (Keller, 2005; Yachie et al., 2009). Fifty-
six transcriptomes were subjected to the analysis according to the
following equation:

P> (K)~KT (1)

The gene expression level in logarithmic scale was plotted
against the cumulative frequency, and the slope of r was
calculated by regression toward the distribution (Figure 2A).
A distribution of r, varied from 2.2 to 2.8, was acquired from the
total 56 transcriptomes (Figure 2B). Intriguingly, differentiation
in the mean r of the power-law distributions in gene expression
was detected in the reduced genomes (p < 0.05) even though
the mean values of the both steady and unsteady cellular states
remained equivalent (Figure 2C). Although gene expression
dynamics follow the power law commonly from E. coli to
Homo sapiens (Ueda et al., 2004), the changes in the slope r within
an identical species was first identified in the present study. This
finding strongly suggested that the gene expression orders were
highly linked to the genome length and/or sequence.

In addition, the correlation of the power-law distribution
to the growth rate was evaluated because transcriptome
reorganization is linked to growth fitness in E. coli (Nahku
et al., 2010; Matsumoto et al.,, 2013; Ying et al., 2016). However,
no correlations were determined between the growth rates and
the slopes (p > 0.1). These data indicated that the power-
law distribution was independent of growth rate, which was
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FIGURE 1 | Total 56 transcriptomes used in the present study. (A) Histogram of 56 mean growth rates. The mean growth rates of the corresponding transcriptomes
were calculated according to the previous studies. (B) Representative cluster dendrogram of 56 transcriptomes. Clustering analysis of gene expression was
performed using the furthest neighbor method (complete mode). Filled and open bars represent the steady (exponentially growing states) and unsteady (responsive
or intermediate states) cellular states, respectively. Black and red indicate the full length and reduced genomes, respectively. Asterisks indicate the unsteady states of
zero growth. Numbers 1-56 correspond to 56 variations described in Supplementary Table S1.

consistent with the similar slopes found for both steady and
unsteady cellular states (Figure 2C). Because no significant
fitness-coordinated changes were detected at the genome-wide
level, the growth rate-correlated expression at the individual
gene and transcriptional network levels were subsequently
investigated. Note that the changes in the slope r of reduced
genomes remained significant (Supplementary Figure S2), even
the analysis was performed without the 16 transcriptomes of
zero-growth rate (Figure 1A).

Improved Correlations Between Growth

and Expression at Individual Gene Levels

Changes in growth rate-correlated expression triggered by
either genome reduction or steady state at the single gene
level were evaluated. Correlations between the expression levels
of individual genes and the corresponding growth rates (in
Supplementary Table S1) were calculated, and the changes
in correlation coefficients caused by genome reduction and
cellular state were further evaluated. The correlations of mrdB
(JW0629) in full length genomes between expression levels and
growth rates were shown as an example (Figure 3A). The
correlation coefficients between the gene expression levels and
the corresponding growth rates in all (Figure 3A, upper) was
varied from that in only 23 steady states (Figure 3A, bottom).
All 3213 and 2415 genes in full length and reduced genomes were
evaluated, and the distributions of their correlation coefficients

were formed (Figure 3B). The full length genomes of all 44
transcriptomes formed a single peak distribution (Figure 3B,
black solid line). It indicated that the order of growth rate-
correlated expression showed higher correlation but with fewer
genes. In addition, the distribution of correlation coeflicients
remained as a single peak but became broader when the unsteady
cellular states were excluded (Figure 3B, broken line). That is,
the correlation between gene expression and growth rate was
more significant in the steady cellular state, i.e., the exponential
growth phase. The broad distribution formed by the steady
cellular states suggested an increased number of genes with better
correlations between expression and growth rate as well as a
decreased number of genes with poor correlations. In addition,
the analysis was also conducted toward the data sets without
the unsteady states of zero growth. The results showed that the
distributions of correlation coefficients of the steady states turned
similar to that of the full length, although the correlations of
individual genes altered (Supplementary Figure S3). It implied
that the differentiated distribution (Figure 3B, broken line) was
largely caused by those of zero growth.

Interestingly, the reduced genomes showed a bimodal
distribution (Figure 3B, red line) compared to the full length
genomes that showed single peak distributions. Removal of the
disappearing genes in the reduced genomes from the analysis
did not alter the shape of the distribution as a single peak
(Figure 3B, gray line). The change of the distribution from
monomodal to bimodal demonstrated that the number of the
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FIGURE 2 | The power law in gene expression. (A) Cumulative probability distribution of gene expression. A power-law distribution in which the cumulative
probability P > (K) that a gene has an expression level K is shown as an example. The red broken line indicates the regression of the decays as a power-law

P > (K)~K" distribution. The slope of r is indicated. (B) Histogram of the slopes. The slopes (r) of 56 distributions (transcriptomes) were calculated and summarized
in a histogram with a bin of 0.2. (C) Differentiated slopes in reduced genomes. The slopes of 56 distributions were averaged according to the categories of either
genome size (full length and reduced) or cellular state (steady and unsteady), respectively. Statistical significance is indicated by an asterisk (p < 0.05).
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growth rate-coordinated genes was increased due to genome
reduction. The result indicated that the deletion of redundant
sequences improved the order of gene expression in a fitness-
coordinated manner. The directional change of the distribution
from narrow to broad was commonly observed in the reduced
genomes and steady cellular states.

Differentiation in Gene Categories
Enriched the Genes of Improved
Correlations

Differentiation in gene categories of improved correlations to
growth triggered by genome reduction and steady cellular
state was observed (Figure 4). The genes that exhibited highly
significant improved correlations between expression level and
growth rate were first identified. A total of 146 genes of which
expression levels had no correlation to growth in the full length
(FL) genomes (p > 0.01) but presented high correlations to
growth in the reduced genomes (p < 0.001) were determined
(Figure 4A). In addition, 130 genes of which expression levels
had no correlation to growth in all conditions (p > 0.01) but
presented high correlations to growth in steady cellular states

(p < 0.001) were determined (Figure 4B). Subsequently, these
genes were divided into 20 gene categories (Riley et al., 2006)
and were subjected to enrichment analysis. Genes with improved
correlations between expression and growth were significantly
enriched in the gene categories of Enzyme and Factor in the
genome reduction and steady state (p < 0.01), respectively
(Figure 4C). Such differentiation in gene function enrichment
indicated that the genome reduction and the steady cellular
state re-ordered the expression of the genes responsible for the
enzymatic reactions and the molecular interactions, respectively.

The improvement of the correlations favored the same
direction, that is, either an increase in positive correlation or
a decrease in negative correlation (Figures 4A,B). Only 22
and 25 out of a total of 146 and 130 genes showing reverse
directional changes in correlations were determined in the
genome reduction and steady state, respectively. Such directional
tendency remained even those transcriptomes of zero growth
were removed from the analysis (Supplementary Figure $4).
The reduced genome remained more on the same direction in
growth correlation because fewer genes in the genome reduction
showed reverse directional changes in correlation compared to
those in the steady state. Enrichment analysis also showed that the
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FIGURE 3 | Distribution of the correlation coefficients between gene expression and growth rate. (A) Correlation between gene expression level and growth rate. The
expression levels (MRNA concentrations in log scale) of a single gene in varied conditions were plotted against the growth rates of the corresponding conditions. The
upper and bottom panels show all 44 conditions and 23 steady state conditions of mrdB (JW0629) in the full length genomes. The correlation coefficients are
indicated. (B) Changes in distributions of the correlation coefficients. A total of 3213 and 2415 correlation coefficients were calculated in the full length and reduced
genomes as shown in (A). The numbers of the genes were counted within a bin of 0.1 for the correlation coefficient. Black solid, broken, and red lines indicate the
distributions formed by 44 full length genomes, 23 steady growth of full length genome, and 12 reduced genomes, respectively. The gray line stands for the
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gene categories of improved correlations had the same directional
changes (Figure 4C, S and B). Taken together, genome reduction
and steady cellular state favored the same directional change in
gene expression, but the changes varied in gene functions. Thus,
the genome reduction was linked to metabolic changes, whereas
the cellular state was linked to the factors.

Improved Correlations Between Growth
and Expression at the Regulatory

Network Levels

In addition to the growth-correlated expression of individual
genes, the growth-correlated expression of regulatory networks
was further analyzed. The expression levels of the genes
regulated by the assigned regulator (transcriptional factor, TF)
were averaged and defined as the mean expression of this
transcriptional network. For example, the mean expression levels
of 227 downstream genes (regulatees) under rpoS’s regulation in
the full length (FL) genomes showed no correlation to the growth
rates (Figure 5A, left). However, these regulatees presented a
better but statistically insignificant correlation to the growth rates
in steady cellular states (Figure 5A, right). A total of 44 and
42 TFs (transcriptional networks) that comprised more than 15
regulatees in the full length and reduced genomes, respectively,
were subjected to the correlation analysis. The histograms of
these 44 and 42 correlation coefficients showed there were more
regulatory networks in the reduced genomes (rd) than in the

full length genomes that presented better correlation of network
expression to growth (Figure 5B, red). However, the increase in
the number of the regulatory networks of improved correlations
to growth rate was not detected in the steady (st) cellular state
(Figure 5B, gray). Note that the results from the data sets
excluding the zero growth remained the same (Supplementary
Figure S5).

The regulatory networks showing the improved correlations
to growth rates due to either genome reduction (rd) or steady
states (st) were identified (Figure 5C) according to the statistical
significance of the correlation coefficients of all regulatory
networks (Supplementary Figure S$6). The transcriptional
network regulated by argR presented increased correlation
coefficients between the growth rate and the mean expression
of the regulatees (Figure 5C). It was the only regulatory
network significantly influenced by genome reduction and steady
state. Additionally, more transcriptional networks were solely
influenced by genome reduction (e.g., met], narL, rpoD, and fnr)
than that by steady state (e.g., rpoN). These results indicated that
the priority of re-ordering gene expression at network levels was
varied in genome reduction and steady state.

DISCUSSION

The present study provides a global view on the order in
gene expression of genome reduction and steady cellular state.
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FIGURE 4 | Enriched gene categories of improved correlations. (A) Genes of
improved correlations due to genome reduction. A total of 146 genes
randomly expressed (p > 0.01) in full length genomes changed to growth
rate-coordinated expression (p < 0.001) in reduced genomes. (B) Genes of
improved correlations mediated by the steady cellular state. A total of 130
genes randomly expressed (p > 0.01) in all 44 conditions changed to growth
rate-coordinated expression (p < 0.001) in 23 steady growth conditions.

(C) Heat map of gene function enrichment. Gene categories significantly
contributed to the improved correlations were analyzed, and 146 and 130
genes identified in (A) and (B), respectively, were divided into 20 gene
categories. Reduced and steady indicate the changes triggered by the
genome reduction and steady cellular state, respectively. R, S, and B
represent the directions of the changes in correlation, namely reverse, same
and both (reverse and same), respectively. Gradation from dark blue to light
gray indicates the statistical significance in log-scaled p-values obtained using
binomial tests.

Genome size-dependent changes in the power-law distribution
of gene expression (Figure 2) have been initially reported in the
present study. These results strongly suggested that the deleted
genomic sequences, which might be acquired by HGT during
genome evolution (Piskurek and Jackson, 2012; Hayes et al,
2013), contributed to gene expression dynamics although these
disappeared genomic sequences were redundant (Fontana and
Wrobel, 2012). This finding was consistent with the previous
report on the fitness decrease caused by genome reduction in
other E. coli strains (Kurokawa et al., 2016). The increased r
of the power-law distribution in reduced genomes suggested
that the variation in expression level was less among the genes
compared to that in the full length genomes. It may have been

attributed to the deletion of accessory genes in the wild type
genome, thus resulting in a large variation in expression level.
In addition, genome reduction-induced differentiation in the
distributions of the correlation coefficients (Figure 3) revealed
that the deletion of the redundant and/or accessary sequences
improved the growth-coordinated changes in gene expression.
Such improved order of gene expression agreed with the previous
finding demonstrating that the chromosomal periodicity is fixed
in the reduced genome but flexible in the wild type genome (Ying
et al., 2013). Incorporating the foreign sequences to elongate
the genome length during evolution, ie., HGT, offered the
transcriptomes a better plasticity or responsivity to efficiently
achieve an adaptive state in response to both intrinsic and
environmental fluctuations (Soucy et al., 2015; Karcagi et al.,
2016).

Correlation analyses implied that the growth fitness-
coordinated transcriptome reorganization was related more
to the expression of upstream modulators or regulators (e.g.,
Factors) at single gene levels in steady cellular states. Besides, it
shaped more by the expression of downstream regulatees (e.g.,
Enzymes) at network levels in genome reduction (Figures 4, 5).
The genes of significant changes in correlations were enriched in
the categories of Factor and Enzyme (Figure 4C). For instance,
the genes of rseA and yefM, which were enriched in Factor (f),
encoded an anti-sigma factor and an antitoxin, respectively.
It suggested that the genes play an essential role in growth
changes were attributed to the minor regulatory mechanisms.
This finding is valuable for understanding the gene expression
order for genome evolution and fitness increase. Future studies
to clarify the reason why the correlation coeflicients were
improved in reverse direction (Figure 4) are important to
understand the genome evolution and growth fitness of the cells.
Moreover, the regulatory networks showed that the improved
correlations in expression specifically attributed to genome
reduction or steady state reflected the varied mechanisms of gene
expression re-ordering. The only transcriptional network that
was specifically influenced by steady state was rpoN, a sigma
factor (054) participating in global transcriptional regulation
(Buck et al., 2000). The increased correlation of the expression
of rpoN’s regulatees to growth rate suggested that the rpoN
network was highly coordinated to the exponential growing
phase independent of culture conditions. In contrast, the
070 transcription factor (rpoD) presented similar regulatory
functions (Campbell et al, 2008), as its regulatees were re-
ordered in a growth-coordinated manner only due to genome
reduction. Such intriguing dissimilarity might reflect the
functional differentiation of rpoN and rpoD in response to the
physiological and genomic fluctuations, respectively.

The present study provides a first trial of addressing whether
genome reduction and cellular state interrupt the order of
global gene expression. The multilevel and comparative analyses
successfully observes both the difference and the similarity in the
transcriptome reorganization mediated by the genome size and
the cellular state. The results strongly imply that the redundant
genomic sequences participated in ordering the gene expression
and contributed to growth fitness. The changes attributed to
genome reduction were more significant than those mediated
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by the cellular state. These results indicate that the genome
evolution by incorporation of foreign genetic sequences might
have played an essential role in global reorganization of gene
expression to reach an adaptive transcriptome. So far, these
conclusions are drawn upon E. coli solely, due to the limitation
in the qualified data sets. Nevertheless, these findings strongly
imply that the phenotypic profile-associated genetic information
is highly essential for the quantitative understanding of a growing
cell population. To reach a common opinion, highly systematic
analyses across the bacterial species are required. It could be
achieved by both the genetic construction the computational
analyses, and the theoretical simulations. The effort has been
made by systematic acquisition of the large data sets connecting
the genotypes to the phenotypes, such as, the growth capacity
of the single-gene knockout strains (Baba et al., 2006; Takeuchi
et al., 2014), the growth profiles associated reduced genomes
(Kurokawa et al., 2016) and transcriptome (Ying et al., 2016),
the informative phenotypes of bacterial mutants under diverse
environments (Deutschbauer et al., 2014; Wetmore et al., 2015),
etc. These studies exploring the relationships among the global
parameters, e.g., genome, transcriptome, and fitness, are to

understand the living cell in a global view (Nichols et al,
2011). The present study offers an alternative viewpoint on the
relationships among these global parameters, to illustrate an
overall feature of the living cells. Further interdisciplinary studies
with the big data of the global parameters should be challenged
for the prediction of the phenotypes (e.g., fitness) upon the
genetic and/or environmental patterns.

MATERIALS AND METHODS

Strains, Culture Conditions, and Growth
Information

Fifty-six different experimental conditions were collected from
published reports (Matsumoto et al,, 2013; Murakami et al.,
2015; Yama et al., 2015; Ying et al., 2015, 2016) and analyzed
in the present study. These conditions comprised the following
E. coli strains: the MG1655 and DH1 strains carrying the full-
length genomes and the MDS42 strains carrying the reduced
genome, which has not only prophages and ISs deleted but
also genes encoding membrane associate proteins, such as
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fimbriae and flagella (Posfai et al., 2006). These strains were
grown under varied conditions, which were described in detail
previously (Matsumoto et al., 2013; Murakami et al., 2015;
Yama et al., 2015; Ying et al, 2015, 2016). These conditions,
including genotypes, media, temperatures, etc., were summarized
in Supplementary Table S1. All 56 conditions were categorized
into various types, regular condition, high temperature, osmotic
pressure, and starvation, according to the growth environments.
The growth phases were also differentiated. The growth rates
of the exponential growing phase and the late responsive
phase (2 h after amino acid depletion) were calculated; and
those of the early responsive states, such as, 5-30 min after
heat shock or amino acid depletion, were defined as zero,
because the cells paused to grow. All this information (56
different experimental conditions) was carefully re-confirmed
and categorized according to two standards, namely genome size
(full length or reduced) and cellular state (steady or unsteady), as
summarized in Supplementary Table S1. The growth rates (h—!)
were cited or calculated according to previously published reports
(Matsumoto et al., 2013; Murakami et al., 2015; Yama et al., 2015;
Ying et al., 2015, 2016).

Expression Data Collection and Mining

A total of 168 microarray data sets (56 conditional variations with
biological repetition), which were all based on the platform of
EcFS, were obtained from published studies. These microarray
data sets were all associated with growth information, such
as growth rates, as previously summarized. Microarray raw
data sets assigned with the GEO access numbers of GSE33212,
GSE49296, GSE55719, GSE52770, and GSE61749 were first cut
with a statistic threshold according to the p-values of the
calculated mRNA concentrations for each gene. If any of the
168 measurements (mMRNA concentrations) of the gene had a
significant p-value (p < 0.05), then the gene remained in the
data sets. Thus, relatively reliable values among the 168 data sets
were used. A total of 3123 genes in the full length genomes of
MG1655 and DH1 derivatives (128 data sets) as well as 2415 genes
in the MDS42 reduced genome and its derivative (40 data sets)
were subjected to global normalization, resulting in a common
mean value (logarithmic) in all data sets. The normalized 168
data sets comprising the biological replicates (N = 2 to 7) were
subsequently averaged, which resulted in 56 variations, including
44 of full length and 12 of reduced genomes. These 56 data sets
were used for the following computational analyses.

Computational Analyses
Transcriptome analyses were performed with R (Ihaka and
Gentleman, 1996) as previously described (Yama et al., 2015; Ying
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