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Extremophiles are organisms capable of adjust, survive or thrive in hostile habitats that
were previously thought to be adverse or lethal for life. Chile gathers a wide range of
extreme environments: salars, geothermal springs, and geysers located at Altiplano and
Atacama Desert, salars and cold mountains in Central Chile, and ice fields, cold lakes
and fjords, and geothermal sites in Patagonia and Antarctica. The aims of this review
are to describe extremophiles that inhabit main extreme biotopes in Chile, and their
molecular and physiological capabilities that may be advantageous for bioremediation
processes. After briefly describing the main ecological niches of extremophiles along
Chilean territory, this review is focused on the microbial diversity and composition of
these biotopes microbiomes. Extremophiles have been isolated in diverse zones in
Chile that possess extreme conditions such as Altiplano, Atacama Desert, Central
Chile, Patagonia, and Antarctica. Interesting extremophiles from Chile with potential
biotechnological applications include thermophiles (e.g., Methanofollis tationis from Tatio
Geyser), acidophiles (e.g., Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum from
Atacama Desert and Central Chile copper ores), halophiles (e.g., Shewanella sp. Asc-3
from Altiplano, Streptomyces sp. HKF-8 from Patagonia), alkaliphiles (Exiguobacterium
sp. SH31 from Altiplano), xerotolerant bacteria (S. atacamensis from Atacama Desert),
UV- and Gamma-resistant bacteria (Deinococcus peraridilitoris from Atacama Desert)
and psychrophiles (e.g., Pseudomonas putida ATH-43 from Antarctica). The molecular
and physiological properties of diverse extremophiles from Chile and their application in
bioremediation or waste treatments are further discussed. Interestingly, the remarkable
adaptative capabilities of extremophiles convert them into an attractive source of
catalysts for bioremediation and industrial processes.

Keywords: extremophile, Chile, Atacama Desert, Altiplano, Patagonia, Antarctica, bioremediation

INTRODUCTION

Most the well-described forms of life are mainly adapted to face environments with
“physiological conditions,” a term described in literature as moderate temperature (10–37◦C),
pH ∼ 7, salinity ranging from 0.15 to 0.5 M NaCl, pressure 1 atm and enough water
availability (Aguilar et al., 1998; Antranikian et al., 2005). However, there is still a large
under-examined group of organisms, known as extremophiles, that are capable of adjust,
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survive or thrive in hostile habitats that were previously
thought to be inhospitable or even lethal for life (Rampelotto,
2013). In general, extremophiles are divided in two categories:
extremophiles, which require one or more extreme conditions
to grow, and extremotolerant organisms, which can tolerate
extreme and/or toxic conditions, although they grow optimally
at “physiological” conditions (Canganella and Wiegel, 2011).
The study of extremophiles is a rather difficult field, mainly
constrained by the complexity of reaching their ecological
niches and isolating these microbes. Most extremophiles
are still part of the microbial dark matter that has not been
discovered yet (Bernard et al., 2018). Hunting microbes in
extreme environment is a huge challenge for microbiologists
worldwide, which could provide microorganisms, enzymes
and biomolecules for diverse applications in biotechnology,
biomedicine and industrial processes. The knowledge of the
adaptation mechanisms of microbes to extreme environments
provides metabolic networks, regulation circuits and pieces
for systems biology and synthetic biology (Chen and
Jiang, 2018). Extreme conditions drive the evolution of
their inhabitants, highlighting the role of extremophiles
as models for the study of the evolution of biological
entities.

Newly developed technologies have allowed research on
extreme environments to gain knowledge on microorganisms
and provide significant insights about the origin of life on
Earth. Recent studies have uncovered that the first terrestrial
life form, known as LUCA (Last Universal Common Ancestor),
was a thermophilic anaerobe capable of gaining energy from
geochemical sources (Weiss et al., 2016). Basic research has
provided valuable insights on how extremophiles can survive
such challenging environments. However, the presence of
highly sophisticated mechanisms of adaptation together with
the availability of a sweet of novel biochemical pathways
sustaining peculiar physiological metabolic capabilities converts
extremophiles into a current focus of applied research to
exploit their biotechnological potential (Rampelotto, 2013).
Further attention has also been devoted to identification,
isolation and characterization of biomolecules, most of
them enzymes named as extremozymes, which are well
adapted to be active also at extreme conditions (Rampelotto,
2013).

Extremophiles, can be classified according to the conditions
in which they grow: thermophiles and hyperthermophiles

(organisms growing at temperatures of 45–80◦C and >80◦C,
respectively) (Madigan et al., 2000; Berenguer, 2011),
psychrophiles (organisms that grow at <10◦C) (Siddiqui
et al., 2013), acidophiles and alkaliphiles (organisms optimally
adapted to pH < 5 and pH > 9, respectively), halophiles
(organisms that require NaCl for growth, in concentration of
200–5,900 mM) (Edbeib et al., 2016), microorganisms that
survive in dry environments (water activity < 0.75) (Connon
et al., 2007) and radiotolerant (UV resistant) extremophiles
that are resistant to the permanent exposure to damaging solar
radiation (Gabani et al., 2014) (Table 1). Additionally, it is
worth mentioning that extremophiles are usually defined by one
extreme condition, nevertheless, many natural environments
possess two or more extreme conditions. The microbiota living
on those ecosystems, also known as polyextremophiles, is
adapted to an additional extreme condition to the one condition
that characterizes them, such as temperature, pH, salinity
(Urbieta et al., 2015b).

Chile occupies a long strip of territory in the south west
of South America and with other countries shared part of
the Antarctica. It has been referred to be a “biogeographic
island” (Scherson et al., 2017), due to a series of geological
events that have formed the current natural barriers Altiplano,
Atacama Desert, Los Andes Mountains, Pacific Ocean, Patagonia,
and Antarctica (Villagrán and Hinojosa, 1997; Villagrán and
Armesto, 2005). Due to its extremely diverse geography and
singular geochemical and climatic conditions, Chile gathers
many extreme environments, which may result intolerably hostile
or even lethal for most life forms, except for extremophiles
(Rampelotto, 2013). In order to enable growth under these
harsh conditions, extremophiles have been subjected to several
adaptations, which have been only partially characterized to
date. Altiplano, Atacama Desert, Central Chile, Patagonia, and
Antarctica correspond to main geographical areas in Chile
that harbor multiple extreme biotopes (Figure 1). Specific
extreme biotopes of Chile are attractive scenarios to study
the evolution of microorganisms under extreme conditions,
which resemble the islands of the Galapagos Archipelago that
provide Darwin inspiring ideas to build up the Theory of
Evolution by Natural Selection of macroorganisms based on
the divergence of species of birds, especially the Galapagos
finches.

The preservation of the natural ecosystems and the
restauration of polluted sites are crucial for a sustainable

TABLE 1 | General description of extremophiles present in diverse extreme environments of Chile.

Environmental parameter Extremophile Definition Example Reference

Temperature Hyperthermophile Growth > 80◦C Pyrococcus sp. M24D13 Dennett and Blamey, 2016

Thermophile Growth 45–80◦C Methanofollis tationis Zabel et al., 1984

Psychrophile ≤10◦ Pseudomonas sp. ATH-43 Rodriguez-Rojas et al., 2016a

pH Acidophile pH < 5 Acidithiobacillus ferrooxidans Demergasso et al., 2010

Alkaliphile pH ≥ 9 Halomonas alkaliphila Quiroz et al., 2015

Salinity Halophile 2,000–5,000 mM NaCl Haloferax sp. CL47 Bonfá et al., 2011

UV radiation Radioresistant Radiation tolerant (40–400 nm) Deinococcus peraridilitoris Rainey et al., 2007

Water availability Dehydration tolerant Growth water activity < 0.75 Streptomyces bulli Santhanam et al., 2013
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FIGURE 1 | Distribution of different extreme ecosystems harboring extremophiles in five main biotopes throughout Chile. Altiplano (photography: Red Lagoon,
Amuyo, Camarones, Parinacota Region), Atacama Desert (photography: Moon Valley, San Pedro de Atacama, Antofagasta Region), Central Region (photography:
Cahuil Saltern, Nilahue, O’Higgins Region), Patagonia (photography: Grey Lake and Glacier, Magallanes Region), and Antarctica (photography: Arturo Prat Station,
Greenwich Island).
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development. Bioremediation is an important technology for
the clean up of environments contaminated with persistent
organic pollutants [e.g., pesticides, polychlorobiphenyls (PCBs),
petroleum hydrocarbons] and heavy metals (e.g., Hg, Cd)
(Morgante et al., 2010; Saavedra et al., 2010; Rojas et al.,
2011; Fuentes et al., 2014; Bravo, 2017). Mining of valuable
metals such as copper, gold and silver is historically one
the most relevant economic activities in Chile, mainly in
the Northern and Central regions. Copper mining is the
main activity in Chile, contributing with one third of the
world’s production. Unfortunately, this mining activity has
been associated with heavy metal pollution in diverse sites.
Microorganisms are main biocatalysts for bioremediation
of polluted environments and waste treatment processes
(Hernández et al., 2008a,b; Saavedra et al., 2010; Rojas et al.,
2011; Fuentes et al., 2016; Méndez et al., 2017) and extremophilic
microbes are required as catalysts for the bioremediation of
polluted extreme environments. The aims of this review are to
describe extremophiles that inhabit the main extreme biotopes
in Chile, and their molecular and physiological capabilities
that may be advantageous for the design and development of
bioremediation processes.

BIOTOPES AND ECOLOGICAL NICHES

Chilean territory is spanned within a long altitudinal and
latitude range that contributes to the origin of a suite of
landscapes and geological features that are extreme habitats for
microorganisms. Some of these ecosystems will be described
briefly.

Atacama Desert
The Atacama Desert is located along the western border of South
America and is the driest and oldest desert on Earth’s, exhibiting
similar conditions described for Mars. This ecosystem provides
a unique collection of habitats, ideal for studying microbial
dynamics in several extreme conditions, such as alkaline or
acidic pH, high temperature, water stress, and UV radiation
(Figure 1). Its distinctive climate is the result of the confluence
of a subtropical high-pressure zone, the cold Humboldt Current
on the coast, offshore winds, as well as the Andean rain-shadow
effect and latitudinal position of the region (Houston and Hartley,
2003).

Altiplanic Ecosystems
The Andean Altiplano occupies part of Peruvian, Bolivian, and
Chilean territory with a mean altitude of 3,700 m above sea
level and covers an area that is 300 km wide and 1,500 km long
(Muñoz and Charrier, 1996). The Altiplano is surrounded by
volcanoes and mountains rising up to 6,700 m and represents one
of the largest plateaus in the world. The Altiplano possess several
extremes environments, such as thermal waters and geysers,
some basins, salars, large lakes in the north and salt flats in the
south. Some of the more characteristic Altiplano ecosystems are
described below.

Parinacota Region
The paleolakes Chungará Lake, Parinacota Wetland, and Piacota
Lagoon are located 4,300–4,500 m above sea level. The
microbial community composition is highly variable between the
different wetlands, but also between water and sediment samples
(Dorador, 2007). Each of these environments supported a unique
community of Bacteria and Archaea, revealing a differentiation
between high altitude lakes, freshwater wetlands, and saline
wetlands.

Geothermal Springs and Geysers
The extreme conditions (high temperature and pressure) are
characteristic of hot springs and geysers located in the Northern
region and is the result of the permanent interaction of
groundwater with magma and hot igneous materials stemming
from near the rather abundant volcanic areas (Jones and Renaut,
1997; Fernandez-Turiel et al., 2005; Rafferty, 2010).

The Geothermal site El Tatio (Kunza language, meaning
“crying grandfather”) is the largest geyser field in the Southern
hemisphere and one of highest geysers around the world (∼4,200
m.a.s.l.) (Glennon and Pfaff, 2003). Located on the Andean
Altiplano, it harbors over 100 erupting springs and is surrounded
by high volcanoes. The water discharged by the Tatio Geyser is
very rich in silica, with the highest concentrations reported for a
natural surface water, of both arsenic (∼0.5 mM) and antimony
(∼0.02 mM) at a nearly neutral pH (Landrum et al., 2009). These
properties differ from other well-studies geothermal sites, such as
basins in Yellowstone National Park, United States, and Dallol
Volcano, Ethiopia, for which their waters can reach extreme
pH values (Rowe et al., 1973; Barbieri and Cavalazzi, 2014).
Therefore, El Tatio in an environment with unique physico-
chemical characteristics.

The North regions of Chile harbor many hydrothermal fields
that remained less explored than El Tatio. For instance, the
Surire hydrothermal system, at 4,000 m.a.s.l., is located in the
south part of Surire Salar (Procesi, 2014). The water discharges
are characterized by higher concentration of sulfate. Analogous
situation occurs with Lirima Geothermal field that is located at
an altitude of 3,900 m.a.s.l., 25 km southwest of the Sillajhuay
volcanic chain. The Lirima area contains bubbling pools with
temperatures between 38◦C and 80◦C (Tassi et al., 2010; Procesi,
2014).

Salars
Chile harbors a huge diversity of salars along its territory. Saline
ecosystems are located in Altiplano, Atacama Desert, Central
Chile, and Patagonia. Specific salars that has been subjected to
microbial studies will be described.

Athalassohaline Ecosystem: Huasco Salar
Athalassohaline systems are saline ecosystems with a non-marine
origin but originated from evaporation of fresh water in a system
dominated by calcium, magnesium and sulfate, in contrast with
sodium and chloride that are prevalent in the ocean (Grant,
2006). At 3,800 m above sea level, Huasco Salar is a good example
of an athalassohaline system (Dorador et al., 2010). These
systems exhibit extreme conditions such as low temperatures
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and atmospheric pressure, high solar radiation, negative water
balance, and a wide range of salt concentrations (Castro-Severyn
et al., 2017).

Acidic Salars: Ignorado Salar and Gorbea Salar
Two acidic salars in Chile are located in the Andes Mountains
(Risacher et al., 2003). Gorbea Salar is located in a basin
with extreme acidic brines, with pH ranging from 2 to 4
and NaCl concentrations from 0.03 to 1.3 M (Quatrini et al.,
2017). Ignorado Salar is an acid saline lake, with surface
waters with pH ranging from 3.3 to 4.1 and a total dissolved
solids concentration from 0.5 to 3% (Karmanocky and Benison,
2016).

Borderline Salar: Atacama Salar
Salar de Atacama is located between the Atacama Desert and the
westernmost margin of the Altiplano at 2,300 m above sea level
(Zúñiga et al., 1991). It is the largest and oldest evaporating basin
in Chile, and the largest Quaternary halite deposit worldwide
(Warren, 2010; Lara et al., 2012). Salar de Atacama has some
shallow lakes with high salt concentration (Zúñiga et al., 1991)
and with distinct geological features compared to the Altiplano
basins (Demergasso et al., 2010).

Central and Southern Salars
Other saline ecosystems are also located in the Central Region
and the Southern Patagonia (De Los Rios-Escalante and Gajardo,
2010; Plominsky et al., 2014). Cáhuil Lagoon is a saline
ecosystem located at the coast close to Pichilemu in Central Chile
(Figure 1).

Patagonia
Patagonia is comprised by an extensive structure of cold fjords
(e.g., Comau Fjord) and channels, and by oligotrophic cold
lakes in Southern Chile, characterized by low temperatures,
low nutrient concentration and low dissolved organic carbon
(Gutiérrez et al., 2015; Aguayo et al., 2017). Cold lakes in
Patagonia (e.g., Grey Lake, Figure 1) are affected by seasonal
temperature variations, ranging from 4◦C in winter to 20◦C in
summer (Aguayo et al., 2017).

Volcanic activity has been also reported with a high eruption
frequency (Carrillo et al., 2018), which has formed numerous
hydrothermal fields including Porcelana Hot Spring and Geyser,
and Cahuelmo Hot Spring. Cahuelmo Hot Spring is a geothermal
site located at the sea level coast of Cahuelmo Fjord, that
contains waters rich in metallic minerals and elements such
as pyrite, polonium, magnetite, and chalcopyrite (Mackenzie
et al., 2013). On the other hand, Porcelana hot spring is
located ∼100 m above sea level in Northern Patagonia.
Porcelana is a pristine spring characterized by a rather extensive
thermal gradient (∼38–69◦C) and neutral pH (Alcamán et al.,
2015).

Antarctica
Antarctica displays extreme climates and environmental
conditions above and below the water surface. This environment
is dominated by strong gradients in temperature (−10◦C to

−2◦C), salinity (35–150%), and irradiation (<0.1% to 1–5% UV
radiation), properties highly variable and ultimately governed by
air temperature and snow cover (Cirés et al., 2017). The search
of new pigments, antibiotics, and enzymes has become a main
research focus in the Antarctic continent (Loperena et al., 2012;
Órdenes-Aenishanslins et al., 2016; Lavin et al., 2017). In spite
of been the coldest continent on Earth, surprisingly, Antarctica
harbors many geothermal sites.

THERMOPHILES

Early life in Earth was initially dominated by
thermophilic anaerobes that had chemoheterotrophic or
chemolithoautotrophic metabolism capable of been sustained
by hydrothermal energy sources (Woese et al., 1990; Konhauser
et al., 2003; Weiss et al., 2016). Thermophiles are organisms,
mainly prokaryotes, whose optimum growth temperatures
are >44◦C (Madigan et al., 2000). Hyperthermophiles are
thermophiles that grow at temperatures >80◦C (Berenguer,
2011) (Table 1). Thermophiles and hyperthermophiles are
present in several natural ecosystems such as geothermal
waters (Figure 2), hot springs, mud pots, fumaroles, geysers,
deep-sea hydrothermal vents, volcanoes, and also in engineered
environments, such as compost facilities and anaerobic reactors
(Ahring, 1995; Rastogi et al., 2010; Urbieta et al., 2015b).

A general mechanism of thermophiles to safeguard their
cellular components at high temperature is the adaption of
thermophilic proteins through amino acid changes in their
primary structure, increasing their thermal stabilities (Xu et al.,
2018). Thermophilic proteins possess a larger fraction of amino
acid residues in α-helices and have shorter amino acid length
(Urbieta et al., 2015a; Xu et al., 2018). A main mechanism
in thermophiles is the role of heat shock proteins (HSPs)
including the chaperones DnaK, GroEL, and GroES to assist
protein folding (Figure 3). DNA-repair systems (e.g., SOS
system) are also active to respond to DNA damage. For the
stabilization of the membranes, thermophiles use branched
chain fatty acids and polyamines (e.g., spermidine). Another
mechanism of thermophiles is the use of compatible solutes to
stabilize cell components (Urbieta et al., 2015a). In addition,
upregulated glycolysis pathway (e.g., pyruvate dehydrogenase
complex) proteins provide immediate energy to cope with heat
stress (Wang et al., 2015).

An increase in the use of (hyper)thermophilic microorganisms
has been observed, especially for the need of the industry to
couple biological solutions at high-temperature industrial
processes (Urbieta et al., 2015a). Industrial waste reactors
containing living microorganisms required to be pre-cooled
down due to the fact that several industrial processes are carried
out at temperatures >100◦C (Gavrilescu, 2010). Therefore,
(hyper)thermophiles offer a suitable solution due to their
capabilities to grow at such high-temperature and also resist
and metabolize several pollutants from contaminated industrial
wastewaters (Vieille and Zeikus, 1996). Previous studies
have demonstrated the high potential of (hyper)thermophilic
pure cultures and consortia for bioremediation of heavy
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FIGURE 2 | Representative extremophiles from five main biotopes in Chile. For each extremophile, a special capability is described and its ecosystem is drawn.
A bar with well-known values and the isolation value for each of the extreme environmental variables is depicted.

metal-contaminated surface and groundwaters, including
biosorption and immobilization of radionuclides and heavy
metals (Chatterjee et al., 2010; Sar et al., 2013), removal of

heavy metals (Ilyas et al., 2014) and for degradation of persistent
organic compounds such as aliphatic and (poly)aromatic
hydrocarbons (Mnif et al., 2014; Zhou et al., 2018), and synthetic
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FIGURE 3 | Molecular mechanisms of extremophiles for their adaptation to extreme environmental conditions. Acidophiles. (i) Potassium antiporter releases protons
towards the extracellular medium, (ii) ATP synthase, (iii) membrane highly impermeable to protons, (iv) Chaperones, and (v) DNA-repair proteins. Thermophiles. (i)
Upregulated glycolysis proteins (e.g., pyruvate dehydrogenase complex (PDC)), (ii) Lipids with iso-branched chain fatty acids and long chain dicarboxylic fatty acids,
(iii) polyamines (spermidine), and (iv) Chaperones. Halophiles. (I) High salt-in strategy: (i) chloride transporters (primary or secondary), (ii) potassium uptake into cells
by concerted action of bacteriorhodopsin and ATP synthase. (II) Low-salt strategy: (i) de novo synthesis or uptake of osmoprotectants (proline-betaine, ectoine) that
maintain osmotic balance and establish the proper turgor pressure under different salt concentration. Psychrophiles. (i) high degree of unsaturated, cyclopropane
containing fatty acids and short chain fatty acids, (ii) Cold shock proteins (CSP) (iii) Chaperones, (iv) Anti-freeze proteins (AFP) restrict the ice growth on protein
surfaces, (v) Mannitol and other compatible solutes accumulate in the cell cytoplasm as cryo-protectants to prevent protein aggregation, and (vi) Carotenoids (star
symbols) support maintenance of membrane fluidity and prevent cell damage by UV radiation. UV resistance. (i) Manganese accumulation and reduced iron levels, (ii)
Antioxidants (glutathione), (iii) Chaperones, and (iv) DNA-repair proteins. Xeric resistance. (I) Evasion mechanism: (i) bacteria sporulation. (II) Adaptation mechanism: (i)
increased extracellular polymeric substances (EPS), (ii) DNA-repair proteins, and (iii) accumulation of osmoprotectants (glycine, trehalose). Alkaliphiles. (i)
Electrochemical gradient of Na+ and H+ by electrogenic antiporters for proton accumulation, (ii) Na+-solute uptake system, and (iii) Cytochrome c-552 enhance
terminal oxidation function by electron and H+ accumulation.

dyes (Deive et al., 2010). Increasing research is conducted into
evaluating the applications of thermostable enzymes in waste
treatment and remediation (Kataoka et al., 2014; Wang et al.,
2015; Rigoldi et al., 2018).

A high portion of the Chilean territory is superimposed on
the subducting Nazca plate, the largest tectonic relief, that drives
displacement and rearrangements of geological structures and
generates routinely megathrust earthquakes (Armijo et al., 2015).
In those areas, the compression and decompression of magma
may modulate volcanic activity on land, in the seafloor, and in the
deep subsurface, generating abundant natural formations that are
suitable for survival and growth of (hyper)thermophilic microbial
life forms. Geothermal fields are usually main contributors of
arsenic to both surface and subsurface water (Ballantyne and
Moore, 1988; Smedley and Kinniburgh, 2002). The water influx is
particularly important at the water discharged at the Tatio Geyser,
which achieved in surface water a arsenic concentration of 45 mg

L−1 (Landrum et al., 2009). The effluent discharges caused high
arsenic levels (0.1–1.5 mgL−1) throughout the basin of Loa River.
Besides the potential human health risks (Yañez et al., 2005),
those arsenic levels impact also the microbiota. Pseudomonas
fluorescens and Serratia odorifera strains isolated from an arsenic-
polluted river in the Atacama Desert showed tolerance to
arsenic 800–1,000 mM (Campos et al., 2009; Escalante et al.,
2009). Due to their physicochemical properties, the water
discharged by the Tatio Geyser is an unique environment to
study (hyper)thermophiles. A fraction of the water is very rich
in silica, contains high antimony concentration (∼0.02 mM), low
sulfite concentration (∼0.5 mM) at a nearly neutral pH (Landrum
et al., 2009). Most of the worldwide studies efforts directed to the
biotransformation of arsenic by (hyper)thermophiles have been
restricted to sulfidic waters at extreme pH conditions, including
high arsenic geothermal sites in Yellowstone National Park in
United States and Dallol Volcano in Ethiopia (Rowe et al., 1973;
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Barbieri and Cavalazzi, 2014). Research has been focused toward
isolation and characterization of (hyper)thermophiles tolerant
to As, or capable of playing a role on its biogeochemical cycle.
The geothermal water discharges arsenite As(III), which is the
most mobile and toxic form of arsenic that progressively oxidizes
to arsenate As(V) downstream (Engel et al., 2013). Several
prospections have shown that nearly all of the geyser features and
streams at El Tatio are covered by biofilms and colorful microbial
mats dominated by photosynthetic bacteria (Chloroflexi and
cyanobacterial communities) (Fernandez-Turiel et al., 2005;
Engel et al., 2013; Plenge et al., 2017). Microbial community
analysis based on 16S rRNA gene of the geyser-discharge water
revealed that Chloroflexi, Deinococcus–Thermus, Aquificales, and
Chlorobi were the most prevalent microorganisms in the zones
where arsenite reduction takes place (Engel et al., 2013). Indeed,
the survey of functional genes revealed that most of the
arsenite oxidase aioA-like gene found within the community
showed high identity to genes belonging to strains of the
thermophilic anoxygenic phototroph Chloroflexus aurantiacus.
Chloroflexi-like aioA gene sequences obtained from the microbial
community of El Tatio clustered on two separated clades
likely representing additional diversity that could be associated
with either novel groups of arsenic-resistant bacteria, or novel
mechanisms of As resistance. It is also noteworthy to mention
that Chloroflexus aurantiacus can either grow phototrophically
under anaerobiosis or chemotrophically under aerobic and dark
conditions, providing enough metabolic flexibility to function
as a potential strain for bioremediation of As-contaminated
environments, but also during carbon sequestration efforts (Tang
et al., 2011).

Besides arsenic, the microbial communities associated to
El Tatio cope with a wide variety of environmental stressors,
such as the presence of other toxic metals (e.g., antimony)
and the impact of extreme UV radiation. Living at such
selective pressure has fostered the development and retention
of a suite of metabolic and physiological adaptations that has
enormous potential to be used for biotechnological applications.
On one hand, multi-resistant microbial isolates may be useful
in bioremediation. Furthermore, a second area of interest is
the identification and characterization of the mechanisms of
resistance to multiple stressors. Indeed, enzymes synthesized
by (hyper)thermophiles display high levels of thermostability,
converting them in candidates to explore potential novel
applications for industrial processes. For example, the archaeon
isolated from a solfataric pool located in El Tatio, Methanofollis
tationis (Figure 2, first described as Methanogenium tatii) (Zabel
et al., 1984; Zellner et al., 1999) produced its own particular
pterin, a type of biomolecule involved in immune modulation,
cellular signaling, metabolism and pigmentation. Two years
after its isolation, the identification and structure of the novel
pterin produced by Methanofollis tationis, named tatiopterin,
were elucidated. Afterward, it has been shown that tatiopterin
specifically enhances photostability of materials, preventing
the bleaching of photosynthetic pigments due to irradiation
(Elshahawi et al., 2015). More efforts in order to understand the
role of such molecules under those conditions should be further
explored. Specifically, one area of interest in this field is the

increase of exploration efforts of novel thermozymes that can be
applied for production of biofuels from starch and lignocellulosic
waste materials. Due to their complex structure, lignocellulosic
materials are degraded by physicochemical treatments to obtain
cellulose, hemicellulose, and lignin, which can be further treated
with hydrolytic enzymes (Urbieta et al., 2015a).

Previous prospections in the Surire Salar have described the
presence of arsenic-precipitating bacteria, suggesting that may
be also present in the Surire hydrothermal vents (Demergasso
et al., 2007). The culturable mesophiles in Lirima wetland were
reported, whereas the hot spring remain unexplored (Scott
et al., 2015). Special attention should be devoted in this site
due to the fact that water contain high chloride and boron
concentrations, becoming a source of microorganisms capable
of bioremediation of boron-polluted wastewaters. Microbes
associated to the hydrothermal systems such as Puchuldiza-Tuja
(4,100 m.a.s.l.), Colpitas (4,000 m.a.s.l.), Apacheta (4,500 m.a.s.l.)
have not been explored yet.

Porcelana hot spring in Northern Patagonia is characterized
by abundant and colorful microbial mats widespread along
a rather extensive thermal gradient (∼38–69◦C) (Alcamán
et al., 2015). The microbial community associated to Porcelana
hot spring is dominated by cyanobacteria, particularly of the
diazotrophic Mastigocladus (Stigonematales) genus. Members of
the same genus were also identified as part of biofilms in Copahue
geothermal field at the North west corner of Neuquén province,
Argentina (Urbieta et al., 2015b), indicating its cosmopolitan
character (Miller, 2007). At Porcelana hot spring, Mastigocladus
sp. strain CHP1 was the most dominant contributor of nitrogen
through nitrogen fixation (∼87% of the nifH gene transcripts)
(Alcamán et al., 2015). Physiological studies revealed that
Mastigocladus isolates gather a broad range of metabolic plasticity
regarding the nitrogen metabolism (Alcamán et al., 2017).
Mastigocladus sp. strain CHP1 is capable to fix nitrogen at 60◦C,
the highest temperature reported for the activity of N2-fixing
filamentous cyanobacteria (Alcamán et al., 2015). Further studies
should explore the metabolic versatility of Mastigocladus sp.
strain CHP1 in the treatment of nitrate-contaminated industrial
waters at high temperature.

Environments are so dynamic that surprise us. An
iconographic example of such diversity is depicted by the fact
that Antarctica, a continent well known as the coldest place on
earth, also harbors many geothermal sites suited for the growth
of (hyper)thermophile microorganisms (Flores et al., 2013). The
uppermost temperatures of those sites range from 40 to 110◦C,
and has extremely low concentrations of nutrients, such as N and
P, and high concentrations of heavy metals (Cu, Zn, Cd, Pb, and
Hg) (Muñoz et al., 2011). Although environmental conditions
seem to be harsh for microbial growth, recent studies have shown
that the environment is suitable for thermophilic organisms.
Bacteria from the Geobacillus, Bacillus, Brevibacillus, Thermus
genera and uncultured sulfate reducing bacteria were abundant
in a fumarole at 90–110◦C from Deception Island, an active
strato volcano located in the South Shetland Islands (Muñoz
et al., 2011). Some of these microbes can carry metal redox
interactions that have further implications for ore formation
and might be capable to recover metals from ore-containing
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materials. For instance, the thermophilic Geobacillus sp. strain
ID17 is capable to synthesize gold nanoparticles when exposed
to Au(III). The nanoparticles were found to be intracellularly
accumulated raising the potential applications in bioremediation
of gold-bearing wastes (Correa-Llantén et al., 2013). The
synthesis of gold nanoparticles by bacteria can be useful for
diverse biotechnological and medical applications (Montero-
Silva et al., 2018). Geobacillus species are also capable to degrade
organic pollutants. Indeed, members of the same clade including
Geobacillus thermoleovorans T80 degrade hexadecane (70%)
during bioremediation at ∼60◦C. Archaea have also been
isolated from soils extracted at Deception Island. Dennett
and Blamey (2016) isolated the hyperthermophilic archaea
Pyrococcus sp. M24D13, and characterized a novel thermostable
cyanide-degrading nitrilase. This thermostable enzyme may
be useful to remediate cyanide contaminated waste streams
(Dennett and Blamey, 2016). (Hyper)thermophiles and their
novel thermostable enzymes are of considerable biotechnological
interest to find novel alternatives for bioremediation and other
bioprocesses to be carried out at high temperatures.

ACIDOPHILES

Acidophiles are defined as organisms that grow at an
optimum pH < 5 (Johnson, 2008). Extreme acidophiles are
microorganisms that showed an optimum growth at pH 3 or less,
whereas moderate acidophiles are those that grow with optimum
pH between 3 and 5. Acid-tolerant microorganisms, have
optimum pH > 5, but are still active in low pH environments
(Johnson, 2007, 2008). Extreme acidophilic organisms are
exclusively microbial and distributed in Archaea, Bacteria, and
Eukarya domains (Sharma et al., 2016).

Acidophiles maintain the cytoplasmic pH close to neutrality
to safeguard the acid-labile cellular constituents, which require
the generation of a large pH gradient. Three main mechanisms
are involved in the adaptation to an acidic environment
(Figure 3). A first mechanism is an active pumping of protons
to the maintenance of 1pH, by proton flux systems. The
role of proton efflux via transport pumps in the electron
transport chain alongside the influx of protons through
the F0F1-type ATP synthase has been described in Bacillus
acidocaldarius, Thermoplasma acidophilum, and Leptospirillum
ferriphilum (Michels and Bakker, 1985). Additional proton
flux systems include primary proton pumps (symporter) and
secondary proton pumps (e.g., cation/H+ antiporter), and
proton-consuming reactions. A carbonic anhydrase and amino
acid decarboxylases that aid in pH homeostasis by consuming
protons have been reported in L. ferriphilum (Christel et al.,
2018). A second mechanism is a decreased permeability of
the cell membrane to suppress the entry of protons into the
cytoplasm. The influx of protons is inhibited by the inside
positive membrane potential formed by K+ ions (Christel et al.,
2018). A wide repertoire of genes related to cell membrane
biosynthesis that may be associated with acid tolerance was
identified in L. ferriphilum. The presence of tetrapetric lipids
in the cell membrane that provide tolerance to acidic pH has

been reported in Archaea Ferroplasma acidiphilum and Sulfolobus
solfataricus. A third mechanism is an improved protein and
DNA-repair systems in acidophiles compared to neutrophils.
An external pH shift from 3.5 to 1.5 induced proteins that are
involved in the heat shock response such as chaperones in the
acidophile At. ferrooxidans (Amaro et al., 1991).

Acidophilic microorganisms play an important role in
biomining of metals from low grade sulfur minerals (Bustos
et al., 1993; Seeger and Jerez, 1993; Seeger et al., 1996;
Okibe et al., 2003; Demergasso et al., 2005, 2010; Acosta
et al., 2017). Previous studies have demonstrated the role of
acidophiles in bioremediation of polluted soils and waters,
through (i) metal reductive processes (Kolmert and Johnson,
2001; Suzuki et al., 2003; Leigh et al., 2015), (ii) metal adsorption
onto jarosites (Natarajan, 2008; Asta et al., 2009), (iii) metal
biosorption (Liu et al., 2004; Chakravarty and Banerjee, 2012),
and (iv) degradation of petroleum hydrocarbons (Stapleton
et al., 1998; Margesin and Schinner, 2001; Christen et al., 2012;
Arulazhagan et al., 2017). Additionally, enzymes from acidophilic
microorganisms are explored due to their tolerance to low pH,
which favors their industrial applications in starch, fruit juices,
feed and baking industries (Matzke et al., 1997; Nakayama
et al., 2000; Serour and Antranikian, 2002; Sharma et al., 2012).
More recently novel applications of acidophiles including electric
generation have been explored (Sulonen et al., 2015; Ni et al.,
2016).

Acidophilic microorganisms are present in several natural
habitats, such as solfataric fields and geothermal sulfur rich sites
(Sharma et al., 2016). These sites are niches for a variety of
acidophilic microorganisms with unique adaptations for survival
in the hostile low pH environments such as Sulfolobus solfataricus
and Sulfolobus acidocaldarius (Yellowstone National Park,
United States) (Brock et al., 1972). Acidophilic microorganisms
have also been reported in anthropogenic environments such
as acidic mine drainage (AMD), which are associated with
heavy metals and coal mining. The acidophilic microorganisms
mobilize metals and generate AMD. AMD generates most of the
extremely acidic niches on Earth and disseminates heavy metals
in the environment (Panda et al., 2016).

In Chile, an important area where acidophiles have been
studied is located in the Atacama Desert. The microbial
solubilization of metals in acidic environments has been
successfully used in bioleaching for the extraction of metals. In
Escondida mine located 170 km south-east from Antofagasta,
the analyses of the microbial community of a low-grade copper
sulfide leach pile indicated the presence of At. ferrooxidans
(Figure 2), At. thiooxidans, L. ferriphilum, and F. acidiphilum
(Galleguillos et al., 2008; Remonsellez et al., 2009; Demergasso
et al., 2010; Acosta et al., 2017). Prokaryotic acidophile
microarray (PAM) analysis showed members of Sulfobacillus
genus in samples from heap leaching (Remonsellez et al., 2009).
16S rRNA genes phylogenetic analysis, real time PCR and
metagenomics analysis revealed in the heap leaching the bacteria
At. ferrooxidans, At. thiooxidans, At. caldus, At. ferrivorans,
L. ferriphilum, S. acidophilus, S. thermosulfidooxidans,
and Acidiphilium spp., and the archaea Ferroplasma
acidiphilum, Ferroplasma acidarmanus, and Sulfolobus spp.
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(Demergasso et al., 2005, 2010; Soto et al., 2013; Acosta et al.,
2017). Acidithiobacillus, Leptospirillum, and Sulfobacillus
strains have also been reported in the copper tailings of La
Andina mine in Central Chile (Figure 2). Molecular methods
revealed the presence of heterotrophic acidophiles associated
to Acidobacterium capsulatum, Acidobacterium-like bacterium
and Acidiphilum sp. (Diaby et al., 2007). In Chile, solfataras
throughout Andes Mountains (e.g., Purico Complex and
Nevados de Chillán) that harbor acidophiles have been described.
The moderate acidophile archaea S. solfataricus was isolated from
a hot spring in Nevados de Chillán (Valdebenito-Rolack et al.,
2017). To date, acidophilic microbes have been scarcely studied
in diverse acidic environments in Chile including solfataras.

In the last decades, the bioremediation potential of acidophiles
in acidic environments have been studied. Acidophiles capable to
degrade phenol at low pH have been reported. The acidophile
S. solfataricus degrades phenol (Christen et al., 2011). Zhou
et al. (2016) reported the degradation by S. acidophilus of
phenol, and methylphenols. Acidophilic bacteria able to grow
in presence of alkanes have been described (Hamamura et al.,
2005). Acidophiles including Acidisphaera, Acidiphilium, and
Acidithiobacillus strains were capable to degrade 50% hexadecane
in hydrocarbon-amended soil/sand mixtures. Acidophiles have
been used for the treatment of petroleum-polluted wastewater
under acidic condition (Arulazhagan et al., 2017). Acidophilic
microorganisms such as Acidithiobacillus and Sulfobacillus
strains may be useful for the remediation of hydrocarbon-
polluted acidic sites (Ivanova et al., 2013).

The removal of heavy metals by acidophiles from Chile
has been reported. At. ferrooxidans has been used for removal
of different heavy metals at laboratory scale. The addition of
At. ferrooxidans to an AMD increased precipitation kinetics of
heavy metals and decreased water iron content, accelerating
heavy metal removal (Darkwah et al., 2005). At. ferrooxidans
has been used for the ex situ bioremediation of uranium (VI),
removing up to 50% of uranium (100 mg L−1) from polluted
mine water (Romero-González et al., 2016). Takeuchi and Sugio
(2006) reported that mercury was almost completely removed
by volatilization in mercury-polluted soil by At. ferrooxidans
strains SUG 2- 2 and MON-1. Also MON-1 cells immobilized
in PVA resins efficiently volatilize mercury from mercury-
polluted wastewater. Bioremediation by bioaugmentation with
heavy metal-resistant bacteria of mercury-polluted waters
has been reported (Rojas et al., 2011). This bioremediation
process was scaled up (Bravo, 2017) and may be applied in
mercury-polluted sites closed to metal mining activities. At.
ferrooxidans and Leptospirillum ferrooxidans have been used for
arsenite removal. Bioremoval occurs through the adsorption
of arsenic (III) onto the jarosites generated during microbial
growth (Natarajan, 2008). Furthermore, At. ferrooxidans and
At. thiooxidans strains are able to reduce chromium (VI).
The almost complete removal (93%) of chromium (VI) from
electroplating waste by A. thiooxidans has been reported
(Cabrera et al., 2007). At. thiooxidans is able to reduce uranium
by polythionates that are synthesized during oxidative sulfur
metabolism (Gargarello et al., 2010). At. ferrooxidans has
been applied for removing sulfur from solids and gases and

heavy metals from electric wastes and sludge (Zhang et al.,
2018). In addition, the removal of Ni and Hg from port
sediments through bioaugmentation with a consortium of iron-
oxidizing acidophilic bacteria (A. thiooxidans, A. ferrooxidans,
and L. ferrooxidans) in microcosm was observed (Beolchini et al.,
2009).

Metal mining is a key player in the Chilean economy.
Therefore, diverse acidophiles useful for bioleaching have been
isolated, characterized and applied for bioleaching in Chile.
Interestingly, some of these acidophilic microorganisms have
been used at laboratory scale for the bioremediation of heavy
metals and organic pollutants. However, the application of
these acidophiles in bioremediation at industrial scale is still
an important challenge. Acidophilic microbes from extreme
environments are attractive biocatalysts for bioremediation
processes under acidic conditions, especially for heavy metals.

HALOPHILIC MICROORGANISMS

Microorganisms belonging to the three domains of life are
present over the whole range of salt concentrations in the
environment (Oren, 1999). Halophiles are microorganisms that
obligately require salt to grow (Margesin and Schinner, 2001).
They are classified based on their optimal NaCl concentration
for growth as slight halophiles (0.2 M), moderate halophiles
(0.5–2.5 M), borderline extreme halophiles (>2.5–4.0 M) or
extreme halophiles (>4.0–5.9 M) (Edbeib et al., 2016). Halophilic
microorganisms are ubiquitous in salars, saline lakes, oceans,
polar ice, and coastal areas (Edbeib et al., 2016). Halotolerants are
microorganisms that grow in the presence and absence of NaCl,
and those that grow in presence of >2.5 M NaCl are considered
extremely halotolerant (Margesin and Schinner, 2001).

Halophilic and halotolerant microorganisms have adapted
and evolved to survive in saline environments. They gather
unique metabolic properties toward maintaining more water in
the cytoplasm than in their surroundings, avoiding water losses.
Halophilic or halotolerant microorganisms have evolved two
main strategies (Figure 3). The first strategy is maintaining an
intracellular salt concentration equivalent to the environment,
and consequently, all intracellular systems have been adapted.
This is achieved with chloride and potassium uptake into the
cells by transporters (primary or secondary) and concerted action
of bacteriorhodopsin and ATP synthase. The other strategy is
maintaining low intracellular salt concentration, and therefore
osmotic pressure is balanced by organic compatible solutes, such
as betaine and ectoine. Due to its nature, the latter strategy does
not require a global adaptation of the intracellular machinery
(Oren, 1999; Margesin and Schinner, 2001).

Chile gathers several high saline environments. Most of them
are concentrated in the Northern region, where 52 saline lakes
and salt crusts are distributed alongside The Andes, spanning
an area of over 200,000 km2 of the Atacama Desert. The saline
ecosystems found in the Northern region can be classified in
(i) Borderline Salars, (ii) Athalassohaline ecosystems, which
are located in the Altiplano, and (iii) Acidic Salars (Risacher
et al., 2003; Risacher and Fritz, 2009). Particularly, in Lejía
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Lake, an extreme saline lake nested at the base of Lascar
Volcano in the Chilean Altiplano, two halotolerant bacteria
closely related to Halomonas alkaliantarctica strain CRSS
and capable to grow at 15% NaCl were isolated (Mandakovic
et al., 2018). Other saline lakes are also located in Central
region (Cáhuil Lagoon), and the Southern Patagonia (De Los
Rios-Escalante and Gajardo, 2010; Plominsky et al., 2014).
One third of bacterial isolates from different niches in the
Atacama Salar were classified as moderate halophilic and
halotolerant bacteria. These isolates belong to Marinomonas,
Vibrio, Alteromonas, Marinococcus, Acinetobacter, Micrococcus,
Bacillus, Pseudomonas, Deleya, Staphylococcus genera and also
some Cyanobacteria, such as members of the Cyanothece,
Gloeocapsa, and Gloeobacter genera (Zúñiga et al., 1991;
Dorador, 2007). Saltern ecosystems are commonly dominated
by Archaea, where members of the family Halobacteriaceae
are the most common halophiles (Oren, 2002). Metagenomic
studies performed on samples extracted from a salt crystallizer
pond located in the Cáhuil Lagoon, revealed that 61% of
the gene sequences belonged to Archaea, mainly from the
Halobacteriaceae family, followed by 19% sequences from viruses
and 16% from bacteria (Plominsky et al., 2014). Microbial
communities in the Atacama Desert ecosystems, such as halites,
saline soils and salt lakes, are also dominated by members of
the Halobacteriaceae family (Robinson et al., 2015; Finstad et al.,
2017).

Arsenic is a metalloid that is widely distributed at high
concentrations along the Atacama Desert. The sources of arsenic
are often associated with volcanic-hydrothermal springs, metal
ores and anthropogenic activities. Microbial communities from
Atacama Salar contributed to arsenic reduction (Lara et al.,
2012), which is a process that has been widely studied in saline-
alkaline systems (Oremland et al., 2004; Kulp et al., 2007).
Shewanella sp. strains Asc-3 and CC-1 isolated from Ascotán
low-pH salt flats (Demergasso et al., 2007; Lara et al., 2012)
were capable of precipitating arsenic (Table 2). Surprisingly,
arsenic-precipitating bacteria accounted for 50% of the bacterial
communities, suggesting that arsenic-based processes in this
ecosystem are significant in the formation of arsenic minerals
(Demergasso et al., 2007).

Exiguobacterium sp. SH31 isolated from a moderate saline
environment in Huasco Salar was able of grow in presence

of As(III) 10 mM and As(V) 100 mM, highlighting its
natural resistance to arsenic. Exiguobacterium strains capable
of reducing arsenate and chromium have been reported.
Interestingly, Exiguobacterium strains have been explored for
bioremediation applications. An E. aurantiacum strain isolated
from a lake in Southern Spain degrades pesticides (López
et al., 2005). Microbacterium sp. CGR1 (Table 2) from the
Atacama Desert tolerates NaCl 1.2 M, and possesses arsenic
resistance (Mandakovic et al., 2015). An additional survey of
metal resistance in halotolerant and halophilic isolates from the
Atacama Desert showed that most of them were capable to cope
with the presence of heavy metals such as Cd, Zn, Ni, Cu, and Co.
For example, Thalassobacillus devorans showed high tolerance to
cadmium and nickel (Moreno et al., 2012).

Other Chilean ecosystems such as Cahuil marine salterns
are sources for strains capable to be used in bioremediation
platforms. The extreme halophile Haloferax sp. CL47 that was
isolated in Cahuil degrades several polyaromatic hydrocarbons
(PAHs) such as naphthalene, anthracene, phenanthrene, pyrene
and benzanthracene (Bonfá et al., 2011). In addition, Haloferax
sp. CL47 has been used for petroleum degradation in wastewater.
The extreme halophile Halomonas nitroreducens 11ST (Figure 2
and Table 2) showed the capability to reduce selenite to elemental
selenium (González-Domenech et al., 2008).

Halotolerant strains belonging to the phylum Actinobacteria
were isolated from marine sediment samples from the Comau
Fjord in Northern Patagonia (Undabarrena et al., 2016). These
strains showed tolerance to up to NaCl 1.7 M. Streptomyces sp.
H-KF8 (Figure 2) tolerates different heavy metals, such as Ni
(15 mM), Cu (0.75 mM), Co (6 mM), Zn (50 mM), Cd (1.5 mM),
Hg (60 µM), Te (40 µM), Cr (20 mM), and As (100 mM). The
genome sequencing of the Streptomyces sp. H-KF8 strain revealed
the presence of 49 heavy metal resistance genes (Undabarrena
et al., 2017).

Due to industrial activities or natural sources, saline
environments frequently have a high concentration of organic
compounds (Castillo-Carvajal et al., 2014; Edbeib et al., 2016).
Industrial wastewaters frequently possess high salt concentration,
and high levels of organic matter and pollutants, for which
a wide variety of conventional biological treatments are not
currently suitable (Bonfá et al., 2011). The presence of high
levels of aromatic compounds in saline wastewater during crude

TABLE 2 | Halophiles isolated from diverse extreme environments in Chile and their bioremediation potential.

Strain GenBank accession
number

Isolation source Salt
tolerance (M)

Bioremediation
potential

Reference

Haloferax sp. CL47 HQ438281 Cahuil Lagoon 3.4 Naphthalene,
anthracene,
phenanthrene, pyrene,
and benzanthracene
degradation

Bonfá et al., 2011

Halomonas nitroreducens 11ST EF613113 Cahuil Lagoon 0.5–3.4 Selenite reduction González-Domenech et al., 2008

Shewanella sp. Asc-3 EF157293 Ascotán salt flat 0–0.5 Arsenic precipitation Demergasso et al., 2007

Shewanella sp. CC-1 EF157294

Exiguobacterium sp. SH31 LYTG01000000 Huasco Salar 0.4 Arsenic resistance Castro-Severyn et al., 2017

Microbacterium sp. CGR1 CP012299 Alto Andino, Atacama Desert 0–1.2 Arsenic resistance Mandakovic et al., 2015
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oil extraction has been described (Le Borgne et al., 2008). The
biodegradation of hydrocarbon-derived pollutants in both soils
and groundwater is impaired under elevated salt concentration
(Lay et al., 2010). Thus, the application of halotolerant pollutant-
degrading bacteria is essential for the bioremediation processes in
saline environments.

Halophilic microorganisms capable of degrading
hydrocarbons, lignocellulosic materials, chlorophenols,
formaldehyde, nitroaromatic compounds have been reported
(Oren et al., 1992; García et al., 2004). The halophile Halomonas
organivorans degrades a wide range of aromatic compounds
(García et al., 2004). Halomonas sp. KHS3 is capable to degrade
diverse aromatic hydrocarbons and to produce extracellular
rhamnolipids (Corti Monzón et al., 2018). Rhamnolipids are
biosurfactants that are used for bioremediation and enhanced
oil recovery (Rahman et al., 2003; Sachdev and Cameotra,
2013; Sekhon Randhawa and Rahman, 2014). Additionally,
halophilic microorganisms capable of degrading lignocellulosic
and nitroaromatic substrates, and chlorophenols have been
reported (Oren et al., 1992). The applications of halotolerant
bacteria for bioremediation of natural and industrial saline
environments is an attractive challenge (Edbeib et al., 2016).

Climate change, chemical fertilizers and saline water used for
irrigation are increasing salinity in agricultural soils (Valipour,
2014). Salt toxicity is a major restrictive factor in crop
productivity and 20% of the cultivated land worldwide are
seriously affected by salinity (Zhu, 2001; Farhangi-Abriz and
Nikpour-Rashidabad, 2017). In response to salt stress, reactive
oxygen species (ROS) are accumulated in plant tissues, damaging
the photosynthetic apparatus and cellular membranes (Bose et al.,
2014; Oukarroum et al., 2015). For preserving osmotic and ionic
homeostasis under salt stress, plants accumulate osmolytes such a
glycine betaine and proline (Farhangi-Abriz and Torabian, 2017).
Halophilic and halotolerant microorganisms produce glycine
betaine (Lamark et al., 1991) that may protect plants in saline
soils. More recent studies have shown that other halotolerant
bacterial mechanisms are also involved in plant protection: (i)
increase production of extracellular hydrolytic enzymes (Rohban
et al., 2009), (ii) increase activity of 1-aminocyclopropane-1-
carboxylic acid (ACC) deaminase that reduced plant ethylene
levels, which are typically increased by salt stress (Siddikee et al.,
2010), (iii) increase indole-3-acetic acid (IAA) levels that enables
plant to increase nutrient uptake under salt stress (Vacheron
et al., 2013). These studies support the potential application of
halotolerant plant growth promoting bacteria to protect crops in
saline soils.

ALKALIPHILES

Alkaliphiles are organisms that grow on alkaline habitats
(pH > 9), usually showing an optimal growth within pH ∼10
(Horikoshi, 1999). These extremophiles are classified in two
main physiological groups: obligate and facultative alkaliphiles.
Facultative alkaliphiles are capable of growing in the pH range of
7.0–9.5, whereas obligate alkaliphiles (e.g., Bacillus krulwichiae)
showed an optimal growth between pH 10.0 and 12.0 (Krulwich

and Guffanti, 1989). Alkaliphiles may coexist with neutrophilic
microorganisms under mild basic pH conditions, and also live in
specific extreme environments.

To cope with high pH, alkaliphile bacteria possess molecular
mechanisms, which comprise the activation of both symporter
and antiporter systems (Figure 3). Electrochemical gradient of
Na+ and H+ is produced by electrogenic antiporters, and the
symporter system allows the uptake of Na+ and other solutes into
the cells (Krulwich, 1995; Krulwich et al., 1998). The function of
cytochrome c-552 in electron and H+ accumulation enhances the
function of terminal oxidation in respiratory system (Matsuno
and Yumoto, 2015). These systems enable the influx of protons
and solutes inside the cell due to the alteration in the distribution
of ions (e.g., Na+), maintaining the hydrosaline homeostasis
and thermodynamic stability of the cell. The transporters are
controlled, probably by signaling from a transmembrane pH
sensor (Krulwich, 1995).

Diverse alkaliphilic microorganisms, including bacteria
belonging to Bacillus, Micrococcus, Pseudomonas, and
Streptomyces genera and eukaryotes, such as yeast and
filamentous fungi, have been isolated from alkaline
environments, including highly alkaline hyper-saline lakes
(e.g., Lake Natron, Tanzania) and alkaline soda lakes (e.g., Lake
Mono, CA, United States) (Duckworth et al., 1996; Groth et al.,
1997; Horikoshi, 1999; Yakimov et al., 2001). Alkaliphiles are also
present in highly alkaline enrichments generated by industrial
activities (e.g., indigo dye plants) or soils with high alkalinity
(e.g., estuaries with long periods of evaporation, clay particles
with highly abundant alkaline crevices) (Grant, 2003; Sorokin
et al., 2006).

Alkaliphilic microorganisms have been studied as novel
sources for several biotechnological applications, including
the treatment of highly toxic wastewater (e.g., dye-containing
effluents). Textile effluents are characterized by the presence
of high salt and alkaline pH along with the presence of toxic
dyes (Maier et al., 2004; Khalid et al., 2012; Prasad and Rao,
2013). Several alkaliphiles have been isolated from these hostile
environments and explored as biocatalysts for the treatment
of dye-containing effluents (Hou et al., 2017). Nesterenkonia
lacusekhoensis EMLA3 that was isolated from a highly alkaline
textile effluent (pH ∼13) degrades the toxic azo dye methyl red
in the presence of high salt concentration and heavy metals (Ni
(II), Cr (VI), and Hg (II) (Bhattacharya et al., 2017). Alkaliphilic
microorganisms have been applied to remove ammonia from
N-rich saline wastewater, mainly produced by coke plants,
fuel refining and fertilizer industries. Chemolithoautotrophic
alkalophilic microorganisms have been applied to clean up
ammonia pollution in effluents (Sheela et al., 2014; Cui et al.,
2016). Complete ammonia oxidation into nitrate by bacteria
could be useful for waste water treatment and to engineer
ecosystems (Lawson and Lücker, 2018).

In Chile, alkaliphiles have been isolated mainly in the
Northern Region, specifically along salt deposits from
Atacama Desert and Altiplano. This region has aridic to
semi-aridic climate regimes and comprises many different
(hyper)saline deposits, including evaporitic basins, known as
saltflats, and athalassohaline ponds (Chong, 1984; Demergasso
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et al., 2004). Microorganisms in saltflats from Llamará Salar
(Central Depression), Atacama Salar (Pre-Andean Depression),
Ascotán Salar and Huasco Salar (Altiplano) have been reported
(Demergasso et al., 2004; Dorador et al., 2008; Castro-Severyn
et al., 2017), revealing insights of the special metabolic capabilities
of these alkaliphiles and their responses to multiple stressors.
Mandakovic et al. (2018) isolated from Lejía Lake in the Chilean
Altiplano Microbacterium sp. CGR2, Planococcus sp. strains ALS7
and ALS8 that are tolerant to pH 12. However, the extremophiles
from several alkaline ecosystems in Chile have not been explored.
For example, Amarga Lake (Torres del Paine National Park,
Patagonia) is a shallow cold lake with hypersaline water and
an alkaline pH of 8.9 (Solari et al., 2004), which should harbor
polyextremophile bacteria. However, to date in Amarga Lake
only the presence of stromatolites has been reported.

Several heavy metal-resistant alkaliphiles have been isolated in
Chile. The microbiota associated to the athalassohaline ecosystem
Huasco Salar in the Atacama Desert showed resistance/tolerance
to copper, tellurium, and arsenic (Castro-Severyn et al., 2017).
Exiguobacterium isolates from this site carry a number of
stress-related genetic determinants, including metal/metalloid
resistance genes. For example, the arsenic resistant strain
Exiguobacterium sp. SH31 has a set of genes encoding proteins
required for arsenic resistance, including the arsenic efflux pump
Acr3, growing in presence of arsenite (10 mM) and arsenate
(100 mM) (Ordoñez et al., 2015; Castro-Severyn et al., 2017).
Dorador et al. (2008) analyze ammonia-oxidizing bacteria (AOB)
from four sites in Huasco Salar. A phylotype exhibited 98%
sequence similarity to the extremely alkalitolerant ammonia-
oxidizing Nitrosomonas europaea/Nitrosococcus mobilis (Squeo
et al., 2006; Dorador et al., 2008). AOB play a key role in the
nitrogen cycle. Nitrosomonas and Nitrosococcus genera belong to
Nitrosobacteria that are AOB involved in the aerobic oxidation of
ammonia into nitrite in agricultural soils (Hernández et al., 2011).

Alkaliphiles have been also found in unusual habitats. Quiroz
et al. (2015) reported the presence of Halomonas alkaliphila in
a brine shrimp Artemia that was collected from salty lagoons
scattered in saltflats of the Atacama Desert (Browne, 1980;
Abatzopoulos et al., 2002; Riddle et al., 2013; Quiroz et al., 2015).
Halomonas alkaliphila is an alkaliphilic halotolerant bacterium
that grows aerobically at pH 9, which has been previously isolated
from a salt pool located in Montefredane, Italy (Romano et al.,
2006). Recently, two Halomonas strains were isolated from Lejía
Lake soil in Atacama Desert (Mandakovic et al., 2018). Due
to its adaptation to a wide range of salt concentrations and
alkaline pH, Halomonas may be useful for the clean up of polluted
saline habitats (Berendes et al., 1996). Additional studies of novel
alkaliphilic bacteria and archaea are required to understand their
metabolism and physiology and to assess their bioremediation
potential.

MICROBES IN DRY ENVIRONMENTS

An increase of dry environments in diverse regions due to low
rainfall, high temperatures and drought has been associated to
Climate change (Mukherjee et al., 2018). Water is essential for

all living organisms (Robinson et al., 2015; Lebre et al., 2017).
Arid environments like deserts are considered to be at the dry
limit for life (Navarro-González et al., 2003; Bull and Asenjo,
2013). Extremophile xerotolerant organisms can survive in dry
environments with water activity < 0.75 (Connon et al., 2007;
Lebre et al., 2017). Water activity is calculated as the ratio of the
vapor pressure in an environment relative to pure water, and it is
considered to be the amount of water available to organisms in
the environment (Lebre et al., 2017). Arid areas are biomes with
a ratio of mean annual rainfall to mean annual evaporation of
<0.05 mm year−1, and <0.002 mm year−1 for extreme hyper-
arid areas (Mohammadipanah and Wink, 2016). In addition to
the low rainfall, other factors such as high and low temperatures,
low water activity, high salinity, low concentrations of organic
carbon and intense radiation intensify the xeric conditions,
constraining the survival of microorganisms (Dose et al., 2001;
Crits-Christoph et al., 2013).

Xerotolerant bacteria have developed two strategies to survive
in dry environments: evasion of environmental stress and
adaptative mechanisms (Figure 3). Evasion of dry environmental
implies the conversion of cells into a state of non-replicative
viability through the formation of spores (Crits-Christoph et al.,
2013). Adaptative mechanisms are associated to preventing water
loss and increasing water retention through the accumulation
of osmoprotectants (trehalose, L-glutamate, glycine betaine),
production of extracellular polymeric substances (EPS),
modifications on the cell membrane to retain intracellular water,
and synthesis of DNA-repair proteins (Dose et al., 2001; Lebre
et al., 2017).

The Atacama Desert is the oldest desert on Earth with
hyper-arid soils with mean rainfall <5 mm year−1 to 2.4 mm
year−1 in the Yungay sector (Warren-Rhodes et al., 2006;
Azua-Bustos et al., 2015). Nevertheless, microorganisms
are capable to inhabit this extreme environment. Previous
studies using culture-dependent methods have reported low
numbers of bacteria in Atacama Desert soils, ranging from
not detectable to 106 CFU per g of soil, with a high degree of
spatial heterogeneity (Crits-Christoph et al., 2013). Analysis
through culture-independent methods on the subsurface
layers of the hyper-arid core showed limited abundance of
microbial communities including Proteobacteria, Actinobacteria,
Cyanobacteria, Chloroflexi, Firmicutes, Gemmatimonadetes,
Planctomycetes, and Thermomicrobia phyla (Dong et al., 2007;
Crits-Christoph et al., 2013; Azua-Bustos et al., 2015; Piubeli
et al., 2015; Azua-Bustos et al., 2017).

Proteobacteria from Atacama Desert showed a high
bioremediation potential. Pseudomonas arsenicoxydans strain
VC-1 isolated from arsenic-polluted site is able to tolerate
high concentration of As(III) (5 mM), and also capable
of oxidizing As(III) to As(V) at high rates (Campos et al.,
2010). Actinobacteria are the most abundant culturable
phylum present in Atacama Desert soils, including strains
from Streptomyces, Nocardia, Microlunatus, Prauserella,
Microcella, Arthrobacter, Cryobacterium, Frigobacterium, Dietzia,
Nocardioides, Propionibacterium, Luteococcus, Kocuria, and
Patulibacterium genera (Bull and Asenjo, 2013). Actinobacteria
plays a relevant ecological role including resistance to heavy
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metals, recycling of substances, degradation of complex
polymers and organic persistent pollutants, and synthesis of
bioactive molecules (Claverías et al., 2015; Alvarez et al., 2017;
Undabarrena et al., 2017), which may explain its capability
to still predominate in such harsh environmental conditions.
The extreme desiccating condition of deserts has been the
main driving force in the evolution of several desert-derived
Actinobacteria, which showed a wide range of biotechnological
applications including the removal of organic and inorganic
pollutants (Mohammadipanah and Wink, 2016; Alvarez et al.,
2017). Chilean desert-Actinobacteria research has focused on
obtaining microorganisms able to synthesize novel bioactive
molecules (Bull and Asenjo, 2013; Azua-Bustos and González-
Silva, 2014). Xerotolerant Streptomyces bulli and S. atacamensis
synthesize ansamycin and 22-membered macrolactones with
antibacterial and antitumor activities (Santhanam et al., 2013;
Mohammadipanah and Wink, 2016). However, the potential
of Atacama Desert-Actinobacteria toward bioremediation of
pollutants and waste treatment remained underexplored.

As Atacama Desert conditions are too dry to support higher
plants and most other photoautotrophic microorganisms, it
gathers multiple features to ensure proliferation of primary
producers. It has been shown that translucent rocks served
as “refuge” for photosynthetic microbial communities, that are
capable to colonize the underside of the rocks, where sufficient
moisture depending of fog and dew is retained, and light
intensities are not lethal. Indeed, hypolithic cyanobacteria are
present in small spatially isolated islands on hyper arid Atacama
Desert soil (Dong et al., 2007). These hypolithic Cyanobacteria
communities are composed mainly of the Chroococcidiopsis
genus, which is one of the most primitive representant of
the phylum (Warren-Rhodes et al., 2006). Chroococcidiopsis
strains are members of the hydrocarbon-degrading biofilms
during bioremediation of hydrocarbon pollutants in aquatic
environments (Al-Bader et al., 2013). Although Atacama
Cyanobacteria has not been used in bioremediation processes, the
use of xerotolerant bacteria of dry environments is an attractive
strategy for bioremediation under hydric resource limitation.

Desertification and the demand for residential space in sites
with water availability limitation have caused an increase of
pollution in dry environments. Therefore, technologies for the
bioremediation of polluted dry sites are required. Bioremediation
of oils spills in desert soils has been reported (Godoy-Faúndez
et al., 2008; Benyahia and Embaby, 2016). Strategies to alleviate
the xeric stress are relevant to improve bioremediation processes
in dry environments. Hereby, xerotolerant bacteria play a crucial
role for bioremediation of soils in extreme dry conditions.

UV- AND GAMMA-RESISTANT
MICROORGANISMS

Ultraviolet (UV) light is radiation with a wavelength between 40
and 400 nm. UV radiation is divided into five different ranges:
(i) Vacuum UV (40–190 nm), (ii) Far UV (190–220 nm), (iii)
Short-wavelength UVC (220–290 nm), (iv) Medium-wavelength
UVB (290–320 nm), and (v) Relatively long-wavelength UVA

(320–400 nm) (Marizcurrena et al., 2017). Life without an assured
level of radiation is impossible (Pikuta et al., 2007). However,
this type of radiation can be one of the most detrimental abiotic
factors causing serious damages in organisms at community and
cellular levels. On one hand, UV light constrains the microbial
diversity and dynamics of ecosystems to only those UV-resistant
(micro)organisms. On the other hand, UV radiation can affect
cell survival, producing DNA damage and mutations, oxidative
stress and protein denaturation (Marizcurrena et al., 2017; Pérez
et al., 2017). UVB and UVC are the most harmful radiation to
life (Paulino-Lima et al., 2016). UVB causes direct and indirect
DNA damage. UVC may cause direct DNA damage by the
formation of pyrimidine dimers and pyrimidine photoproducts
(Marizcurrena et al., 2017). However, UVC is completely filtered
by the atmosphere and does not reach the Earth’s surface. UVB is
mostly filtered by the atmosphere, but in places where the ozone
layer is thinner, the protective filter activity of the atmosphere
is progressively reduced, causing a higher penetration of UVB
radiation (Yang et al., 2008).

In Chile, several places have exposure to extreme solar
radiation levels and high doses of UVB due to the ozone layer hole
(Cordero et al., 2016; Paulino-Lima et al., 2016; Pérez et al., 2017).
Atacama Desert is characterized by its high altitude, prevalent
cloudless conditions, extreme dryness, relatively low columns of
ozone and water vapor and intense solar UV radiation (Cordero
et al., 2016; Paulino-Lima et al., 2016), which converts this
desert in a key region for international astrobiology studies. The
microorganisms that are capable of living under these extreme
conditions are known as UV resistant extremophiles (Gabani
et al., 2014). The study of microorganisms living in these hostile
environments is currently focused to gain understanding on the
origin of life and early evolution on Earth, to develop models
for predicting consequences of future Climate change and to
exploit their potential for biotechnological applications (Pérez
et al., 2017).

Ultraviolet resistant extremophiles have developed different
strategies to resistant UV stress (Figure 3). These strategies
are related to efficient machinery for DNA-repair, induction
of chaperones and active defense against UV-induced oxidative
stress (e.g., glutathione accumulation) (Pérez et al., 2017). The
capability of these microorganisms to repair DNA damage
has been associated to radiation resistance, since it has
been suggested that radiotolerant bacteria accumulate high
intracellular manganese and reduced iron levels (Pikuta et al.,
2007), conferring them resistance to UV radiation (Paulino-
Lima et al., 2016). These types of microorganisms are usually
polyextremophiles, since it has been noticed that DNA damage
that accumulates during desiccation is critical also for desiccation
tolerance (Mattimore and Battista, 1996).

Novel species of the genus Deinococcus has been isolated,
mainly from environments with high UV radiation, such
as deserts and arctic zones (Hirsch et al., 2004; Rainey
et al., 2005; Bruch et al., 2015; Guerra et al., 2015). Strains
isolated from these environments have been proposed as
biocatalysts for bioremediation of radioactive waste sites
(Daly, 2000; Mrazek, 2002; Ghosal et al., 2005). UV resistant
strains of the Deinococcus genus have been associated to
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radiation resistance (Cox and Battista, 2005). D. radiodurans
has been engineered for bioremediation of heavy metals and
persistent organic pollutants (Daly, 2000; Cox and Battista,
2005). Deinococcus peraridilitoris strains KR-196, KR-198 and
KR-200t (Table 1) were isolated from an arid desert soil
collected in the north of Antofagasta, Chile. These isolates
showed a high tolerance to ionizing radiation > 10 kGy,
radiation even higher than reported for the model Deinococcus
radiodurans strain R1 (10 kGy) (Cox and Battista, 2005;
Rainey et al., 2007). Deinococcus sp. UDEC-P1 was isolated in
Témpanos Lake, an oligotrophic lake in the Chilean Patagonia
(Guerra et al., 2015). Due to their natural resistance to high
levels of radiation, Deinococcus species isolated in Chile are
potential candidates for bioremediation of radioactive wastes and
environments.

High altitude lakes have the potential to be fertile niche
for the isolation of novel UV-resistant microorganisms with
potential for bioremediation processes. Escudero et al. (2007)
have studied the diversity of microorganisms of high lakes
Aguas Calientes (5,870 m above sea level) and Licancabur
(5,916 m above sea level) located in the Northern Andes of
Chile. These areas have high rates of UVB radiation (48.5
MW/cm2). Analysis of sediments and brine of Aguas Calientes
lake show that the microorganisms belong mainly to the phylum
Proteobacteria, and 70% of the sequences could not be assigned
to a phylogenetic group. Licancabur Lake showed a dominance
of Cytophaga–Flavobacteria–Bacteroidetes and Proteobacteria.
Plankton analysis of Licancabur Lake shows poor diversity
and abundance in water samples, reporting Cyanobacteria,
Chrysophyceae, Euglenophyta, and Chlorophyceae strains
(Albarracín et al., 2015). In spite of these pioneering reports,
the microbial communities and UV-resistant microorganisms
of Chilean sites with extreme solar radiation levels such as
high altitude deserts and lakes and Antarctica are still mainly
unknown.

PSYCHROPHILES

Psychrophiles refer to microbes that are capable to grow at
temperatures ranging from −20 to 20◦C, with an optimal
growth temperature of <15◦C (Morita, 1975; Clarke et al., 2013).
Psychrophilic bacteria possess diverse molecular mechanisms to
survive at low temperatures (Figure 3). On one side, an increase
of unsaturated fatty acids, cyclopropane-containing fatty acids
and short chain fatty acids in membranes prevents the loss of
membrane fluidity (Feller and Gerday, 2003; D’Amico et al.,
2006). A second mechanisms is the high synthesis of cold-
shock proteins (CSPs) and chaperones that protect the synthesis
of RNA and proteins (Godin-Roulling et al., 2015). A third
mechanism is the synthesis of anti-freeze proteins (AFPs) that
binds to ice crystals and generates a state of thermal hysteresis
(Kristiansen and Zachariassen, 2005; Muñoz et al., 2017).
A fourth mechanism is the accumulation of mannitol and other
compatible solutes as cryo-protectants to prevent cell damage
by UV radiation. An additional mechanism is the transport of
compatible solutes such as mannitol to stabilize the cytoplasmatic

environment and prevent ice formation (Baraúna et al., 2017).
Nevertheless, the most general mechanism is the adaptation
of psychrophilic enzymes through inherent modifications of
their primary structure. Some of these amino acid changes are
minimal in comparison with mesophilic proteins, playing a
role in catalytic regions or stabilization of the proteins (Feller
and Gerday, 2003; D’Amico et al., 2006; Cavicchioli et al.,
2011).

In Chile, psychrophiles have been isolated from several
cold environments, such as the high mountains of Los Andes
Mountain, vast ice regions, such as the Northern and Southern
Ice Field, Southern extreme zones, such as the Patagonia,
and the Antarctic continent. Antarctica became a subject of
intense research in several fields, including the exploration of
novel microbes and their pigments, antibiotics and enzymes.
The development of special research programs that supports
long-timed expedition logistics have facilitated the access of
researchers and increase the research on the Antarctica (Loperena
et al., 2012; Órdenes-Aenishanslins et al., 2016; Lavin et al., 2017).
However, in-depth research conducted on psychrophiles in cold
environments, such as a report in Alpine glacier (Ferrario et al.,
2017), remain to be conducted.

Antarctica plays also a huge role in two mainstream
research topics, global Climate change and global contamination
assessment. The pollution in Antarctica is partly explained by
the grasshopper effect: pollutants are moved across the globe in
the atmosphere without suffering major changes and are later
deposited in continuous-forming ice sheets across Antarctica
surface. Other pollution source on Antarctica resides on human
activity from military and scientific bases (ASOC, 2007). The
detection of diverse organic and inorganic contaminants in
Antarctic territory is of increasing concern. Since Antarctica is
a region where the introduction of foreign microorganisms is
forbidden, the only strategy for bioremediation processes is the
application of native microbes (Poland et al., 2003; Gran-Scheuch
et al., 2017).

Bacteria capable to degrade crude oil at low temperatures
even below the freezing point have been reported (Gerdes et al.,
2005; Bowman and Deming, 2014). Alkane hydroxylases are
key enzymes for the degradation of alkanes, activating them
through conversion into alcohols (van Beilen and Funhoff,
2007; Fuentes et al., 2014). A survey of alkane hydroxylases
genes in psychrophilic bacteria reveals the adaptability of these
proteins, giving valuable insights on the degradation of long
chain hydrocarbons at low temperature. Mostly enzymes were
related to the AlkB and cytochrome P450 alkane hydroxylases,
but also LadA and AlmA enzymes involved in long-chain
alkanes degradation were reported (Bowman and Deming, 2014).
The primary structure of psychrophile enzymes differ from
their mesophile homologs in the preferences for specific amino
acids and increased flexibility on loops, bends, and α-helices.
Notably, various novel genes were reported from Psychrobacter,
Octadecabacter, Glaciecola, Terriglobus and Photobacter genera
(Bowman and Deming, 2014). Obligated hydrocarbonoclastic
microorganisms (i.e., microbes that use exclusively hydrocarbons
as carbon sources) isolated near to Antarctic coast have been
described. For example, Oleispira antarctica, whose genome
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reveals a diversity of alkane degradation genes and a system of
proteins that acts as cold barrier to circumvent low temperature
effects that could stop hydroxylase reaction (Kube et al., 2013).

Studies performed in the Chilean Antarctic territory are
mainly focused on Fildes Peninsula, where the human activity
in scientific and military bases had caused several contamination
events, including hydrocarbon spills. The estimation of the
polluted area impacted is about 3.5 km2, corresponding
to 12% of the total area of the Peninsula (ASOC, 2007).
However, bioremediation plans for these sites have not yet been
reported. Remarkably, the hydrocarbon degradation potential
of native microorganisms from the near Argentinian Carlini
Station has been described. Polaromonas naphthalenivorans, a
strain capable of naphthalene degradation and N2 fixation,
and strains belonging to Nocardioides genus were dominant
in soils with higher hydrocarbon pollution (Vázquez et al.,
2017). The hydrocarbonoclastic strains Rhodococcus sp. D32AFA,
Pseudomonas sp. E43FB and Sphingobium sp. D43FB that degrade
phenanthrene were isolated from diesel contaminated Antarctic
soils (Gran-Scheuch et al., 2017). The Antarctic soil strain
Streptomyces sp. So3.2 is able to produce a biosurfactant, which
may be useful for hydrocarbon bioremediation (Lamilla et al.,
2018).

Psychrophiles seem to be naturally adapted to cope with
a wide-range of heavy metals in the environment (De Souza
et al., 2006; Tomova et al., 2015; Gonzalez-Aravena et al., 2016).
This adaptive trait may be explained by the presence of heavy
metals in Antarctica’s sediments. In addition a high occurrence
of plasmids in Antarctic bacteria has been reported, which are
probably related to the transfer of resistance/tolerance genes
to heavy metals such as mercury, tellurium, cadmium, copper,
chromium, and lead (Mangano et al., 2013; Gonzalez-Aravena
et al., 2016; Rodriguez-Rojas et al., 2016a). Interestingly, a high
proportion of these bacterial isolates are multiple heavy metal-
resistant bacteria. Mercury- and tellurite-resistant strains were
isolated from Greenwich Island (Rodriguez-Rojas et al., 2016b).
Pseudomonas putida strain ATH-43 (Figure 2 and Table 2)
revealed high tolerance to cadmium, copper, chromium, and
selenium, whereas Psychrobacter sp. ATH-62 is resistant to
mercury and tellurite (Rodriguez-Rojas et al., 2016a). Heavy
metal-resistant bacteria were also isolated from invertebrates
from the Antarctic shores. Mercury-resistant Pseudoalteromonas
sp. gw196 and Colwellia sp. gw172, and zinc and cadmium-
resistant Arthrobacter and Psychrobacter strains were isolated
from a marine sponge (Mangano et al., 2013). Flavobacterium
and Psychrobacter strains with resistance to mercury and zinc
were isolated from a sea urchin (Gonzalez-Aravena et al.,
2016).

Antarctic bacteria have been also studied for additional
biotechnological applications. An Antarctic psychrophilic
Pseudomonas strain was able to produce quantum dots from
Cd salts (Gallardo et al., 2014). A psychrophilic Pseudomonas
mandelli able to produce alginate has also been reported (Bayat
et al., 2015; Vasquez-Ponce et al., 2017). Alginate is useful
to encapsulate microbes to improve the bioremediation of
persistent organic pollutants such as pesticides in polluted soils
(Morgante et al., 2010). Encapsulation of microbes in alginate

beads may prevent stress or predation of the inocula (Morgante
et al., 2010).

The diversity of bacteria from the Antarctica that showed
wide range heavy metal resistance and hydrocarbon degradation
capabilities revealed a complex community that include adapted
cosmopolitan bacteria such as Pseudomonas and other native
strains, which may be useful for bioremediation in cold
environments.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Chile has been referred to be a “biogeographic island” due to
a succession of natural barriers, including Altiplano, Atacama
Desert, Los Andes Mountains, South Pacific Ocean, Patagonia,
and Antarctica. Geological processes and climatic conditions
have driven the current geography of Chile into a set of
diverse ecosystems that reassemble heaven for both extremophilic
and polyextremophilic microorganisms. Those biotopes include
a multiplicity of ecosystems with more than one extreme
environmental condition, such a high salinity, low humidity, high
UV radiation, high or low temperature, high or low pH, and high
concentration of heavy metals. These extreme environmental
conditions exert a strong pressure limiting the biodiversity of
each niche, since every condition is associated with its own set
of adaptations for stability on its environment. At specie-level,
microbes that are capable to persist in such (multi) extreme
conditions gather (multiple) metabolic capabilities that are not
present in mesophilic microbes, and thus, represent a great
potential for biotechnological and environmental applications
(Liu et al., 2018). At an ecological level, it has been previously
shown that microbial communities in extreme environments
evolved at a faster rate than mesophiles living in benign
environments, highlighting particularities of the evolutionary
dynamic of such environments (Li et al., 2014). For these
reasons, diverse research efforts have been initially focused
on analyzing natural microbial communities of those sites
and studying physiological and genomic characteristics of the
microbial isolates.

Next generation sequencing (NGS) and next generation
proteomics (NGPs) provide powerful techniques to gain
insights about the molecular mechanisms involved in microbial
adaptation to extreme conditions (Armengaud, 2016). These type
of studies and methods will reveal the mechanisms and strategies
used by microbes to adapt to extreme conditions and are useful
to understand the evolution of microorganisms subjected to
extreme conditions.

In recent years, there are significant advances in the field
of extremophiles at the global level. Similar trend has also
been reported by researchers from Chile, whose discoveries
have made the field to flourish. This progress relied upon
the advances of physico-chemical characterization of those
biotopes together with the advent of high-throughput molecular
tools to understand the complexity of microbial communities
and improved tools and techniques for microbial isolation.
Many of those studies have gained significant insights on the
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molecular mechanisms involved in extremophiles’ adaptations to
extreme environments and their co-evolutionary processes, and
also contributed to current biotechnological developments, such
as Swissaustral, a company with headquarters in Chile, which
performs functional enzymatic screening for industrial and
biotechnological applications (Blamey et al., 2017). Additional
research efforts must be invested into broadening the taxonomic
breadth of extremophiles and expanding towards the study
of extremolyes, metabolites utilized as biological defense
mechanisms to combat extreme environmental stresses (such as
ectoine).

The restoration of polluted environment is a crucial task
for sustainable development. For the clean up of polluted
sites, bioremediation is an attractive alternative to physico-
chemical treatment processes. Microbes are main catalysts for
the bioremediation of polluted environments. Extremophiles
has been isolated in diverse zones in Chile that possess
extreme conditions such as Altiplano, Atacama Desert, Central
Chile, Patagonia, and Antarctica. Interestingly, the remarkable
adaptative capabilities of extremophiles convert these organisms
into an attractive source of catalysts for bioremediation and
industrial processes.

Future research will carry out more detailed studies on
extremophiles already described in order to deepen their
knowledge and optimize their use in industrial processes
including bioremediation. On the other side, a large number
of extreme environments in Chile are still unexplored or
underexplored. These habitats harbor microbial communities
with metabolic capabilities useful for bioremediation processes
and other applications. Therefore, future research should
focus on the isolation, identification and characterization of
a higher number of extremophiles from ecosystems with
extreme conditions. Thereafter, studies should explore the
metabolic potential of microbial isolates for application in
biotechnology including the bioremediation of heavy metals
and persistent organic pollutants. The basic research on

extremophiles combined with the scale up of the biotechnological
process including bioremediation and waste treatments will offer
a bright future to Chilean economy and an increasing welfare to
its inhabitants.
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