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Zigong, China

The microbial community during the fermentation of industrial paocai, a lactic acid
fermented vegetable food, was investigated via combined denaturing gradient gel
electrophoresis (DGGE) and metagenomic sequencing. Firmicutes and Proteobacteria
were identified as the dominant phyla during the fermentation. DGGE results of the
bacterial community analysis showed that many genera were observed during the
fermentation of industrial paocai, but the same predominant genus and species were
observed: Lactobacillus and Lactobacillus (L.) alimentarius/L. paralimentarius. The
abundance of L. alimentarius/L. paralimentarius increased fast during the initial stage of
fermentation and approximately remained constant during the later stage. Metagenomic
sequencing was used to finally identify the predominant species and their genetic
functions. Metabolism was the primary functions of the microbial community in industrial
paocai fermentation, including carbohydrate metabolism (CM), overview (OV), amino
acid metabolism (AAM), nucleotide metabolism (NM), energy metabolism (EM), etc. The
predominant species L. alimentarius and L. paralimentarius were involved in plenty of
pathways in metabolism and played different roles in the metabolism of carbohydrate,
amino acid, lipid to form flavor compounds during industrial paocai fermentation. This
study provided valuable information about the predominant species in industrial paocai
and its functional properties, which could enable us to advance our understanding of
the fermentation mechanism during fermentation of industrial paocai. Our results will
advance the understanding of the microbial roles in the industrial paocai fermentation
and provide a theoretical basis for improving the quality of industrial paocai products.

Keywords: industrial paocai, dominant species, functional characteristics, metagenomic sequencing, DGGE

INTRODUCTION

Chinese paocai is a traditional lactic acid fermented vegetable food and could date back to
3,000 years ago (Xiong et al., 2012). It is generally served as a side dish and widely consumed in
southwestern China. To date, the production of Chinese paocai is mostly based on spontaneous
fermentation both in homemade and industrial processes. Nowadays, paocai continues to be made
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in many regions of China and has drawn an increasing attention
in recent years, because it is rich in vitamins, probiotics,
minerals, organic acids, and lactic acid bacteria (LAB) (Zhang
Q. et al, 2016). Home-made paocai is made from assorted
vegetables with the addition of seasonings, while industrial
paocai was commonly made from a single type of vegetable
without the addition of seasonings. After selecting and cleaning,
raw vegetables (e.g., radish, cowpea, Qingcai, or Zhacai) were
stacked with 8-15% (w/w) salt to withdraw the juice, and
then spontaneously fermented based on the microbes present
on raw materials under the ambient temperature. Similar to
other fermented vegetables, LAB is often reported in paocai,
including Lactobacillus (L.) plantarum, L. casei, L. alimentarius,
L. brevis, L. paracasei, L. pentosus, L. sakei, L. spicheri, L. zymae,
L. hammesii, L. ginsenosidimutans, L. acetotolerans, Leuconostoc
(Lew.) mesenteroides, Leu. Lactis, Enterococcus (Ent.) faecalis,
Lactococcus (Lac.) lactis, and Pediococcus (Ped.) ethanolidurans
(Xiong et al,, 2012; Yu et al,, 2012; Cao et al., 2017). Although
the species in different home-made paocai are dissimilar (Xiong
et al,, 2012; Cao et al., 2017), most of them belonged to genera
Lactobacillus, Leuconostoc, Pediococcus, and Enterococcus. Many
LAB species, such as L. brevis (Xia et al., 2017), L. plantarum
(Liu et al.,, 2017), Ent. faecium (Liu et al., 2015), L. pentosus,
and Leu. mesenteroides (Yan et al., 2008), are used as the starter
in the production of home-made paocai to improve the quality.
Nevertheless, there are limited reports on the microbial diversity
of industrial paocai. The predominant species as well as their
functions in industrial paocai remains to be fully characterized
as the quality requirement of industrial production of paocai
become increasingly higher.

As far as we know, culture-dependent methodology is often
time-consuming and commonly understood yielding insufficient
information about the microbial structure. For now, many
powerful molecular ecological methods, such as denaturing
gradient gel electrophoresis (DGGE), have extensively been
used to explore the microbial community in the field of food
(Shangimuge et al, 2015; Zhang et al, 2015; Wang et al,
2016). In this study, DGGE was employed to identify the
predominant microflora during the fermentation of industrial
paocai. However, such analysis might not provide a complete
profile of the microbial community and an accurate species
identification because of its limitations and the 95% cut-
off for sequence similarity. In the development of high-
throughput sequencing, metagenomic sequencing has become a
powerful methodology for the identification of species and the
characterization of functions in food studies (Zhang J. et al., 2016;
Escobar-Zepeda et al., 2016). Then in this study metagenomic
sequencing was employed to determine the predominant
species and decipher their gene functions in industrial paocai
fermentation.

The major aim of this work, therefore, was to investigate
the dominant microbial community at species level during
the fermentation of the industrial paocai, and characterize
their gene functions by combined DGGE and metagenomic
sequencing. Our results will contribute to understand and
improve the microbial fermentation process of industrial
paocai.

MATERIALS AND METHODS

Sample Collection and Physicochemical

Properties

Twenty brine samples of industrial paocai in different
fermentation stage, including Qingcai paocai (QP) and Zhacai
paocai (ZP), were collected from a famous paocai factory which
is located in Meishan, Sichuan Province of China, in 2016. The
samples were kept on ice and transported to our laboratory.
A pH meter (PHS-3C, China) was used to determine the pH
values. Total titratable acidity (TTA) was determined according
to the titration method of AOAC 942.15. Salinity of samples was
determined via a digital salt meter (ATAGO, Japan). The nitrite
content was determined using the GB/T 5009.33-2010 method
and shown in units of mg/kg.

DNA Extraction and PCR Amplification

Total genomic DNA was extracted from ten milliliters
homogenized paocai brine samples using E.ZN.A.® DNA
Kit (Omega, United States) following the manufacturer’s
instructions and then stored at —20 °C until use. The highly
variable V3 region of bacterial 16S ribosomal RNA (rRNA) gene
was amplified by using 357F and 517R primers (Muyzer et al.,
1993). Reactions (50 wL) included 2 x PCR Mix (TIANGEN
Biotech, China), 20 pmol primers, DNA templates and distilled
water. The PCR program for the 16S rRNA gene was performed
as described previously in a MyCycler™ Thermal (Bio-Rad,
United States) (Liang et al., 2016a). For DGGE analysis, a 40
nucleotide GC-clamp were appended to the 5" end of the forward
primer (Muyzer et al., 1993). All the amplification products were
checked on 2% agarose gels.

DGGE Analysis and Band Sequencing
Amplified products were subsequently subjected to DGGE using
a D-Code™ Universal Mutation Detection System (Bio-Rad,
United States). An aliquot of 20 pL of each amplified product
was loaded onto the gel. Electrophoresis was carried out with
8% polyacrylamide gels in 1x TAE buffer at 60°C with a linear
gradient of 30-55% denaturant [100% corresponds to 7 M
urea and 40% (v/v) formamide] for the bacterial community
at constant voltage of 200 V for 4 h at 60°C, respectively.
Subsequently, the gels were stained for 45 min with SYBR Green
I (1:10,000 v/v) and visualized using Gel Doc™ XR (Bio-Rad,
United States). The major bands were excised and the eluted DNA
was re-amplified as described above using the primer without
GC-clamp. The PCR products were purified and then delivered
to a biotech company (Sangon, Shanghai, China) for clone
sequencing. The sequence information was achieved by aligning
the results with the sequences in GenBank using BLAST".

Metagenomic Sequencing Analysis

Genomic DNA extracted from the samples was prepared
for sequencing using E.ZN.A™ Mag-Bind Soil DNA Kit
according to the manufacturer’s protocol. An Illumina library

'www.ncbi.nlm.nih.gov/BLAST/
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FIGURE 1 | Changes in pH, total titratable acidity (TTA), salinity, and nitrite during industrial paocai fermentation. Panels (A,B) represent industrial ZP and QP,
respectively.

was prepared from total using NEBNext® Ultra™ DNA Library
Prep Kit for Illumina® (Illumina, San Diego, CA, United States)
following the manufacturer’s specifications with an average
fragment size of 500 base pair (bp). Agencourt AMPure XP
Kit (Beckman, CA, United States) was used to purify the
amplicons of DNA in libraries. The sequencing (2 x 150 bp)
was performed on the HiSeq 2500 platform (Illumina, Inc., San
Diego, CA, United States). Quality control was performed using
Trimmomatic v0.36 (Bolger et al., 2014). Sequences containing N
base and adapters or with a low quality value (Q value less than
20) were removed. De novo assembly was performed using IDBA-
UD v1.1.1 (Peng et al.,, 2012) with an optimal k-mer parameters.
Open reading frame (ORF) prediction was performed by running
Prodigal software v2.60 (Liu et al., 2013) on assembled sequences
and translated into protein sequences. The predicted sequences
were clustered (with 95% identities and 90% coverage) and
the longest sequence was selected in each cluster to construct
the non-redundant gene catalog by CD-HIT v4.6 (Li and
Godzik, 2006). The assembled unigenes were searched against the

NR (NCBI non-redundant protein sequences)’ database using
DIAMOND (Buchfink et al.,, 2015), the Kyoto Encyclopedia of
Genes and Genomes database (KEGG)® using GhostKOALA
v0.9.7 (Kanehisa et al., 2016).

Data Analysis

The number, migration, and intensity of DGGE bands were
analyzed via Quantity One (Bio-Rad, United States). The
Shannon and Pielous index were determined based on
the relative quantity of the DGGE bands (Shannon, 1949;
Pielou, 1966). SIMCA-P ver. 13.0 software (Umetrics, Sweden)
enabled principal component analysis (PCA) based on the
relative abundance of microbiota during the fermentation
of industrial paocai. Statistical analysis was performed using
the SPSS (SPSS Inc., United States). Heat maps showed the
microbial distribution at different classification levels and were

Zhttp://ncbinlm.nih.gov/
3http://www.kegg.jp
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FIGURE 2 | DGGE profile of microbiota from microbial DNA extracted from industrial ZP (A) and QP (B) samples collected over fermentation process. The
denaturing gradient was 30-55%. The bands indicated by the arrows and numbers were sequenced and the alignment results are listed in Table 1.
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constructed using the Heml Software (Heatmap Illustrator,
version 1.0).

RESULTS

Physicochemical Properties During the

Fermentation of Industrial Paocai

The changes of pH, TTA, salinity, and nitrite during fermentation
of the industrial paocai are shown in Figure 1. The pH
declined before 38 d, and then remained stable until the end of
fermentation. TTA values were increased with different speeds
for ZP and QP, and then remained stable during the later stage
of fermentation. But the content of TTA in ZP was greater than
that in QP (Figure 1). The salinity of ZP and QP was almost
unchanged during the fermentation (Figure 1). The salinity of ZP
was about 8.0, while that of QP was about 6.5. The nitrite content
of ZP was almost unchanged (Figure 1A), while that of QP was
decreased during the fermentation process (Figure 1B). But the
nitrite content of ZP and QP during the later fermentation stage
was significantly lower than the national health standard’s safe
level (20 mg/kg).

Bacterial Community During

Fermentation Revealed by DGGE

The bacterial DGGE profile of ZP and QP is illustrated
in Figure 2. In the DGGE profile of ZP, 27 bands were
identified (Table 1) and fell into three phyla: Firmicutes,
Proteobacteria, and Bacteroidetes (Figure 3A), but more
than 96% of the abundance were assigned to the phylum
Firmicutes and Proteobacteria. A total of 10 genera, such
as  Lactobacillus,  Psychrobacter,  Vibrio,  Sphingomonas,
Oceanisphaera, Sphingobacterium, Staphylococcus, Marinomonas,
etc., were detected in ZP (Figure 3B). The relative abundance
of Lactobacillus increased at first and then decreased to a
stable level (about 30%) during the fermentation, while that
of some genera, such as Vibrio, Oceanisphaera, Marinomonas,
and Sphingomonas, showed the reverse changes (Figure 3B). At

species level, the dominant band was identified as L. alimentarius
or L. paralimentarius (Figure 3C). Two phyla, including
Firmicutes and Proteobacteria, were observed in QP (Figure 3D).
Therefore, Firmicutes and Proteobacteria were prevailing during
the fermentation of industrial paocai. Compared with ZC
paocai, a total of 12 genera, such as Lactobacillus, Halomonas,
Pseudomonas, Vibrio, Salinivibrio, Erwinia, Halanaerobium, etc.,
were observed in industrial QP (Figure 3E). The abundance
of Lactobacillus, including L. alimentarius/paralimentarius,
L. plantarum, L. namurensis, and L. brevis, increased during
the entire fermentation of QP and then remained at about
70% during the later fermentation stage (Figures 3E,F).
Therefore, Lactobacillus and L. alimentarius/paralimentarius was
predominant genus and species during the fermentation process
of industrial paocai.

Multivariate Analysis of DGGE Profiles

The profiles of bacterial community during the fermentation of
industrial paocai obtained by DGGE were statistically analyzed
statistically via PCA. PCA analysis based on DGGE data of
bacterial community during the fermentation of industrial ZP
and QP was basically similar and the two axes explained
49.50 and 19.70% of the variation in bacterial community
differentiation, respectively (Figure 4). The elliptical area
on the PCA plot represents 95% confidence intervals of
the modeled variation analyzed by PCA-Hotellings T2 test
and all samples were in the elliptical area, which indicated
that there were no outliers in the data. In the results of
PCA analysis, the bacterial community structures in ZP and
QP were different, but their variation tendency was similar
(Figure 4).

Determination of Predominant Species
by Metagenomic Sequencing

To determine the dominant species in industrial ZP and
QP, metagenomic sequencing was employed to analyze
the microbial community in matured industrial ZP and
QP. Sequencing and assembly statistics are presented
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TABLE 1 | Sequencing results of selected DGGE bands from the DGGE profiles.

Bands ? Closest relative P Identity (%) Length (bp) Accession no.

ZP 1,2,4,11,13,20,26 Vibrionaceae bacterium 98,99 196 KT356841.1
3,6,14,16 Uncultured bacterium 100 196 L.C140853.1
5,7,17,24 Lactobacillus alimentarius/ Lactobacillus paralimentarius 99,100 196 AB919114.1/ MF942368.1

8 Pseudomonas viridiflava 100 196 KX640928.1
9,23 Lactobacillus curvatus/ Lactobacillus fuchuensis 100 196 LC130556.1/ LC130557.1

10 Psychrobacter sp. 99 195 KU198795.1

12 Sphingobacterium sp. 100 191 KX527636.1

15 Uncultured bacterium 100 183 KJ475839.1

18 Psychrobacter sp. 100 196 KX214117.1

19 Sphingomonas sp. 100 164 KR856419.1

21 Oceanisphaera sp. 98 196 HM566011.1

22 Marinomonas sp. 99 196 KM979047 .1

25 Staphylococcus equorum 99 196 KX495495.1

27 Uncultured bacterium 99 195 EU465483.1
QP 1,3,7,9,12,18,19,25 Lactobacillus alimentarius/ Lactobacillus paralimentarius 99,100 192-197 AB919114.1/ MF942368.1

2 Vibrionaceae bacterium 99 196 KJ1568197.1

4 Uncultured Pseudomonas sp. 100 196 JN873217.1

5,6,8,30 Lactobacillus plantarum 99,100 196 KX519704.1

10 Pseudomonas sp. 100 196 KX389675.1

11 Brochothrix thermosphacta 96 195 KT767854.1

13 Halanaerobium sp. 100 196 KR612329.1

14 Pseudomonas putida 100 195 KX436994.1

15 Erwinia sp. 99 196 LK054598.1

16,24 Lactobacillus namurensis 99 196 KT285577.1

17,28 Uncultured Halomonas sp. 99 187,196 L.C140852.1

20 Uncultured bacterium 99 172 AB818639.1

21 Uncultured bacterium 97 171 LN849544 1

22 Salinivibrio sp. 89Y 100 196 KP795377.1

23 Uncultured bacterium 98 197 KC208464.1

26 Lactobacillus brevis 100 196 KX519532.1

27 Uncultured bacterium 99 196 L.C140859.1

29 Halomonas sp. JB380 100 197 KF669533.1
aZP and QP represented the industrial Zhacai and Qingcai paocai. Each number corresponds to the bands indicated in Figure 2. bSequences were compared with those

in NCBI database.
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in Supplementary Table S1. After gene prediction and
construction, a total of 94 phyla, including Firmicutes,
Proteobacteria, Ascomycota, Viruses unclassified, Bacteroidetes,
Streptophyta, Chordata, Arthropoda, and Actinobacteria,
was identified in industrial ZP and QP, and two phyla,
including Firmicutes (92.97 and 38.67%) and Proteobacteria

(6.51 and 30.41%), were detected with a high abundance
(Supplementary Figure S1). A total of 2174 genera were
detected and Lactobacillus (52.66 and 35.41%) was detected
as predominant genus in industrial ZP and QP (Figure 5).
L. paralimentarius, L. alimentarius, L. plantarum, L. futsaii,
L. zymae, L. acidifarinae, L. brevis, and L. farciminis were
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FIGURE 6 | Gene functional annotation (A) of microbial community, KEGG pathways of metabolism (B), and functional roles of L. alimentarius and L. paralimentarius
in metabolism (C) in industrial ZP and QP. (C) The pathways with abundance >0.1% in at least one sample were presented. The black box represented genes
encoding related enzymes in the pathway were detected while white box represented not. LA, L. alimentarius and LPA, L. paralimentarius.

observed as the shared species in ZP and QP with a higher
abundance (Figure 5).

Functional Characterization of

Predominant Species in Industrial Paocai

According to the blast KEGG, the functional profiles of microbial
genes in industrial ZP and QP were classified into metabolism,
environmental information processing, genetic information
processing, human diseases, cellular processes, and organismal
systems (Figure 6A). Among them, metabolism was noted
with the highest abundance. Carbohydrate metabolism (CM),
overview (OV), amino acid metabolism (AAM), nucleotide
metabolism (NM), and energy metabolism (EM) were observed
with a high abundance (>10%) in metabolism (Figure 6B).
In them, the main KEGG Orthology (KO) entries with an
abundance of above 0.1% were presented in Figure 6C.
The identified enzymes produced by L. paralimentarius and
L. alimentarius in these KO entries (with a high abundance
>10%) are shown in Supplementary Table S2. Based on the
identified enzyme types, L. paralimentarius and L. alimentarius
were involved in plenty of metabolic pathways in industrial
paocai, such as glycolysis/gluconeogenesis (ko00010), carbon
metabolism (ko01200), biosynthesis of amino acids (ko01230),

glycine, serine, and threonine metabolism (ko00260), etc.
(Figure 6C).

DISCUSSION

To some extent, the spontaneous fermentation of vegetable
depends on the microorganisms presented on the surface of
raw materials, which leads to the proliferation of various
dominant microorganisms. This made it difficult to produce
the industrial paocai with uniform and good quality. Therefore,
the investigation of microbial communities in industrial paocai
is tremendously beneficial to achieve a greater understanding
of spontaneous industrial paocai fermentation processes. In
the present work, Firmicutes and Proteobacteria were observed
as the dominant bacterial phylum in industrial paocai during
fermentation processes (Figures 3A,D, 5A). The same dominant
phylum was also observed in paocai samples (Liang et al,
2016b; Yang et al.,, 2018; Wang and Shao, 2018). The microbial
community structure detected in industrial ZC and QC paocai
was different (Figures 3, 5). Remarkably, amongst the genera
detected in industrial ZC and QC paocai, Lactobacillus was
predominant during the fermentation. This was in agreement
with previous studies (Liang et al., 2016b, 2018a,b; Yang et al,,
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2018; Wang and Shao, 2018). The genus of Lactobacillus, which
could produce plenty of acids, was always reported as the
predominant LAB in fermented vegetables by culture-dependent
or culture-independent methods (Yu et al., 2012; Xiong et al,
2012; Cao et al., 2017; Zhang et al., 2018). Xiao et al. (2018) found
that Lactobacillus, Leuconostoc, Achromobacter, and Pediococcus
were closely correlated with flavors in Chinese Sichuan paocai
by using high-throughput sequencing and flavor analyses.
Therefore, the metabolism of Lactobacillus during the paocai
fermentation process potentially contributed to the formation of
flavor. The genus of Vibrio was also detected in industrial paocai
in this study. It is further detected in other fermented vegetables
(like salted cabbage and kimchi) and might have originated
from salt (Park et al., 2012; Hong et al., 2014; Lee et al., 2017).
Psychrobacter can tolerate a wide range of salt concentrations
and produce lipases (Bowman, 2006). Some Pseudomonas species
have been reported to produce esters, ketones, hydrocarbons,
alcohol, and sulfur compounds (Tamsyn et al., 2018). Therefore,
these genera may contribute to the formation of flavor during
fermentation of industrial paocai. In addition, there were also
some other genus observed in this study and all of them could be
found in previous studies on paocai (Liang et al., 2016a, 2018a,b;
Cao et al., 2017; Xiao et al., 2018).

All in all, the compositions of microbial phyla detected
in industrial ZC and QC paocai were same, while that of
genera was different. These may be primarily due to the
different raw materials were used. But the same predominant
genus Lactobacillus during industrial ZC and QC paocai
fermentation was identified. In fermented vegetables, many
species affiliated with Lactobacillus were often observed as the
dominant microorganism. Then they were used as the starter
for inoculation fermentation to obtain a good quality product or
ensure its safety in paocai production (Yan et al., 2008; Xiong
et al., 2014; Liu et al,, 2017; Xia et al., 2017; Du et al.,, 2018).
L. plantarum, L. casei, and L. zeae were detected as dominant
strains during Chinese sauerkraut fermentation by culture-
dependent method (Xiong et al., 2012). L. acetotolerans and
L. brevis were observed as the dominant species in homemade
Sichuan paocai brines by PacBio SMRT sequencing technology
(Cao et al,, 2017). L. acetotolerans, L. brevis, and L. buchneri
were the major species present in Chongqing radish paocai
brine using PacBio SMRT sequencing (Yang et al., 2018). In this
study, L. alimentarius and L. paralimentarius was observed for
the first time as the predominant species by DGGE during the
fermentation of industrial paocai (Figures 3C,F, 5C). Potentially,
L. alimentarius or L. paralimentarius could be used as a starter for
the production of paocai by inoculated fermentation in industrial
production. There was a significant variance in the most
dominant bacterial species present in fermented vegetables. The
production process, raw materials and geographical distribution
could account for this difference (Wang and Shao, 2018; Yang
etal., 2018; Zhang et al., 2018).

Lactobacillus alimentarius and L. paralimentarius were
detected as the predominant species by DGGE during the
fermentation of industrial ZC and QC paocai. In our previous
study on industrial QP, the same potential dominant species
during fermentation were also observed using DGGE (Liang

et al., 2018b). But the length of the fragment to be resolved
by DGGE is limited. This represents a limiting resolution and
makes it difficult to achieve a reliable identification of the
microbial species within the same genus (Kisand and Wikner,
2003; Ercolini, 2004). Then a single band may be composed
of several species. For example, a bacterial DGGE band was
identified as L. alimentarius or L. paralimentarius. Therefore,
metagenomic sequencing was employed to determine accurate
species in industrial paocai. In metagenomic sequencing analysis,
Firmicutes and Proteobacteria were predominant phyla in
industrial paocai (Figure 5A). L. paralimentarius, L. alimentarius,
and L. plantarum were observed as the predominant species in
industrial ZC and QC paocai (Figure 5C). This was in accordance
with the DGGE results.

Metagenomic analysis of the industrial paocai samples
made it possible to reveal not only microbial community
structure at the species level but also the metabolic potential
in industrial paocai. The species related to CM in industrial
ZP were reported in our previous study (Liang et al., 2018a).
But the gene functions of dominant species in industrial ZC
and QC paocai remain unknown. It is generally accepted
that microorganism, especially LAB, contributes significantly
to the properties of various fermented foods, where they
contribute to the flavor, texture and nutrition (Gaspar et al., 2013;
Douillard and de Vos, 2014; Xiao et al., 2018). The microbial
metabolism of carbohydrate, lipids, and protein produce the
complex compounds which form the sensory properties of
fermented food. In industrial paocai, metabolism was primary
functions of the microbial community (Figure 6A). CM, OV,
AAM, NM, and EM were the main pathways in metabolism
(Figure 6B). In this study, the predominant species, namely,
L. alimentarius and L. paralimentarius were involved in plenty
of pathways, especially these main pathways in metabolism
(Figure 6C). Among these observed pathways, CM was the
main metabolism in industrial paocai. L. alimentarius and
L. paralimentarius took part in many entries in the CM, such
as glycolysis/gluconeogenesis (ko00010), pyruvate metabolism
(ko00620), amino sugar and nucleotide sugar metabolism
(ko00520), fructose and mannose metabolism (ko00051), and
starch and sucrose metabolism (ko00500), producing some
acids, aldehydes, and alcohols through producing multiple
enzymes (Supplementary Table S2). L. alimentarius was
reported to be able to degrade nitrite (Tang et al., 2016). In
this study, the present of L. alimentarius might be the reason
for lower nitrite content during the later stage of fermentation
(Figure 1). In the entries of OV, the predominant species
were involved in carbon metabolism (ko01200), biosynthesis
of amino acids (ko01230), 2-oxocarboxylic acid metabolism
(ko01210), fatty acid metabolism (ko01212), and degradation
of aromatic compounds (ko01220), in which various flavor
compounds are generated. AAM is important in food quality
because amino acids, especially, sulfuric, aromatic, and the
branched-chain amino acid, are precursors of many flavor
compounds (Fernandez and Zuniga, 2006). L. alimentarius and
L. paralimentarius were involved in cysteine and methionine
metabolism (ko00270), tryptophan metabolism (ko00380),
tyrosine metabolism (ko00350), phenylalanine metabolism
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(ko00360), and so on in this study (Figure 6C). Potentially, the
amino acids are converted to various acids, alcohols, aldehydes,
esters, and sulfur compounds for specific flavor development of
industrial paocai. Lipids are also the important source of flavor
compounds. L. alimentarius and L. paralimentarius were also
involved in the fatty acid degradation and biosynthesis (ko00061
and ko00071), glycerophospholipid metabolism (ko00564),
glycerolipid metabolism (ko00561), biosynthesis of unsaturated
fatty acids (ko01040), and synthesis and degradation of ketone
bodies (ko00072) (Figure 6C). In addition, the other metabolisms
related to predominant species, such as biosynthesis of other
secondary metabolites and metabolism of terpenoids and
polyketides, also contribute to the flavor in industrial paocai. But
the correlation between metabolic functions of the predominant
species and the formation of flavor deserves further research.

CONCLUSION

In the present study, the microbial community during the
fermentation of industrial paocai was revealed and the
predominant species were identified via combined DGGE and
metagenomic sequencing. In the results of bacterial analysis,
Firmicutes and Proteobacteria were the predominant bacterial
phylum during the fermentation of industrial paocai. Plenty
of different genera were observed, but the same predominant
genus was obtained during the fermentation of industrial paocai.
The abundance of Lactobacillus increased at first and remained
stable during the later fermentation stage of industrial paocai.
L. paralimentarius and L. alimentarius were the predominant
species during fermentation. Amongst all the functional
profiles, metabolism was the primary function of the microbial
community in industrial paocai, including CM, OV, AAM, NM,
EM, and so on. The predominant species were involved in plenty
of pathways in metabolism and played different roles in the
formation of flavor during the fermentation of industrial paocai.
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