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The concept of individuality has changed, since symbiosis is now accepted as being widespread
and not an exception. Symbiotic microorganisms are not only crucial for the evolutionary and
ecological success of many organisms (take land plants as an iconic example) but can also be
key to many current human caused challenges (biomass degradation and bioenergy, for example).
Nowadays, many tools are available allowing to study the hidden microbiological world, but we
should not neglect that, for certain aims, researchers do need to incorporate these new technologies
with less appealing and more classical approaches in an integrative framework. Using the example
of lower termites’ symbiosis with their protists, we intend to stimulate debate and to encourage
cooperation between researchers toward high quality “big data” that can bring us closer to the
pursued answers.

THE “OMICS ERA” IN THE MICROBIAL ENDOSYMBIOSIS WORLD

The fast development of molecular techniques, especially the high-throughput sequencingmethods
(HTS) during the past years, has made the in-situ detection of microorganisms feasible. The
perception that an organism is never alone is well established and fueled the desire to unveil the
hidden world of the microbial symbiosis.

In this new “omics era” a new set of tools and techniques allowing the study of not yet cultivated
(or difficult to cultivate) symbionts are available. The advances in DNA sequencing technology and
the use of the 16S rRNA gene as a taxonomic marker have enabled the genetic identification of
bacteria, being nowadays a well-established approach (e.g., Otani et al., 2014; Bin et al., 2018). For
symbiotic fungi metabarcoding, approaches targeting the mycobiome of plants (e.g., mycorrhizal
fungus) or invertebrates (e.g., pathogenic fungus) have been widely employed and both primer sets
and comparative databases are available and growing (for a review see Cuadros-Orellana et al.,
2013). For other groups, like the protists, the approaches are less well established.

In the microbial endosymbiosis world, the interactions may have several roles, from
reproductive to digestive or even protective. A classic digestive endosymbiosis is the one between
termites and their symbionts, andmuch of the research has been focused on themicrobial symbiosis
that aids the wood digestion process. The symbiotic association between termites and their hindgut
symbionts has advantages for both, since the termites obtain energy as a result of the cooperative
lignocellulose digestion, and hindgut symbionts have shelter, protection and food, supplied by the
termite host (e.g., Brune, 2013; Tamschick and Radek, 2013). In addition to the synergistic digestive
collaboration, symbionts of lower termites may also play a protective role against pathogens (see
Peterson and Scharf, 2016).
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SYMBIOTIC FLAGELLATE PROTISTS: THE
CASE STUDY OF LOWER TERMITES

Flagellate protists inhabit the lower termite’s gut, an ancestral trait
shared with wood-feeding cockroaches (e.g., Lo and Eggleton,
2011; Brune and Dietrich, 2015). The gut protists belong to either
the phylum Parabasalia or the order Oxymonadida (phylum
Preaxostyla). Termite guts harbor a great diversity of protist
species.

The characterization of flagellate protists living inside termites
is a challenging wide field of research, which initially relied
solely on the morphological characterization of the cells (Leidy,
1877; Kudo, 1939; Grassé, 1952), and nowadays should ideally
rely on an integrative taxonomic approach, using evidence from
morphology and molecular data to delimit protist species (e.g.,
Carpenter et al., 2009; Harper et al., 2009; James et al., 2012)
and contributing to solve the Linnean shortfall (Cardoso et al.,
2011; Hortal et al., 2015). However, the identification of flagellate
protists symbiotic to termites is highly impaired by the difficult
task of maintaining a laboratory rearing of these organisms:
the intricate physical and chemical conditions existing inside
the termite hindgut (particularly, gradients of oxygen, hydrogen,
and pH), powered by the protists and bacterial symbionts
activities, are almost impossible to reproduce in a laboratory
environment, and are of utmost importance for the survival of the
different species of flagellate protists. Therefore, most methods
for the analysis of these symbionts are limited to the direct
observation of the hindgut of freshly killed and healthy termites,
followed by the isolation of each cell from the microbiome
and its morphologic description. Nowadays, this is clearly not
enough.

The morphologically described species, which associate to
termites, amount to more than 400 parabasalids and 70
oxymonads (reviewed in Ohkuma and Brune, 2011). With
the technological advances, some single cell sequences (from
protists manually isolated under microscopy; Figure 1) are
becoming available (Supplementary Table 1). However, many
taxonomically important species have not yet been subjected
to any molecular study. The in-situ detection of flagellate
protists, through metabarcoding approaches is available but
requires database data for bioinformatics comparison to obtain
organisms’ identification and biological role inference. Other
studies, such as meta-transcriptomics are actually overcoming
the drawback of the need of protists individual identification
and focus on protists community of symbionts functional role
by transcript inference (e.g., on lignocellulolytic process; Scharf
et al., 2011; Xie et al., 2012; Raychoudhury et al., 2013, Liu et al.,
2016). Even if the use of differential gene expression analyses for
understanding community responses to specific conditions does
overcome the need of flagellate protists species knowledge, these
analyses do not contribute to our understanding of the protistan
diversity nor to the identification of a given species (only
community information) needed for a specific biotechnological
purpose.

Furthermore, we often see no gradation in the information
available, hindering the integration of the knowledge at its
different scales. In short, and with some important exceptions

(Supplementary Table 1), we went from single cells described
morphologically to community approaches focusing on processes
and responses. The relevance of this data is unarguable and could
drastically increase if the “distance” between morphotypes and
the operational taxonomic units or OTUs responses could be
bridged.

BOTTLENECKS TO THE WORKFLOW,
FROM GUTS TO FLAGELLATE PROTISTS
SEQUENCES

Basically, an HTS approach to termite’s protist gut community
entails the sequence analysis of target amplicons, PCR amplified
from DNA arising from the protist genomes directly extracted
from the gut. The targets for such analyses are of course genes of
taxonomic interest. The sequenced amplicons are clustered, and
the representative sequences (OTUs) are compared to reference
databases.

In this workflow, from guts to flagellate protists sequences,
a number of bottlenecks are not yet possible to fully overcome:
(a) availability of reference data (library), (b) efficient primers
covering the diversity of preaxostyla and parabasalia, and (c) the
lack of knowledge on the proper clustering threshold so that
oxymonad and parabasalid sequences OTU do reflect a species;
no doubt a consequence of the low level of knowledge on these
groups of organisms.

Recently, Jasso-Selles et al. (2017) looked into the hindgut
community of Heterotermes aureus Snyder using an integrative
approach that included three techniques: (i) light microscopy,
(ii) single cell isolation, and (iii) high throughput amplicon
sequencing. This study is an example of bridging classical
morphological studies with HTP approach, describing four new
parabasalids and designed 18S rRNA gene parabasalids primers
to access population-level differences in hindgut community
composition. The reduced geographical range ofH. aureusmight
determine its simple microbial community when compared
to other Rhinotermitidae species. The characterization of the
community of parabasalids symbiotic to termites belonging
to Zootermopsis genus and the investigation of the possible
coevolutionary mechanisms influencing their diversity has also
been recently done following the same integrative approach
(Taerum et al., 2018). Reticulitermes species, however, harbor
flagellate protists from the phylum Parabasalia but also from
the order Oxymonadida (phylum Preaxostyla) and the number
of protists identified in a single Reticulitermes species vary per
study (Lo Pinto et al., 2016 and references therein), caste and
season (e.g., Benjamino and Graf, 2016) but reports of more
than 15 species (or morphotypes) are accredited (Leidy, 1877;
Mello, 1920; Cleveland, 1923; Bloodgood et al., 1974; Breznak and
Pankratz, 1977; Mauldin, 1977; Mauldin et al., 1981; Lelis, 1992;
Cook and Gold, 1998; Stingl and Brune, 2003; Stingl et al., 2005;
Brugerolle, 2006; Brugerolle and Bordereau, 2006; Lewis and
Forschler, 2006; Hu, 2008; Hu et al., 2011; Tamschick and Radek,
2013; and references therein: Kudo, 1939; Ghidini, 1942; Yamin,
1979; Grassé, 1982). In Reticulitermes at least, an HTS approach
is hampered by the lack of universal primers and the absence of
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FIGURE 1 | (A) Extracted gut with different parts of the subterranean termite Reticulitermes grassei Clément gut: Foregut; Midgut, including the Malpighian tubules

(MP) at the posterior end of the midgut; Hindgut. (B) Scanning electron micrograph of Microjoenia hexamitoides. (C) Longitudinal section of Microjoenia hexamitoides
showing flagellar lines (Fl) around the anterior zone of the cell and posteriorly protruding axostyle (Ax).

a reference database, including 18S rRNA gene sequences and
species/morphotype linkage.

BRIDGING THE GAP: SINGLE CELL
STUDIES COMBINING MICROSCOPY

To bridge the created gap knowledge an integrative approach
should be followed, merging classical microscopy methods with
single cell isolation and molecular identification. Efforts should
move toward an “ID card” for every flagellate protist symbiotic
of termites, where morphology, including a diagnose image
and 18S rRNA gene signature should be present, together with
a (tentative) taxonomy. This single locus barcoding strategy
should then be followed by a more ambitious strategy to
produce multi-locus protist phylogenies by sequencing several
marker genes, or ideally by sequencing whole protist genomes
in order to move toward performing phylogenomics of termite
gut flagellates. Other information, such as morphological and/or
motility characteristics, host species, geographical origin and
habitat identification of the sample would be reported as
extra information. If possible, molecular data on the host
should be provided allowing its phylogenetic identification,
and progress toward hypotheses testing, such as host-symbiont
specificity and co-evolution. The tools are available; we just

need to join forces! This would be the creation of a common
database, at single cell level, which would enable the widespread
use of meaningful and fruitful HTS approaches. Data would
also be made available on all relevant databases, such as
Barcode of Life Database (BOLD, for the host-http://www.
boldsystems.org/; Ratnasingham and Hebert, 2007), The Protist
Ribosomal Reference database (PR2-https://github.com/vaulot/
pr2database; Guillou et al., 2013), SILVA ribosomal RNA
database (SILVA-https://www.arb-silva.de/; Quast et al., 2013)
and Eukaryotic Reference Database (EukRef-http://eukref.org/
databases/; Campo et al., 2018). Describing and understanding
the roles of each different species could help linking termite
biology with termite control. This would also directly impact
in diverse biotechnological niches, including the discovery of
organisms producing lignocellulases and other enzymes -with
applications in a variety of biomass, industrial, and processing
technologies.

This approach will not only contribute to surpass the Linnean
shortfall but will also contribute to a better understanding of
the ecological and evolutionary characteristics of symbiotic
microorganisms. In a near future it will be possible to document
species relationships and describe the detailed networks
between most symbiotic microorganisms and their hosts. More
importantly this new data will populate important biodiversity
databases such as the Global Biodiversity Information Facility
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(http://www.gbif.org/), the Catalog of Life or the Encyclopedia of
Life (http://www.eol.org) and will provide invaluable resources
for the advancement of ecological research and biotechnology.
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