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Background: Acute respiratory infections (ARIs) are the leading indication for
antibacterial prescriptions despite a viral etiology in the majority of cases. The lack of
available diagnostics to discriminate viral and bacterial etiologies contributes to this
discordance. Recent efforts have focused on the host response as a source for novel
diagnostic targets although none have explored the ability of host-derived microRNAs
(miRNA) to discriminate between these etiologies.

Methods: In this study, we compared host-derived miRNAs and mRNAs from
human H3N2 influenza challenge subjects to those from patients with Streptococcus
pneumoniae pneumonia. Sparse logistic regression models were used to generate
miRNA signatures diagnostic of ARI etiologies. Generalized linear modeling of mRNAs to
identify differentially expressed (DE) genes allowed analysis of potential miRNA:mRNA
relationships. High likelihood miRNA:mRNA interactions were examined using binding
target prediction and negative correlation to further explore potential changes in pathway
regulation in response to infection.

Results: The resultant miRNA signatures were highly accurate in discriminating
ARI etiologies. Mean accuracy was 100% [88.8–100; 95% Confidence Interval (CI)]
in discriminating the healthy state from S. pneumoniae pneumonia and 91.3%
(72.0–98.9; 95% CI) in discriminating S. pneumoniae pneumonia from influenza
infection. Subsequent differential mRNA gene expression analysis revealed alterations in
regulatory networks consistent with known biology including immune cell activation and
host response to viral infection. Negative correlation network analysis of miRNA:mRNA
interactions revealed connections to pathways with known immunobiology such as
interferon regulation and MAP kinase signaling.

Frontiers in Microbiology | www.frontiersin.org 1 December 2018 | Volume 9 | Article 2957

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2018.02957
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2018.02957
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2018.02957&domain=pdf&date_stamp=2018-12-11
https://www.frontiersin.org/articles/10.3389/fmicb.2018.02957/full
http://loop.frontiersin.org/people/589630/overview
http://loop.frontiersin.org/people/581313/overview
http://loop.frontiersin.org/people/621327/overview
http://loop.frontiersin.org/people/134715/overview
http://loop.frontiersin.org/people/606422/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02957 December 7, 2018 Time: 17:10 # 2

Poore et al. miRNA Signatures Diagnose Infection Etiology

Conclusion: We have developed novel human host-response miRNA signatures for
bacterial and viral ARI etiologies. miRNA host response signatures reveal accurate
discrimination between S. pneumoniae pneumonia and influenza etiologies for ARI
and integrated analyses of the host-pathogen interface are consistent with expected
biology. These results highlight the differential miRNA host response to bacterial and
viral etiologies of ARI, offering new opportunities to distinguish these entities.

Keywords: personalized medicine, micro RNA, transcriptome, respiratory tract infections, molecular diagnostics,
host-pathogen interaction, bacterial infections, viral infections

BACKGROUND

The rapid rise of antibiotic-resistant infections in the last two
decades has triggered alarm within global healthcare systems
(Spellberg et al., 2008). In December 2014, one report estimated
nearly 10 million additional annual deaths due to antimicrobial
resistance by 2050, costing the global economy up to $100 trillion
in lost output (O’Neill, 2016). ARIs are a major contributor to this
problem in the U.S., accounting for roughly 40% of all antibiotics
prescribed in the adult outpatient setting (Shapiro et al., 2014),
approximately half of which are deemed unnecessary because
viral etiologies cause the majority of these infections (Fleming-
Dutra et al., 2016). Clinical providers struggle with assessing
the probability of a bacterial infection when symptoms between
bacterial and viral infections are very similar. Providing clinicians
with diagnostic tools to quickly and reliably distinguish viral from
bacterial infections in ARI could significantly reduce antibiotic
prescriptions.

Host-based diagnostics offers a mechanism to fill this void. For
example, the peptide biomarker procalcitonin has successfully
reduced antibiotic prescriptions for ARI based on its preferential
rise in bacterial infection (Schuetz et al., 2012). However, there
are limitations to this biomarker including false positives in
non-infectious conditions as well as false negatives early in
disease and patients with atypical bacterial infections (Berg
and Lindhardt, 2012; Giannakopoulos et al., 2017; Self et al.,
2017). Moreover, nearly a quarter of patients with typical
bacterial infection had a low procalcitonin value that would have
inappropriately restricted antibacterial use (Self et al., 2017). As
a result, there remains a need to improve the differentiation of
viral and bacterial infection, particularly in the context of ARI.
Numerous host transcriptional signatures have demonstrated
a remarkable ability to make this distinction with results that
are significantly better than procalcitonin (Suarez et al., 2015;
Tsalik et al., 2016). Use of host response biomarkers that
incorporate a group of expressed gene transcripts to classify

Abbreviations: ARI, acute respiratory infection; AUC, area under the curve;
CDC, Centers for Disease Control and Prevention; CI, confidence interval;
DAVID, Database for Annotation, Visualization, and Integrated Discovery;
DE, differentially expressed; ED, emergency department; FDR, false discovery
rate; GO, gene ontology; LASSO, least absolute shrinkage and selection
operator; LOOCV, leave-one-out-cross-validation; PCA, principal components
analysis; PVCA, principal variance component analysis; Q-value, Benjamini–
Hochberg adjusted p-value and synonymous with false discovery rate; RMA,
robust microarray average method; ROC, receiver operator characteristic; SNM,
supervised normalization of microarrays.

bacterial from viral infections holds tremendous potential to
bridge this gap. However, many transcripts are needed to
classify the etiology of ARI particularly when non-infectious
etiologies, a necessary control group, are considered. Given
the technical challenges associated with rapid, quantitative or
semi-quantitative multi-plexing of mRNA concentrations, we
considered alternative host response targets. Furthermore, better
discrimination may ultimately come from combining different
types of host response measurements (e.g., microRNA, mRNA,
proteomics, metabolomics, etc.) using a multimodal approach.

MicroRNAs (miRNAs) are attractive targets for a multimodal
approach because they are highly conserved and poised at the top
of cellular regulatory networks. miRNAs are a family of short,
non-coding RNAs (usually 19-25 nt) that regulate cellular gene
expression via degradation or translational repression of their
targeted mRNA transcripts (Bartel, 2009). Furthermore, miRNAs
have structural properties that are desirable for diagnostic
quantification: resistance to boiling; freeze-thaw; presence in
serum and tissues; and slow rates of decay (Gilad et al., 2008;
Mitchell et al., 2008). Circulating human miRNAs demonstrate
differential expression in response to infection (Correia et al.,
2017). However, the study of miRNAs is relatively new compared
to that of mRNA analysis (Bartel, 2009; Correia et al., 2017) and
translating this to human disease is still in its infancy. Within
infectious disease, human samples have been employed in the
study of Mycobacterium tuberculosis (Fu et al., 2011; Qi et al.,
2012; Abd-El-Fattah et al., 2013; Zhang et al., 2013; Zhang H.
et al., 2014), sepsis (Wang et al., 2010, 2013; Roderburg et al.,
2013; Benz et al., 2015), hepatitis viruses (Zhang et al., 2010,
2012; Xu et al., 2011; Arataki et al., 2013; Zhang X. et al., 2014),
influenza (Song et al., 2013; Tambyah et al., 2013), and dengue
(Ouyang et al., 2016; Tambyah et al., 2016), but often times
yield inconsistencies that may be related to differences in sample
type, sample collection, data collection, and analysis. Moreover,
published studies have focused on the miRNA response to one
particular infectious state, but few compare disease states to each
other. Thus, inconsistent data among studies and the lack of
clinically useful comparison groups have made development of
miRNA biomarkers for infectious disease challenging.

This study explores the miRNA response to both viral and
bacterial etiologies of ARI compared to the healthy state, but
it also defines the differential response between the two types
of infection. Specifically, we compared miRNA and mRNA
expression in whole blood of adults with community onset
Streptococcus pneumoniae pneumonia (Glickman et al., 2010;
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Tsalik et al., 2010) to those from an experimental influenza
challenge study representing healthy (pre-inoculation) and
H3N2 influenza infected patients (post-inoculation) (Liu et al.,
2016; McClain et al., 2016). Using these data, we generated
diagnostic miRNA signatures to accurately discriminate
S. pneumoniae bacterial infection, influenza H3N2 viral
infection, and the healthy state using penalized logistic regression
models. DE mRNAs from the same subjects were employed to
computationally predict miRNA:mRNA interactions using
negative correlation analysis. The integration of these two data
types informed the regulatory networks at the host–pathogen
interface and provided biological plausibility that the identified
miRNAs are indeed important mediators of the host response to
viral and bacterial infection.

MATERIALS AND METHODS

Study Design
Studies were approved by relevant Institutional Review Boards
and in accordance with the Declaration of Helsinki. All subjects
or their legally authorized representatives provided written
informed consent.

H3N2 Influenza Human Challenge Cohort: Healthy adults
were recruited for experimental challenge with influenza
A/Wisconsin/67/2005 (H3N2) (DEE5 study, n = 21) (Liu et al.,
2016; McClain et al., 2016). Subjects at baseline, prior to influenza
challenge, served as the healthy controls. Following exposure,
thirteen subjects developed symptomatic influenza infections
while eight remained asymptomatic. For symptomatic patients
(13), the time of maximal symptoms averaged 67 h following
exposure (range, 50–114 h) and the PAXgene Blood RNA
(PreAnalytix; Franklin Lakes, NJ, United States) tube nearest
to this time was selected for analysis. Detailed methods of the
inoculation, viral titers employed, and subsequent processing of
the RNA samples have been described (Zaas et al., 2009, 2013; Liu
et al., 2016; McClain et al., 2016).

Bacterial Streptococcus pneumoniae Cohort: For this pilot
project, ten adult subjects were selected from the larger
Community Acquired Pneumonia and Sepsis Outcome
Diagnostic (CAPSOD) study, which focused on patients
with community-onset, suspected sepsis (ClinicalTrials.gov
NCT00258869) (Glickman et al., 2010; Tsalik et al., 2010).
Subjects presented to the ED at one of three participating
hospitals (Duke Hospital, UNC-Chapel Hill, and Henry Ford
Hospital) where they were enrolled and samples collected. Cases
were defined as a clinical syndrome consistent with pneumonia
along with the identification of S. pneumoniae as the etiologic
agent by culture (respiratory or blood sample) or with urinary
antigen testing. This particular subset of CAPSOD was chosen
because they were the only cases with S. pneumoniae pneumonia
with a remaining PAXgene Blood RNA tube available for analysis.

Procalcitonin Measurements
Procalcitonin (PCT) was measured for the nine subjects in the
S. pneumoniae cohort who had an available sample using the

B·R·A·H·M·S PCT sensitive KRYPTOR assay (Thermo Fischer
Scientific).

Generation and Normalization of
Transcriptomic Data
Total RNA was extracted from whole blood using Qiagen’s
PAXgene Blood mRNA Kit or miRNA Kit (Hilden, Germany)
according to manufacturer specifications. Total RNA for mRNA
and miRNA were extracted separately from two different
PAXgene tubes, one extraction designated for either miRNA
or mRNA analysis. Samples were screened for RNA quantity
and quality using a NanoDrop Spectrophotometer (Thermo
Scientific; Waltham, MA, United States) and Agilent 2100
Bioanalyzer (Santa Clara, CA, United States).

The transcriptional response was investigated using
Affymetrix Arrays of mRNA. Hybridization and data
generation for Affymetrix U133 Plus 2.0 Arrays were
performed in accordance with the manufacturer’s recommended
protocol.

Analysis of the miRNA response by RNA sequencing at the
Duke University Sequencing and Genomic Technologies Shared
Resource was accomplished using Illumina’s TruSeq Small RNA
sample preparation kit (Illumina; San Diego, CA, United States).
Read depth was approximately 15 M reads per sample (50 bp
single-end read). The resultant data were filtered through
quality control measures (FastQC) (Andrews, 2010), had adapter-
ends and poor quality bases trimmed (Trimmomatic) (Bolger
et al., 2014); and then evaluated using the miRDeep2 algorithm
(Friedlander et al., 2012) for read collapsing, mapping, and
quantification using default parameters. miRDeep2 generated a
number of potential novel miRNA transcripts that were scored
as part of the standard processing pipeline. However, to ensure
our analysis was only performed using miRNAs with confirmed
biological activity, these potential novel miRNA transcripts were
excluded from signature development. All miRNA data were
generated in a single RNA sequencing batch. Discrete counts were
normalized using a supervised, regularized, log transformation
(Love et al., 2014).

The corresponding mRNA Affymetrix microarray data was
generated as part of two prior independent studies (Woods
et al., 2013; Tsalik et al., 2016). Those two independent mRNA
microarray batches were completely confounded by phenotype
such that all subjects from the influenza challenge study had
mRNA expression data generated in one batch and all subjects
with community onset S. pneumoniae pneumonia were generated
in another microarray batch. As a result of confounding by
batch, this mRNA microarray data could not be used for
modeling and signature development. However, we correlated
the changes in mRNA transcription that occurred in response
to changes in miRNA expression. To do this, we normalized
for these two batches. The second batch including community
onset pneumonia also included subjects with community onset
influenza. Although these were not the same subjects in the
influenza challenge, we assumed they would have similar gene
expression changes and therefore used them as a normalizing
control using the robust multiarray average (RMA) method
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(Bolstad et al., 2003; Irizarry et al., 2003). Affymetrix probes
were then filtered using the genefilter R package to identify
Affymetrix probes associated with an Entrez ID and target
gene. After the data had been normalized among batches
and Affymetrix probes had been filtered, batch correction was
completed by employing the SNM method (Mecham et al.,
2010), ComBat (Johnson et al., 2007), and fRMA (McCall et al.,
2010). These methods of batch correction were compared using
PVCA (Bushel, 2013). SNM demonstrated the best performance
at removing batch variance and was used for subsequent
analysis.

Multivariable Statistical Analysis
Hypothesis testing was performed separately for miRNA and
mRNA data. For miRNA data, the empiric variance of the
data informed dispersion estimates and size factors, which were
subsequently used to fit negative binomial generalized linear
models following standard DESeq2 protocol (Love et al., 2014).
Wald parametric testing was then utilized to infer the true
population of DE miRNAs. Multiple testing correction was
performed with the Benjamini–Hochberg method (Benjamini
and Hochberg, 1995) and a FDR was calculated using the
stringent requirement that a transcript be present in all subjects.
Unlike the prior comparisons, the viral vs. healthy comparison
used the same individuals before and after infection and was
analyzed as a paired dataset, requiring that the transcript be
present in three-quarters of subjects.

For mRNA data, fold changes and standard errors were
estimated by fitting a generalized linear model to each Affymetrix
probe. Empirical Bayesian statistics were then used to smooth
the standard errors of the estimated log-fold changes [limma
modeling (Smyth, 2005)]. Like the miRNA analysis, multiple
testing correction was performed at a FDR of less than or equal
to 1% (Q ≤ 0.01). Significantly overrepresented pathways were
determined using gene ontologies in the DAVID (Huang et al.,
2007).

miRNA Host–Response Signature
Development
Penalized, sparse logistic regression was performed on miRNA
data to determine diagnostic signatures for bacterial infection,
viral infection, and healthy, similar to prior work focusing on
mRNA (Tsalik et al., 2016). Normalized expression values of
the miRNA signatures were also compared between infectious
etiologies using Welch Two-Sample t-tests with a significance
level of p ≤ 0.01. Least absolute shrinkage and selection
operator (LASSO or L1) regularization was applied to find
the smallest signature while maintaining diagnostic accuracy
(Friedman et al., 2010). To estimate optimal model parameters
and compute classification performance, nested LOOCV was
implemented. Nested LOOCV was performed to optimize the
sparsity-inducing parameter of the logistic regression model
and improve classification performance. ROC curves were
then generated with the ROCR package in R (Sing et al.,
2005). The optimal probability threshold was then determined
by minimizing the Euclidean distance from the upper left

point (0,1) to the ROC curve and used for subsequent
confusion matrix generation. Sensitivity, specificity, and overall
classification accuracy were computed to assess classification
success.

Generating miRNA:mRNA Interaction
Networks
miRNAs that discriminated between relevant clinical groups
in the models were used for integrated analysis with DE
mRNA. These two groups of miRNAs and mRNAs were
considered to be biologically linked if they met two criteria.
First, suspected miRNA binding sites in the mRNA of interest
must be found within the top 20% of computationally
predicted scores in at least two of the following eight major
public databases [TargetScan (Lewis et al., 2005; Agarwal
et al., 2015), PITA (Kertesz et al., 2007), PicTar (Krek
et al., 2005), miRDB (Wong and Wang, 2015; Wang, 2016),
miRanda (Enright et al., 2003; John et al., 2004; Betel
et al., 2008, 2010), MicroCosm (formerly miRBase) (Griffiths-
Jones, 2006; Griffiths-Jones et al., 2006, 2008; Kozomara and
Griffiths-Jones, 2011; Kozomara and Griffiths-Jones, 2014),
ElMMo(Hausser et al., 2009), DIANA-microT-CDS (Kiriakidou
et al., 2004; Maragkakis et al., 2009)]. Since it is known
that miRNA binding leads to a down regulation of genes
via targeted destruction or translational repression, the second
criteria was that the miRNA:mRNA pair must be significantly,
negatively correlated (HA: correlation value is less than 0,
Q ≤ 0.01). Pearson correlation coefficients were calculated
using the miRComb package in R (Vila-Casadesus et al., 2016).
Significantly correlated, predicted miRNA:mRNA pairs were then
used for network visualization in Cytoscape (Shannon et al.,
2003).

RESULTS

Cohort Design and Clinical
Characteristics
We report a retrospective, pilot analysis to explore the ability of
circulating miRNAs from whole blood to differentiate ARI due
to bacterial and viral pathogens. Ten subjects with community
acquired pneumococcal pneumonia (Glickman et al., 2010; Tsalik
et al., 2010) were compared to 21 healthy controls and 13
symptomatic H3N2 influenza cases (Liu et al., 2016; McClain
et al., 2016). Given the small size of this pilot study, groups
were intentionally selected to be homogenous for a single
pathogen representative of ARIs to allow the best opportunity
to detect a statistically significant signal between the bacterial,
viral, and healthy groups. Figure 1 depicts cohort selection and
experimental design.

Due to differences in study design between CAPSOD
and the influenza challenge, subject demographics differed
between the clinical groups. Influenza challenge study
subjects were younger, disproportionately caucasion, and
had similar numbers of male and female subjects. The
CAPSOD study population was older, had a larger proportion
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FIGURE 1 | Outline of integrative transcriptomic analysis to create and internally validate miRNA signatures. Forty four whole-blood RNA samples were included in
this analysis, comprising 21 healthy controls, 13 symptomatic influenza subjects, and 10 subjects with community-onset S. pneumoniae pneumonia. Transcriptional
expression measured using miRNA RNA-Seq and mRNA Affymetrix microarrays were utilized for subsequent analysis. After data normalization, LASSO-penalized
sparse logistic regression generated miRNA signatures while linear models for microarray analysis (limma) identified differentially expressed mRNAs. Interaction
between signature miRNA and differentially expressed mRNAs in each comparison were explored by first identifying a potential interaction in publicly available
databases and then using negative Pearson correlation to identify miRNA:mRNA pairs with correlation of expression consistent with known biology.

of African Americans, and had more females than males
(Table 1).

miRNA Host–Response Signature
Accurately Discriminates ARI Etiologies
miRNA profiles were generated for subjects with S. pneumoniae
pneumonia, influenza, and healthy subjects. Wald parametric
testing identified a number of DE miRNAs (Figure 2A):
S. pneumoniae infection (bacterial) vs. healthy (67 DE
miRNAs) (Supplementary Table S1) and S. pneumoniae
infection (bacterial) vs. H3N2 influenza (viral) infection (40
DE miRNAs) (Supplementary Table S2) with a stringent FDR
of less than or equal to 1%. We found considerable overlap
of miRNAs between these two comparisons (Supplementary

Tables S1, S2). MiRNA-150-p and miRNA-96-5p revealed
a Q-value of 11.7% for the influenza (viral) vs. healthy
comparison, but did not meet the strict cutoff of FDR less
than or equal to 1%.

Diagnostic miRNA signatures for bacterial vs. healthy
and bacterial vs. viral were generated using L1 regularized
logistic regression. The viral vs. healthy comparison did not
demonstrate the ability to discriminate influenza infection from
healthy (data not shown). Eight miRNAs contributed to the
bacterial vs. healthy model. Four were upregulated (hsa-miR-30a-
5p, hsa-miR-199b-5p, hsa-miR-2355-5p, and hsa-miR-769-5p)
and four were downregulated (hsa-miR-150-5p, hsa-miR-5189-
5p, hsa-let-7e-5p, and hsa-miR-423-5p) in bacterial infection
compared to the healthy state. As few as five miRNAs could
discriminate between bacterial and viral infection. Two were
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TABLE 1 | Summary of patient and clinical characteristics.

miRNA signature generation

Characteristics Influenza A (H3N2) CAPSOD

Challenge Study Study

Healthy
baseline

Symptomatic
influenza

Bacterial
infection

Number of samples 21 13 10

Age (mean (95%
confidence), range)

26 (2.81),
20-44

27.62 (4.20),
20-44

50.9 (10.91),
19-76

Sex (number of
subjects)

Male 12 6 3

Female 9 7 7

Race (number of
subjects)

American Indian/Alaska
Native

0 0 0

Asian 2 1 0

Black/African American 1 1 7

White 17 10 3

Other 1 1 0

Unknown 0 0 0

upregulated (hsa-miR-199b-5p and hsa-miR-30a-5p) and three
were downregulated (hsa-miR-942-5p, hsa-miR-342-5p, and hsa-
miR-503-5p) in S. pneumoniae infection compared to influenza
infection. Hsa-miR-199b-5p and hsa-miR-30a-5p were common
to the two models, both of which were upregulated in bacterial
infection.

We sought to validate these signatures in other datasets.
However, there was no publically available dataset including
miRNA expression from both bacterial and viral infection.
A validation dataset should have both groups in order to
allow model training and to avoid confounding by batch.
Instead, we used hierarchical clustering with complete linkage
to assess leave-one-out cross validation (LOOCV) performance.
In this unsupervised method, the algorithm does not know each
subject’s outcome a priori and only separates them based on
their Euclidean distances. The hierarchical clustering revealed
excellent discrimination between S. pneumoniae infection vs.
healthy (Figure 2B) as well as S. pneumoniae infection vs.
influenza infection (Figure 2C). Normalized count distributions
for each miRNA in the models was plotted as a function of
clinical phenotype (right side of Figures 2B,C). All p-values
for individual miRNAs in the signatures were below the
significance threshold of 0.01 (Student t-test on Bacterial vs.
Healthy signature ranges from p = 2.69e-07 to p = 0.0062 per
miRNA; Bacterial vs. Viral signature ranges from p = 7.54e-
07 to p = 0.0012 per miRNA). ROC curves based on nested
LOOCV are shown (Figures 2D,E, respectively) along with their
corresponding AUCs. The bacterial vs. healthy classifier yielded
an AUC of 1.00 while the bacterial vs. viral classifier yielded
an AUC of 0.962. These data reveal good performance of the
miRNA expression model to discriminate bacterial from healthy
and viral subjects for these pathogens, consistent with known

differences in the host response to these different pathogen
classes.

The ability to accurately classify bacterial and viral infections
was assessed by determining overall accuracy, sensitivity,
and specificity using LOOCV. Confusion matrices and their
associated performance statistics are shown in Table 2. The
bacterial vs. healthy model correctly classified samples with 100%
accuracy (Acc > NIR, p-value = 5.709e-06). The bacterial vs.
viral model had good performance as well, but misclassified
two viral samples as bacterial, giving this model 91.3% overall
accuracy (Acc > NIR, p-value = 3.367e-04). The models were
highly sensitive (100% in both comparisons) and very specific
(100% for bacterial vs. healthy and 84.6% for bacterial vs. viral)
for this cohort. In order to determine if the signatures and
their performance were robust to different statistical methods,
we generated new models using Elastic Net. The signatures
obtained using Elastic Net contained the same miRNAs found in
the LASSO model and their classification performance was the
same suggesting that the analysis method was not a significant
contributor to the model’s content or performance.

We compared the miRNA classifier to the biomarker
procalcitonin in our cohort. Procalcitonin has been shown
to be elevated in bacterial infection (accepted clinical cut-
off > 0.25 µg/liter) and low in viral or non-infection (accepted
clinical cut-off ≤ 0.25 µg/liter) (Meisner, 2014). Since this
study utilized retrospective samples, serum or plasma were
available in nine of the ten bacterial subjects but were
unavailable for healthy or viral subjects. Analysis of procalcitonin
levels in available samples revealed only 66.7% (6 of 9)
of subjects with S. pneumoniae infection had procalcitonin
levels above > 0.25 µg/liter (Supplementary Table S3). Thus,
sensitivity to detect bacterial infection in this small cohort is
only 66.7% for procalcitonin compared to 100% for both host-
response models.

We also determined whether there was an impact of gender
on model performance. Stratifying data normalization by gender
revealed no differences in predicted class probabilities based on
paired Wilcoxon signed rank test between the bacterial vs. healthy
(W statistic = 216; p = 0.5422) and bacterial vs. viral models (W
statistic = 144; p = 0.8697). Due to the small cohort we were
unable to evaluate the effects of age and race. However, prior
meta-analysis of disease specific mRNA signatures, including
infectious disease signatures, did not show significant differences
due to age, sex, or race (Wang et al., 2016). Our evaluation of
changes in the model due to sex and prior research indicate that
these results are related to the host response to a pathogen rather
than differences in demographics.

Differential Expression and Functional
Analysis of mRNAs in the ARI
Host–Response
To explore the biological significance of the discovered miRNAs,
we used matched mRNA expression data from the same subjects
and timepoints. Generalized linear modeling with empirical
Bayesian statistics to smooth the standard errors of log-fold
changes (Smyth, 2005) was used to identify DE mRNAs between
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FIGURE 2 | miRNA signature and performance estimates using cross validation. Volcano plots of the three comparisons using miRNA expression data: bacterial vs.
healthy (left); bacterial vs. viral (middle); viral vs. healthy (right). All markers in blue have a FDR of ≤ 1% (Q ≤ 0.01) (A). Regularized logistic regression modeling was
performed for each comparison yielding discriminating miRNA signatures for bacterial vs. healthy and bacterial vs. viral. Hierarchical clustering with post hoc labeling
was performed and signature miRNAs are represented for bacterial vs. healthy (B) and bacterial vs. viral (C) comparisons. Normalized expression values after
regularized log transformation are shown as marginal density plots (in order) on the right (B,C). ROC curve of bacterial vs. healthy signature (D) and the bacterial vs.
viral signature (E) using a LOOCV protocol reveal an AUC of 1.00 and 0.962 respectively.
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TABLE 2 | Confusion matrices and associated performance estimates of miRNA signatures.

Bacterial vs. Healthy Signature Bacterial vs. Viral Signature

Actual Actual

Bacterial Healthy Bacterial Viral

Predicted Bacterial 21 0 Predicted Bacterial 10 2

Healthy 0 10 Viral 0 11

Statistics ROC optimal threshold 0.648 Statistics 0.770

Accuracy (95% CI) 1.0000 (0.8878, 1.0000) 0.9130 (0.7196, 0.9893)

P-value (Acc > NIR) 5.709e-06 3.367e-04

Kappa 1.0000 0.8271

Sensitivity 1.0000 1.0000

Specificity 1.0000 0.8462

the three phenotypes. S. pneumoniae infection vs. influenza
infection had 802 DE transcripts, S. pneumoniae infection vs.
healthy had 786 DE transcripts, and influenza infection vs.
healthy had 201 DE transcripts (Q≤ 0.01) (Figure 3A). DE genes
between the three comparisons were used to cluster samples,
followed by post hoc labeling to demonstrate their utility in
discriminating between etiologies of ARI (Figures 3B–D). Using
these DE genes, functional analyses were then performed using
gene ontologies in DAVID (Huang et al., 2007). The GO pathways
that were enriched in these comparisons agreed with known
biology and were highly significant (Figures 3B–D), such as
Lymphocyte Activation, Immune Response, and Response to
Virus. We compared the DE mRNAs for the viral vs. healthy
comparison to previously published gene expression signatures,
which revealed matches for 60 of the 201 DE transcripts (Zaas
et al., 2009, 2013; Woods et al., 2013; McClain et al., 2016; Tsalik
et al., 2016). Thus, the mRNA responses to bacterial or viral
infection observed here were consistent with the expected host
response to these infections.

miRNA:mRNA Network Analysis Reveals
Biologically Relevant Pathways
Having identified discriminating miRNAs and mRNAs, we
examined miRNA expression in conjunction with patient-
matched mRNA data and formed an integrative transcriptomic
framework. Analysis focused on miRNAs in the signatures and
DE mRNAs within each comparison (bacterial vs. viral, bacterial
vs. healthy). We included miRNA-150-p (p-value = 0.020 by
t-test) from the viral vs. healthy comparison because there is a
known relationship to immune function.

In order to build a miRNA:mRNA interaction network, we
first identified potential miRNA:mRNA complementary binding
pairs and then utilized inverse correlation analysis to identify
pairs where the miRNA levels negatively correlated with the
associated mRNA, commensurate with known biology. This is an
approach successfully utilized by others (Gennarino et al., 2009;
Lionetti et al., 2009). Pairs meeting the threshold of significance
(Q ≤ 0.01, n = 46) were incorporated into network analysis
(Figure 4).

After applying statistical filters, six miRNAs were paired
with 43 mRNA targets. Hsa-miR-150-5p was linked to the

greatest number of mRNA targets (sixteen), including SOCS1,
SAMD4A, and IFIT5, which were part of previously published
gene expression signatures for viral infection (Woods et al., 2013;
Zaas et al., 2013; McClain et al., 2016). Three miRNAs from the
S. pneumoniae infection vs. healthy comparison associated with
mRNAs (hsa-let-7e-5p with eight mRNA targets; hsa-miR-423-
5p with six mRNA targets, and hsa-miR-30a-5p with 1 mRNA
target). Two miRNAs paired exclusively with mRNAs that were
DE in the S. pneumoniae vs. influenza infection comparison (hsa-
miR-503-5p and hsa-miR-342-5p with four mRNA targets each).
To our knowledge, this forms the first integrative miRNA-mRNA
transcriptomic model for the human host response to ARI. Not
only are these results consistent with known miRNA biology,
but they also reveal possible targets and regulatory pathways for
miRNAs in the context of bacterial and viral infection diagnosis.

DISCUSSION

Summary
We report a pilot study that identified miRNA host responses
to bacterial and viral respiratory infections in subjects with
pneumococcal pneumonia and H3N2 influenza infection. This
revealed that distinct changes in miRNA expression occurred
in response to these infections, discriminating subjects with
S. pneumoniae infection from healthy subjects or those with
influenza infection. We validated these results statistically
by using leave-one-out cross validation and biologically by
identifying miRNA:mRNA networks that recapitulated relevant
pathways. These results demonstrate the value of diagnostic
miRNA signatures to discriminate bacterial and viral etiologies of
ARI, paving the way for prospective validation in larger cohorts.

Host–Response miRNA Signatures as
Biomarkers for ARI
Acute respiratory infections present an important challenge
in the battle against antibiotic resistance. The goal of this
work was to determine if the host miRNA response would
offer similar classification accuracy as previously identified host
mRNA signatures (Suarez et al., 2015; Tsalik et al., 2016). One
feature of miRNAs that make them attractive biomarkers is their
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FIGURE 3 | mRNA differential expression analysis using generalized linear models. Volcano plots of the three comparisons using mRNA expression data:bacterial vs.
healthy (left);bacterial vs. viral (middle); viral vs. healthy (right). All markers in blue have a FDR of ≤ 1% (Q-value ≤ 0.01) (A). Differentially expressed mRNAs between
bacterial vs. healthy (B), bacterial vs. viral (C), and viral vs. healthy (D) and their associated top five GO results. All heat maps represent hierarchical clustering using
only mRNAs found to have Q ≤ 0.01 with labeling of the phenotype performed post hoc [n = 802 for (A), n = 786 for (C), n = 201].

role as upstream regulators and their ability to orchestrate cellular
pathways (Podshivalova and Salomon, 2013; Huang et al., 2015;
Robertson and Ghazal, 2016). Thus, a single miRNA may be
sufficient to detect changes in many important cellular signaling
pathways, limiting the number of probes needed for a host

response transcriptional biomarker. For example, viral infection
induces many interferon pathway genes in mRNA signatures
(Zaas et al., 2009, 2013; Mejias et al., 2013; Suarez et al., 2015).
In contrast, the miRNA bacterial vs. viral classifier contains
hs-miR-342-5p, known to be involved in the interferon antiviral
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FIGURE 4 | Integrated analysis of signature miRNAs and their mRNA interactions. miRNA and mRNA data for each subject were analyzed and were paired based on
(1) a high probability of predicted miRNA:mRNA and (2) negatively correlated expression. Cytoscape was used to show an integrated transcriptomic framework.
Although the viral vs. healthy miRNA signature had no statistically significant differentially expressed miRNAs, one approached that threshold and was included here
(hsa-miR-150-5p). Arrows are drawn between significantly, negatively correlated miRNA:mRNA pairs where the darkness of the line denotes the strength of the
correlation (range: –0.85, –0.5185). Genes represented are predicted to be regulated by miRNAs in the bacterial vs. healthy (blue), viral vs. healthy (green), and
bacterial vs. viral (red) signatures. The SOCS1 gene is dually colored to represent the finding that miRNA-150 is a predicted regulator during viral infection (green) and
miRNA-30a during bacterial infection (blue). miRNA-199b is overexpressed during bacterial infection and is associated with suppression of the gene C14orf159 in
both the bacterial vs. healthy (blue) and bacterial vs. viral (red) comparisons; thus, this gene also is represented by two colors.

response of macrophages against multiple viral pathogens
(Robertson and Ghazal, 2016; Robertson et al., 2016). In
our work, machine learning techniques identified diagnostic
miRNA signatures that accurately differentiated patients with
pneumococcal pneumonia from healthy subjects (accuracy
100%) or those with influenza infection (accuracy 91.3%) using a
small number of miRNA probes (8 and 5, respectively). This small
number of targets would facilitate translation to a clinically useful
platform although highly multiplexed platforms are emerging
that could potentially remove this barrier.

A true test of a biomarker’s ability to translate to clinical
practice depends on whether it offers actionable results. The
miRNA signatures presented here are highly sensitive for
detection of S. pneumoniae bacterial infection (100% sensitivity
in both models) compared to the 66.7% for the clinically available
biomarker procalcitonin, suggesting a negative test could provide
reassurance to avoid antibiotics when clinically appropriate.
While this study is small and not representative of all ARI
etiologies, these results hold promise that a miRNA signature
could be a valuable tool in changing antibiotic prescribing
practices.

For this pilot study, we analyzed circulating miRNA
expression in whole blood. We chose to evaluate whole blood
to support the goal of building miRNA:mRNA networks since
our prior work on mRNA expression employed whole blood
and samples from applicable retrospective cohorts were available.

This is particularly noteworthy because reported miRNAs can
regulate mRNA expression within the cell of origin and also
act on distant tissues as secreted molecules (Gilad et al., 2008;
Mitchell et al., 2008; Scholer et al., 2010). Similarly, miRNAs
secreted from distant tissues could be present in the samples used
for this analysis. The differences in miRNA expression reported
here are most likely due to disease-specific effects. However,
this pattern may also be affected by differing distributions of
blood cell types and changes associated with comorbid conditions
(Keller et al., 2011; Scholer et al., 2011) as well as variability in
sampling, purification and other factors (Witwer, 2015). Further
development of miRNA biomarkers for infection will need to
evaluate the contributions of different fractions of blood (Keller
et al., 2011; Scholer et al., 2011; Witwer, 2015) and employ
controls that encompass comorbid conditions similar to our prior
work with diagnostic mRNA signatures (Tsalik et al., 2016).

miRNA:mRNA Regulatory Networks of
Signature miRNAs Provide Insight Into
the Biologic Response to Infection
Investigation of the miRNA:mRNA regulatory interface revealed
from our signatures identified miRNAs and mRNAs with
well described roles in the inflammatory response, supporting
the biological relevance of the derived miRNA host response
signatures. This study also identified miRNAs with less well
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defined roles in immunity, potentially identifying new role for
these miRNAs in the host’s response to infection.

Several studies have identified a role for miRNAs in the
regulation of sepsis, many of which were DE in this study.
miRNA-150 was an important member of our bacterial vs.
healthy signature and was also DE in the viral vs. healthy
cohort. miRNA-150 predicts survival in patients with sepsis
(Vasilescu et al., 2009; Roderburg et al., 2013; How et al.,
2015), operating through MyD88 regulation, NFκB signaling
(Sari et al., 2014), and toll-like receptor pathways (Ghorpade
et al., 2013). Our analysis revealed downregulation of miRNA-
150 during bacterial infection may exert broad effects on
metabolism (SLCA2A3/GLUT3), cytokine regulation (SOCS1),
and cell signaling pathways (MAPK13, IPO8, ACVR1B, RNF146)
consistent with the host response to bacterial infection.

The dysregulation of miRNA-150 in both bacterial and viral
responses compared to healthy may argue for a role as a master
regulator of immunity. miRNA-150 has previously been shown
to be dysregulated in viral infections (Chen et al., 2012, 2014)
and appears to be a prognostic biomarker for severe influenza
A/H1N1 infection (Moran et al., 2015). Network analysis of
miRNA-150 in viral infections identified an association with
a key interferon pathway member, interferon-induced protein
with tetratricopeptide repeats 5 (IFIT5). The manner in which
miRNA-150 regulates the host’s bacterial and viral response is
unclear since each type of infection induces distinct biological
pathways. It is possible that miRNA-150 induces a shared
biological response or perhaps other regulatory molecules
provide the specificity needed to direct the host’s response to
bacterial or viral infection.

miRNA-30a-5p and miRNA-199-5p were common to the
S. pneumoniae bacterial vs. healthy and bacterial vs. influenza
signatures. In both cases, these miRNAs were upregulated
in subjects with bacterial infection. miRNA-30a-5p has been
tied to inhibition of IL-6 signaling through regulation of the
JAK/STAT pathways via the suppressor of cytokine signaling 3
gene (SOCS3) (Xu et al., 2017). Our analysis suggests suppressor
of cytokine signaling 1 gene (SOCS1) may also be involved in this
pathway. MiRNA-199b-5p has been shown to directly target the
transcription factor HES1 and downregulate the Notch pathway
(Garzia et al., 2009), which plays a large role in innate immunity
and inflammation (Shang et al., 2016).

Another important regulator of the immune response is the
let-7 family of miRNAs. The let-7 family was the first group
of miRNAs described over two decades ago (Lee et al., 1993;
Wightman et al., 1993; Pasquinelli et al., 2000; Lagos-Quintana
et al., 2001; Lau et al., 2001; Lee and Ambros, 2001) and has
broad roles in development, differentiation, and metabolism
(Mondol and Pasquinelli, 2012; Thornton and Gregory, 2012).
Studies on their role in human disease have primarily focused
on oncogenesis (Balzeau et al., 2017) but a role in the immue
system is increasingly being recognized. The let-7 family of
miRNAs has been associated with regulation of toll-like receptor
4 (Chen et al., 2007), control of cytokine levels (Hu et al., 2009;
Schulte et al., 2011; Swaminathan et al., 2012), and regulation
of the NFκB pathway (Kumar et al., 2015) in response to
infection. Let-7 miRNAs are also found to be dysregulated

in sepsis (How et al., 2015), viral infections (Bakre et al.,
2012; Chen et al., 2012; Zhao et al., 2015), and parasitic
infections (Hu et al., 2010). In this study, let-7a, let-7b, let-
7d, and let-7e were DE in the S. pneumoniae infection vs.
healthy comparison. The let-7e miRNA:mRNA network revealed
regulation of cellular transport processes associated with innate
immunity and autophagy (GNS, KPNA4, WDFY3, GALNT2,
and UBXN4). Our network analysis also further suggested
an association of let-7e with regulation of the IL6-receptor,
consistent with existing data that the family of let-7 miRNAs
are directly involved in IL6 regulation (Iliopoulos et al., 2009;
Schulte et al., 2011). These are consistent with the host response
to bacterial pathogens.

The presence of these miRNAs (miRNA-30a-5p, miRNA-
199-5p, miRNA-150, and let 7e) in our diagnostic signatures
demonstrate a strong role of innate immunity in response to
infection and discrimination of bacterial and viral infections.
However, differences between the S. pneumoniae vs. healthy
and S. pneumoniae vs. influenza miRNA signatures revealed
evidence of a more specific response to bacterial and viral
infection. For example, miRNA-342-5p and miRNA-503-5p
represent a distinct viral response in the S. pneumoniae vs.
influenza miRNA signature. These miRNAs are known regulators
of the interferon pathway through sterol synthesis (Robertson
and Ghazal, 2016; Robertson et al., 2016) and association with
Interleukin-1 receptor-associated kinase 2 (IRAK2) (Sanchez-
Jimenez et al., 2013; Zhang W. et al., 2014), respectively.
Interestingly, our network analysis also identified a potential
new role for miRNA-342 in cytoskeleton regulation (PFN1,
PXN) during infection. While little is known about miRNA-
942-5p, studies demonstrate differential expression in response
to dengue infection compared to healthy patients (Ouyang
et al., 2016), implying a role in the host response to viral
infections. Conversely, the presence of miRNA-423 and miRNA-
769 in the S. pneumoniae vs. healthy signature suggest an
immune response unique to bacterial infection. MiRNA-423 is
expressed in neutrophils (Landgraf et al., 2007; Ward et al.,
2011) and this class of white blood cells is part of the
classic innate immune response to bacterial pathogens. MiRNA-
769 has been implicated in bacterial pulmonary tuberculosis
(Fu et al., 2014; Wu et al., 2014) although our results
suggested a possibly larger role in bacterial infection more
generally.

Two miRNAs were identified in our S. pneumoniae vs.
healthy signature that did not previously have identified roles
in regulating the immune system. miRNA-5189 is expressed in
platelets (Ple et al., 2012) and is associated with lymphoblastic
leukemias (Schotte et al., 2011). miRNA-2355 has not been
identified in other biological processes.

Limitations
This pilot study was limited by its small cohort size and
the need to pool subjects from two independent retrospective
cohorts. This study also failed to identify a large number of
DE miRNAs when comparing influenza infection to the healthy
baseline state. This is in contrast to prior analyses of mRNA
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(Zaas et al., 2009, 2013; Woods et al., 2013) and miRNA
expression (Song et al., 2013; Tambyah et al., 2013) where
differential expression during influenza infection was observed.
Human influenza challenge subjects available for this study
demonstrated lower symptom scores and milder clinical
disease than the severe, hospitalized patients in prior miRNA
studies. Furthermore, miRNA regulation is a dynamic process
and may differ depending on the timing of infection. We
chose a single time point, that of maximal symptoms
during the human challenge experiment. Earlier or later
time points may have identified more robust changes
in the miRNA response or perhaps different responses
altogether. A more comprehensive analysis of miRNA
expression throughout the entire experimental time series
would address this limitation. Despite these limitations we
were able to achieve robust statistical results for bacterial
vs. viral comparison, recapitulating the known viral induced
interferon response and incorporating miRNAs distinct to that
comparison.

Another potential limitation is that the small sample size may
have resulted in low signal amidst the noise of both biological and
technical variability. This was mitigated by the choice of single
pathogens: S. pneumoniae to represent bacterial infection and
influenza H3N2 to represent viral infection. Whereas this might
improve our ability to identify discriminating miRNAs, it limits
generalizability. Therefore, validation in a more heterogeneous
cohort will be required in the future.

The small cohort size also places the model at risk of
overfitting. However, we observed mean RNA signature sizes
within our LOOCV that agreed with our final signature sizes,
suggesting that the model was capturing a more generalized
representation of the underlying biology rather than being overly
dependent on any particular test subject.

Derivation of host-response signatures are most robust when
all clinically relevant groups are used, including non-infectious
illness. In our study population, controls were healthy individuals
without respiratory symptoms. Therefore, future work should
include controls with non-infectious causes of acute respiratory
symptoms, allowing a true determination of the host response to
bacterial and viral infection independent of the host response to
being ill.

CONCLUSION

We report novel human-derived host-response miRNA
signatures that accurately discriminate bacterial and viral ARIs.
These signatures were derived by employing machine learning
algorithms on miRNA data in conjunction with differential
expression analysis of matched miRNA and mRNA data. Using
an integrated transcriptomic approach, we were then able to
show the putative biological underpinnings of the molecular
signatures and make regulatory inferences of the host-response.
Our work on miRNA adds to the multiple modalities available
to generate a robust and discriminatory disease signature for
viral and bacterial infections including mRNA and protein.
These results offer new opportunities for diagnostic development

and exploration of the host response to bacterial and viral
infection.
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