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Staphylococcus pseudintermedius is a colonizer as well as an important pathogen of
dogs where it is responsible for skin, ear and post-operative infections. The emergence
of methicillin-resistant S. pseudintermedius (MRSP) in the early 2000s, which were
additionally resistant to most veterinary-licensed antibiotics, drew specific attention to
these pathogens due to the limitations created in veterinary therapeutic options. Multiple
studies showed that the sequence type (ST)71 was the most frequently identified clone
in Europe. A few years ago, several publications have suggested a decline of the ST71
clone and the emergence of the ST258 lineage in Northern Europe. In this study,
we show that ST71 is also decreasing over time in France and that the non-ST71
population is highly heterogeneous. Globally, the non-ST71 clones are more susceptible
to antibiotics, which might be good news for veterinarians. Two other lineages, ST258
and ST496, seem to be successful in France. These isolates, as well as representatives
of the ST71 clone, underwent whole-genome sequence. This study shows that the ST71
and ST496 clusters are highly homogenous while the ST258 cluster is more diverse.
Each ST possesses a specific pattern of resistance and virulence genes. The reasons for
the apparent and simultaneous success of the ST258 and ST496 clones remain unclear.
But the emergence of the ST496 clone will require monitoring given its multi-resistant
genotype and threat to canine health.

Keywords: dog, MRSP, MLST, ST258, ST496

INTRODUCTION

Staphylococcus pseudintermedius (SP), initially described in 2005, is a normal commensal bacterium
in dogs. However, it is also recognized as the most frequent opportunistic pathogen responsible for
skin, ear and surgical site infections and complications in dogs. While its natural hosts are dogs,
human infections typically associated with exposure to dogs have been increasingly reported in
the last few years (Lozano et al., 2017; Pomba et al., 2017), highlighting the zoonotic potential of
S. pseudintermedius (Somayaji et al., 2016).
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Similar to S. aureus, methicillin-resistance in
S. pseudintermedius has been recognized as a major issue in
veterinary medicine. Since the first description of methicillin-
resistance S. pseudintermedius (MRSP) in 1999 (Gortel et al.,
1999), its global distribution has expanded and the number of
clinical infections associated with MRSP in companion animals
(mostly dogs) has dramatically increased. With the reported
prevalence as high as 60% (Kawakami et al., 2010; Haenni et al.,
2014; Worthing et al., 2018), the situation is worsened by the
high frequency of multi and extensively drug resistant strains
markedly restricting the therapeutic arsenal for veterinarians
(Perreten et al., 2010).

Methicillin-resistance S. pseudintermedius has been spreading
worldwide through the dissemination of specific lineages from
different genetic backgrounds. The most prevalent clones are
ST71 in Europe, ST68 in the United States and ST45/ST112 in
Asia (Pires Dos Santos et al., 2016). However, several studies in
Northern countries of Europe showed that ST71 MRSP may be
challenged by other less frequent clones such as ST258 MRSP
(Kjellman et al., 2015; Damborg et al., 2016; Duim et al., 2016;
Gronthal et al., 2017). In 2010, we detected non-ST71 MRSP
lineages in French veterinarian isolates, including two ST258
isolates (Haenni et al., 2014). This ST258 MRSP lineage was
reported to be more frequently susceptible than the ST71 MRSP
to enrofloxacin, gentamicin, and chloramphenicol, while also
being marginally more resistant to trimethoprim-sulfonamides
and tetracyclines (Pires Dos Santos et al., 2016). The same trend
toward susceptibility to veterinary-licensed antibiotics has also
been observed for other lineages, so that the emergence of a
polyclonal non-ST71 MRSP population may be good news for
the treatment of such infections (Haenni et al., 2014; Kjellman
et al., 2015). Moreover, non-ST71 MRSP lineages also should be
less virulent as they form less biofilm and show lower adherence
to canine corneocytes (Osland et al., 2012; Latronico et al., 2014).

In France, the occurrence of MRSP in clinical samples from
dogs is continuously monitored through Resapath, the French
network for surveillance of antimicrobial resistance in clinical
pathogens. We utilized this network to compare two collections
(2012–2013 and 2015–2016) of MRSP isolates collected from
canine skin and soft tissue infections. The aims of our study were
firstly to assess if a shift in the population structure of MRSP,
from ST71 toward non-ST71 lineages, has occurred in France,
and secondly to characterize the resistome and virulome of the
most prevalent clones by using whole genome sequencing.

MATERIALS AND METHODS

Bacterial Sampling and Identification
Methicillin-resistance S. pseudintermedius isolated from skin
and soft tissue infections in dogs were collected from the
veterinary laboratories of Resapath, the network for surveillance
of antimicrobial resistance in clinical pathogens in France1.
Two collections were constituted: the first one presented
95 isolates sampled in 2012–2013, and the second one

1https://www.resapath.anses.fr/

87 isolates collected in 2015–2016. Each clinical isolate
corresponded to a unique animal. All isolates were sent to
the Anses laboratory in Lyon, France, for further analysis.
Species identification was performed by PCR-RFLP using
TaqI restriction analysis on the kat gene (Blaiotta et al.,
2010). The presence of the mecA and 16S rRNA genes were
detected by PCR (Maes et al., 2002) and used to confirm
methicillin resistance and as an internal quality control,
respectively.

Antimicrobial Susceptibility Tests
All S. pseudintermedius isolates were tested for their antimicrobial
susceptibility by disk diffusion method according to the
guidelines of the French Society for Microbiology (CA-
SFM2). Antibiotics tested were cefovecin 30 µg (which was
used as the phenotypic marker of methicillin resistance),
penicillin 6 µg, fusidic acid 10 µg, kanamycin 30 µg, gentamicin
15 µg, tobramycin 10 µg, erythromycin 15 µg, spiramycin
100 µg, lincomycin 15 µg, tetracycline 30 µg, chloramphenicol
30 µg, florfenicol 30 µg, enrofloxacin 5 µg, vancomycin 30 µg,
and teicoplanin 30 µg (Mast Diagnostics, Amiens, France).
Bacteria were classified as susceptible, intermediate or resistant
according to the clinical breakpoints approved by the veterinary
part of the CA-SFM. Staphylococcus aureusATCC 25923 was used
as the quality control strain.

Multi-Locus Sequence Typing (MLST)
and Clonal Complexes (CC)
Multi-locus sequence typing was performed for all MRSP isolates
according to the 7-loci scheme (Solyman et al., 2013). STs were
determined using the MLST website3 and new STs were assigned
by the curator Vincent Perreten (vincent.perreten@vbi.unibe.ch).
In addition, for each collection (2012–2013 and 2015–2016), STs
were assigned to CCs by Phyloviz v 2.0 (Nascimento et al., 2017),
using goeBURST (Francisco et al., 2009) algorithm with default
parameters. A clonal complex is composed by all strains sharing
5 or more identical profile alleles (double-loci variants – DVL
parameter).

Whole Genome Sequencing and Analysis
Whole genome sequencing (WGS) was performed on a subset
of 23 isolates belonging to the three most prevalent clones
in both surveillance studies: all ST258 (n = 6), ST496
(n = 9), and a subset of ST71 (n = 8, among the 110 ST71
identified) were whole-genome sequenced. WGS was performed
on genomic DNA extracted using the Microbial DNA extraction
kit (Macherey Nagel, Hoerdt, France). The genomic library was
prepared using the Nextera XT DNA Library Preparation kit
(Illumina Inc., Cambridge, United Kingdom), according to the
manufacturer’s protocol, and 2x 250-bp paired-end reads were
generated with Illumina sequencing technology (San Diego, CA,
United States).

2www.sfm-microbiologie.org
3http://pubmlst.org/spseudintermedius
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Assembly and Annotation
We used the Nullarbor pipeline (T. Seemann4) to perform paired-
end reads trimming using Trimmomatic v 0.33 (Bolger et al.,
2014), and the cleaned reads were then assembled using SPAdes
v 3.5 (Bankevich et al., 2012). Quality of genome assemblies was
assessed with QUAST v 4.6.3 (Mikheenko et al., 2016). Always
in the Nullarbor pipeline, the genomes annotation was then
performed using Prokka v 1.10 (Seemann, 2014).

In silico MLST
All publicly available genomes (NCBI genomes database,
accession date 14.02.2018) S. pseudintermedius (n = 19) were
in silico MLST typed using the MLST pipeline5.

Resistome and Virulome
The resistome and virulome of all sequenced ST71, ST258, and
ST496 genomes were characterized using the ABRicate v 0.8.1
software (Seeman T6) against the ResFinder database as updated
on February 20, 2018, and VFDB database (Chen et al., 2005;
Zankari et al., 2012). Two curated in-house databases (DB) were
subsequently built and the genomes were screened against these
databases, using ABRicate v 0.8.1, to search for homologous
genes. As resistance genes of S. pseudintermedius are poorly
described, and because S. aureus share common resistance genes
with S. pseudintermedius, we built the first database (DB_SA)
using 336 markers used in the S. aureus DNA microarray
Genotyping kit v2 (Monecke et al., 2008). Furthermore, we
performed a state of the art of reported virulence-associated genes
in S. pseudintermedius and built the second database (DB_SP)
using a total of 49 genes : spsA-R, clpP, siet, speta, se-int, lukF-
I, lukS-I, sec-canine, exi, expB, agrA-D, icaA-D, nanB, coa, clpX,
saeR, saeS, htrA, nucC, hlb, sigB, srrA, sarA, rot, traP, expA, and
epbS (Ben Zakour et al., 2011; Bannoehr et al., 2012; Garbacz
et al., 2013; Pietrocola et al., 2015; Couto et al., 2016; Ruzauskas
et al., 2016). All gene sequences used in DB_SP, except the
sec-canine gene, were obtained from the complete genome of
S. pseudintermedius strain ED99 (GenBank accession number:
CP002478.1).

Because sec-canine gene was not available for
S. pseudintermedius, we used the sec-canine gene of the
closest phylogenetic species S. intermedius (strain 95-011195,
GenBank accession number: U91526.1) and we included it in
DB_SP.

Presence of both virulence and resistance-associated genes
was initially detected: (i) if ≥50% of the gene length and ≥50%
nucleotide identity were detected when using the DB_SA; (ii)
if ≥90% of the gene length and ≥70% nucleotide identity were
detected when using the DB_SP. For both databases (DB_SP and
DB_SA), we used ABRicate to identify the presence of virulence
and resistance-associated genes. As DB_SA was built based on
S. aureus genes, we used a lower identity threshold (i.e., 50%)
than the one used for DB_SP (i.e., 90%) to be able to detect
homologous genes. Then, for the DB_SA, a second validation

4https://github.com/tseemann/nullarbor
5https://github.com/tseemann/mlst
6https://github.com/tseemann

of positive hits was performed manually using a threshold of at
least 80% of the query sequence length. We also screened for
the presence of putative CRISPR regions, using CRISPRcasfinder
(Grissa et al., 2007).

Fluoroquinolone Resistance
Mutations in topoisomerase II (gyrA) and IV (grlA) are known
to confer fluoroquinolone resistance in S. pseudintermedius
(Descloux et al., 2008). Detection of mutations Ser84Leu in gyrA
and Ser80Ile in grlA sequences was performed using Snippy
v 3.16. The fluoroquinolone-susceptible S. pseudintermedius
strain CCUG49543T (also known as LMG 22219T) gyrA and
grlA sequences as reference (accession numbers AM262968
and AM262971, respectively) (Devriese et al., 2005). Visual
confirmation of non-synonymous mutations was performed with
Seaview (Gouy et al., 2010).

SNP Based Phylogeny
SNP detection was performed with Snippy v.37 to construct a
SNP based phylogeny for ST71, ST258, and ST496. Strain ED99
(ST25) was used as a reference outgroup/external ST to root the
tree. A raw phylogenetic tree using the approximately-maximum-
likelihood (ML) model and generalized time-reversible (GTR)
models of nucleotide evolution were built using FastTree2 (Price
et al., 2010). Strain ED99 was used to root the phylogenetic tree.
To visualize and annotate the trees we used the bioconductor
package ggtree (Yu et al., 2017). In addition, a pairwise SNP
distance matrix was built with snp-dists v 0.68, as implemented
in Snippy v.3.

Statistical Analysis
Proportions of antimicrobial resistance in ST71 isolates vs.
non-ST71 isolates were compared using the chi-squared test.
Differences were considered significant if P < 0.05.

Ethics Statement
No ethical approval was needed since this study did not involve
any experimentation on animals. Only bacteria collected from
clinical samples were used in the frame of this study.

Data Availability
The data sets supporting the results of this article are available
from the Sequence Read Archive (SRA) under the BioProject no.
PRJNA498009.

RESULTS

Population Structure of French MRSP
ST71 MRSP remains the dominant methicillin-resistant clone in
France (Table 1) but its prevalence over the years revealed a
decreasing trend, even not statistically significant (p = 0.1643),
from 65.3% in the 2012–2013 collection to 55.2% in the 2015–
2016 collection. The non-ST71 MRSP group is largely polyclonal,

7https://github.com/tseemann/snippy
8https://github.com/tseemann/snp-dists
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TABLE 1 | Distribution of the STs per collection.

Sequence type (ST) No. of isolates (%)

2012–2013 (n = 95) 2015–2016 (n = 87)

71 62 (65.3) 48 (55.2)

45 2 (2.1) 0

68 1 (1.1) 0

85 1 (1.1) 3 (3.4)

136 0 1 (1.1)

181 1 (1.1) 1 (1.1)

196 1 (1.1) 0

258 1 (1.1) 5 (5.7)

261 8 (8.4) 3 (3.4)

294 2 (2.1) 2 (2.3)

298 0 1 (1.1)

339 0 1 (1.1)

342 0 2 (2.3)

406 1 (1.1) 0

407 1 (1.1) 0

408 1 (1.1) 0

410 1 (1.1) 0

413 1 (1.1) 0

414 4 (4.2) 1 (1.1)

415 1 (1.1) 0

416 1 (1.1) 0

419 1 (1.1) 0

420 1 (1.1) 0

421 1 (1.1) 0

424 1 (1.1) 0

425 1 (1.1) 0

450 0 1 (1.1)

496 0 9 (10.3)

551 0 1 (1.1)

1026 0 1 (1.1)

1027 0 1 (1.1)

1028 0 1 (1.1)

1029 0 1 (1.1)

with most STs occurring only once. Moreover, seventeen STs were
newly identified and assigned to the following numbers: 406, 407,
408, 410, 413, 414, 415, 416, 419, 420, 421, 424, 425, 1026, 1027,
1028, and 1029. The ST258 MRSP lineage was detected in one
isolate in 2012–2013 and in five isolates in 2015–2016, which
were all isolated in different counties. Conversely, ST261 was
identified in eight isolates from eight different counties in 2012–
2013 but only in one isolate in 2015–2016. Finally, we observed
the emergence of the ST496 MRSP clone, which was absent in
2012–2013 and was found in nine isolates from four different
counties in 2015–2016.

Antibiotic Susceptibility Profiles
ST71 MRSP was highly resistant to veterinary-licensed
antibiotics, with chloramphenicol, tetracyclines, and fusidic
acid being the last antibiotics with resistance rates lower than
90% in 2015–2016 (Tables 2, 3). Between 2012–2013 and

2015–2016, we observed a significant increase in the resistance
to tobramycin, kanamycin, and chloramphenicol. In non-ST71
MRSP, we observed a higher rate of resistance to gentamicin
(97.4% in 2015–2016), macrolides-lincosamides (84.8 and
63.6%, respectively, due to the presence of the inducible MLSB
phenotype). Compared to ST71 MRSP isolates, the rate of
resistance to kanamycin, tobramycin, and enrofloxacin (30.3%
vs. >90%) was lower in non-ST71 MRSP but higher for
tetracyclines (78.8% vs. 37.1%).

Phylogeny of French Isolates
Whole genome sequencing was performed on all ST258 and
ST496, as well as on a subset of eight ST71 selected from the two
collections (four isolates from each collection) and originating
from eight different districts. The phylogenetic tree of the French
strains and the ones available on public databases shows that
the ST71 and ST496 clades are highly homogenous (Figure 1).
On the contrary, the ST258 cluster is more diverse. To support
these observations, we used the pairwise SNP distance matrix
(Supplementary Table S1) which showed that ST71 is a highly
homogenous cluster with an average of 149 SNPs, while ST258 is
much more heterogeneous with an average of 1919 SNPs, about
thirteen time more than ST71, and twice more than ST496.

Distribution of Resistance Genes
According to MLST Types
Multiple resistance genes were screened (reported in Figure 2),
which perfectly correlated with the phenotypic characterization.
Each ST presented a specific pattern. For ST496, all isolates
displayed an identical pattern, with a higher number of resistance
genes when compared to ST71 and ST258. Concerning the ST258
MRSP group, isolates presented a conserved pattern of resistance
genes (blaZ, tet(M), aphA3, truncated sat genes) with sporadic
variations, while ST71 was more heterogeneous. ST258 and
ST496 displayed the tet(M) gene, whereas ST71 (when present)
displayed the tet(K) gene. ST258 only rarely displayed the aacA-
aphD gene conferring resistance to gentamicin, kanamycin,
and tobramycin. All ST496 and ST71 isolates were resistant
to fluoroquinolones, and they all presented the prototypical
mutations Ser84Leu and Ser80Ile in the gyrA and grlA genes,
respectively. On the contrary, all ST258 isolates were susceptible
and all isolates presented the intact gyrA and grlA genes, except
one isolate presenting the mutated grlA gene.

Detection of the CRISPR Sequences
CRIPSR sequences were detected in all isolates belonging to the
ST496, but were absent in ST71 and ST258 isolates. Typing of the
CRISPR elements found in ST496 isolates revealed that they all
harbored the same subtype of CRISPR: the subtype IIIA, which is
located within the SCCmec element found in this lineage.

Distribution of Virulence Genes
According to MLST Types
All MLST types shared a core virulence profile, with a group of 24
genes (including the biofilm-associated ica operon – except for
two ST496 isolates in which icaB was absent – and sps surface
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TABLE 2 | Antimicrobial resistance in isolates collected in 2012–2013 (n = 95).

Antibiotic Breakpoints (mm)1 R < /S ≥ ST71 (n = 62) non-ST71 (n = 33) p

No. of strains Percentage No. of strains Percentage

Kanamycin 15/17 62 100.0 29 87.9 0.023

Gentamicin 20/20 57 91.9 10 30.3 <2.10–6

Tobramycin 20/20 59 95.2 10 30.3 <2.10–6

Chloramphenicol 19/22 11 17.7 7 21.2 0.681

Florfenicol 19/22 0 0.0 0 0.0 –

Tetracyclines 17/19 23 37.1 26 78.8 0.0001

Erythromycin 17/22 59 95.2 28 84.8 0.182

Spiramycin 20/20 59 95.2 28 84.8 0.182

Lincomycin 17/21 58 93.5 21 63.6 0.0002

Fusidic acid 24/24 2 3.2 1 3.0 0.573

Enrofloxacin 17/22 61 98.4 10 30.3 <2.10–6

Teicoplanin 17/17 0 0.0 0 0.0 –

Vancomycin 17/17 0 0.0 0 0.0 -

1Antibiograms were performed by disk diffusion according to the recommendations of the French CA-SFM.

TABLE 3 | Antimicrobial resistance in isolates collected in 2015–2016 (n = 87).

Antibiotic Breakpoints (mm)1 R < /S ≥ ST71 (n = 48) non-ST71 (n = 39) p

No. of strains Percentage No. of strains Percentage

Kanamycin 15/17 48 100.0 38 97.4 0.44

Gentamicin 20/20 39 81.3 16 41.0 0.0001

Tobramycin 20/20 42 87.5 17 43.6 0.00001

Chloramphenicol 19/22 2 4.2 17 43.6 0.00001

Florfenicol 19/22 0 0.0 0 0.0 –

Tetracyclines 17/19 16 33.3 35 89.7 <0,00001

Erythromycin 17/22 46 95.8 33 84.6 0.15

Spiramycin 20/20 46 95.8 33 84.6 0.15

Lincomycin 17/21 46 95.8 28 71.8 0.0018

Fusidic acid 24/24 1 2.1 3 7.7 0.467

Enrofloxacin 17/22 47 97.9 19 48.7 <0,00001

Teicoplanin 17/17 0 0.0 0 0.0 –

Vancomycin 17/17 0 0.0 0 0.0 –

1Antibiograms were performed by disk diffusion according to the recommendations of the French CA-SFM.

proteins) being systematically present in isolates of all three STs
(Figure 3). ST496 isolates were characterized by the presence of
the spsI gene. ST258 isolates were devoid of the spsR gene, but
were the only ones to present the nanB gene coding for a potential
sialidase toxin.

DISCUSSION

Decreasing Trend of the ST71 MRSP
Lineage
In this study we showed a decreasing trend of ST71 MRSP,
with a proportion falling from 65.3% in 2012–2013 to 55.2%
in 2015–2016, among the French MRSP associated with canine
SSTIs. This clear trend is nevertheless not statistically significant
(p = 0.1643), due to the number of isolates included, but also
mainly to the temporal proximity of the observed populations.

A previous French study reported that the proportion of ST71
isolates within MRSP was as high as 82.9% in 2010 (Haenni
et al., 2014). The decrease in the ST71 clone between the 2010
study and the 2015–2016 collection is statistically significant
(p = 0.0023), even though the number of isolates in the 2010
study was low (n = 41). Of note, the sampling scheme was
not identical since all pathologies were included in the first
surveillance study; however, SSTIs represented 63.4% of the
reported infections. Taken together, our results corroborate the
downward trend of ST71 isolates within the French population
of MRSP over the last decade. The decrease of the ST71 MRSP
lineage, which has already been reported in several countries
from Northern Europe (Duim et al., 2016; Gronthal et al., 2017),
thus most likely reflects of a global evolution of the population
structure of MRSP in Europe. The number of isolates included
in the present study may be considered a limitation. However,
all MRSP isolates collected from SSTIs over the two periods
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FIGURE 1 | SNP based phylogeny of methicillin-resistant Staphylococcus pseudintermedius.

were included and the same sampling effort was made in both
periods. Considering the robustness of the collection and the
number of other studies reporting the same trend in Northern
countries, the tendencies detected here can be considered reliable
in France.

Population Structure of Non-ST71
Isolates
In both the 2012–2013 and 2015–2016 collections, as many
as 21 distinct non-ST71 STs were identified, the vast majority
being found only once. Analysis of the MRSP population
structure based on the clonal complexes (CC) represented in
our sampling revealed 2 different CCs and 12 singletons in the
2012–2013 collection (Supplementary Figure S1), and 1 CC
and 14 singletons in the 2015–2016 collection (Supplementary
Figure S2). The presence of many singletons and only a few
CCs points out the coexistence of distinct and diverse MRSP
population lineages. Identical non-ST71 lineages were rarely
identified in both collections. The exceptions are: (i) ST265,
which was identified eight times in 2012–2013 and three times

in 2015–2016 and thus seems to be on a decreasing trend; (ii)
ST258, which was identified once in 2012–2013 and five times
in 2015–2016 and, thus, seems to be expanding. Interestingly,
a concomitant decrease of ST71 MRSP with the emergence of
ST258 MRSP has been previously observed in Finland, Denmark,
and Netherlands (Damborg et al., 2016; Duim et al., 2016;
Gronthal et al., 2017).

Clones and Antimicrobial Resistance
Our data show that, despite a higher tetracycline resistance,
French ST258 MRSP isolates present a higher susceptibility to
gentamicin and sulfonamides (absence of the aacA-aphD and cat
genes), but also to fluoroquinolones. These results are consistent
with the potential dissemination of a ST258 MRSP in Europe,
which may be good news for veterinarians since this lineage
is more susceptible than ST71 MRSP to veterinary-licensed
antibiotics (Damborg et al., 2016; Duim et al., 2016; Gronthal
et al., 2017). The SNP based phylogeny of the French ST71,
ST258, ST496 and publicly available ST71, ST258, and ST496
genomes shows a very low diversity within the ST71 and ST496
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FIGURE 2 | SNP based phylogeny of ST71, ST258, and ST496 with a matrix of resistance associated genes and CRISPR. The SNP based phylogeny was
constructed using 19008 SNP. The tip label represents the strain name followed by the ST number. The presence or absence of resistance genes and the CRISPR
region are shown as an array of colored boxes on the right: ST71, red boxes; ST258, yellow boxes; and ST496, blue boxes.

populations and a more heterogeneous ST258 population. The
success of this newly emerging ST258 MRSP lineage remains
unknown and cannot be explained by a difference in virulence
factors since only nanB, a putative sialidase toxin, was identified
to be exclusively present in the ST258 isolates. However, as only
a few virulence factors have been reported and validated in
S. pseudintermedius, one cannot exclude the presence or absence
of other, yet undescribed, virulence associated genes within this
lineage.

Emergence of the ST496 Clone
In parallel with the emergence of a ST258 MRSP lineage,
we also observed the emergence of a novel ST496 MRSP
lineage in France in the collection of 2015–2016. All isolates
belonging to this new clone were systematically resistant to all

veterinary-licensed antibiotics. Of note, over the 87 isolates from
the 2015–2016 collection, only the nine ST496 and the three
ST85 isolates presented such a large multi-resistance phenotype,
with susceptibility present only for florfenicol and fusidic acid.
Interestingly, this clone has very recently been reported in
Australia (Worthing et al., 2018), where it is described as
one of the major MRSP clones, especially in Sydney. Whole-
genome comparison of French and Australian isolates shows
a very low level of population diversity within this clade,
the same resistome and a very close virulome. Compared to
isolates of the other two most prominent MRSP lineages in
France – ST71 and ST258 – ST496 isolates were the only
ones that systematically carried cell wall associated (CWA)
genes spsI and, except for one isolate, spsF genes, which are
hypothesized to play a role in pathogenesis as they code for
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FIGURE 3 | SNP based phylogeny of ST71, ST258 and ST496 with a matrix of virulence associated genes. The SNP based phylogeny was constructed using
19008 SNP. The tip label represents the strain name followed by the ST number. The presence or absence of virulence genes are shown as an array of colored
boxes on the right: ST71, red boxes; ST258, yellow boxes; and ST496, blue boxes.

proteins capable of adhesion to extracellular matrix (Bannoehr
et al., 2011).

CONCLUSION

Put together, our data shows a shift, over the last 6 years, within
the population structure of MRSP in France. An apparent decline
of the ST71 MRSP lineage is concomitant with the emergence
of two novel MRSP lineages in France: the ST258 MRSP lineage
from Northern Europe, and a ST496 MRSP lineage which has
become the main MRSP clone in Sydney, Australia. Based on
the structure of the phylogenetic tree, the ST496 isolates from
Australia appear to be ancestral to the French isolates. This is
also indicated by the fact that ST496 emerged in Australia in

2013, but was not found in France at that time. The emergence
of the ST258 and ST496 lineages in France might be associated
with the distribution and importation of animals from other
countries. The reasons for their apparent and simultaneous
success remain unclear. For ST496, this could be associated
with an increased colonization capacity, via the presence of
spsI and spsF genes, but the expression and role of these
putative microbial surface components recognizing adhesive
matrix molecules (MSCRAMMs) remains to be validated in vivo.
For ST258, no known virulence factors were exclusively found in
this lineage which might help elucidate its success over the ST71
MRSP lineage.

While the decrease in the prevalence of ST71 MRSP is obvious
in Europe, it is unclear which other MRSP clone(s) – and for
which reasons – will successfully arise. This will have to be closely
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monitored since the emergence and dissemination of the ST496
MRSP would be a threat to animal health due to its concerning
level of antimicrobial resistance.
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