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Enteropneusts are widely distributed marine invertebrates that accumulate high
concentrations of halogenated aromatics. Some of these compounds affect benthic
biogeochemistery (e.g., denitrification and ammonia oxidation), but little is known
about interactions between enteropneusts and their associated microbial communities.
Even less is known about enteropneust host-microbe relationships in the digestive
tract. More generally, microbial community composition and diversity in intertidal
sediments have received little attention. In this study, high throughput sequence
analyses of 16S rRNA genes extracted from microbial communities associated with
sediment-free whole individuals of Saccoglossus bromophenolosus and freshly excreted
S. bromophenolosus gut sediments revealed a potential Spirochaete symbiont that was
abundant, present in gut sediment, but absent in other sediments. Relative to surface
sediments, gut communities also revealed evidence for selective losses of some groups
and blooms of others, especially Colwellia, Photobacterium, Pseudoalteromonas, and
Vibrio. After deposition, gut sediment communities rapidly resembled those of surface
sediments. Although hierarchical cluster analysis and Linear Discriminant Analysis
Effect Size (LEfSe) differentiated among burrow walls of S. bromophenolosus and a
polychaete, Alitta virens, as well as between surface and sub-surface sediments, most
operational taxonomic units (OTUs) were shared, with differences largely occurring in
relative abundances. This suggests that sediment mixing through bioturbation might
act to homogenize community composition, while species-specific impacts by infauna
might alter local population abundances. Although Cod Cove is a relatively isolated
intertidal system, microbial community members included groups with cosmopolitan
distributions and roles in sulfur cycling, e.g., Gammaproteobacteria BD7 and Sva0071,
as well as novel OTUs representing a large number of phyla.

Keywords: enteropneust, sediment, diversity, intertidal, bacteria

INTRODUCTION

Enteropneusts (phylum Hemichordata) are exclusively marine, worm-like, benthic deposit feeders
that burrow in sediments from the intertidal zone to the deep-sea, and from tropical to polar
latitudes (King et al., 1994, 1995; Giray and King, 1996). Most enteropneusts spend a portion
of their time feeding at the sediment-water interface (Gonzalez and Cameron, 2009). They also
create sub-surface interfaces, i.e., burrows (King, 1986; Dobbs and Guckert, 1988), which facilitate
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physical, chemical and biological interactions among animals and
their environments (e.g., Hansen et al., 1996; Blondin-Mermillod
et al., 2004; Kristensen and Kostka, 2005; Satoh et al., 2007; Bertics
and Ziebis, 2009; Bertics et al., 2010; Satoh and Okabe, 2013).
Biological interactions include the potential for altering microbial
communities in material that is ingested, digested within the gut,
and subsequently re-deposited at the sediment surface as fecal
castings. Microbial communities in burrow wall sediments are
also subject to change through burrow irrigation, which affects
oxygen availability; mucus secretion, which provides a source of
organic matter; and grain size sorting, which can affect porosity
and diffusivity (Kristensen and Kostka, 2005).

Enteropneusts contain high concentrations of halogenated
organics (haloorganics), e.g., bromophenols, bromo- and
chloroindoles, and bromoquinones among others, which also
affect microbial communities (e.g., King, 1986). Whether they
synthesize these compounds themselves as some marine algae do
(Cabrita et al., 2010), or acquire them from microbial symbionts
as marine sponges do (Grozdanov and Hentschel, 2007;
Bayer et al., 2013), remains unknown. Halogenase genes and
halogenation activity have been documented for Actinobacteria
and Firmicutes isolated from an enteropneust, Ptyochodera
bahamensis (Lilles, 2011), but the possibility that enteropneusts
harbor haloorganic-producing symbionts has not been explored.

The functional roles for enteropneust haloorganics are
also uncertain. They include predation deterrence and
bioluminescence (Giray and King, 1997b; Kanakubo and Isobe,
2005). Other potentially important functions include mediating
animal-microbe interactions on the enteropneust epidermis or in
burrow sediments. In support of the latter, previous studies have
shown that 2,4-dibromophenol (DBP), which is accumulated by
S. bromophenolosus (King, 1986), inhibits aerobic respiration in
sediment slurries, and also might account for reduced bacterial
numbers and rates of denitrification and ammonia oxidation
in enteropneust burrow wall sediments (Giray and King,
1997a). Ammonia oxidation appears especially sensitive to DBP
inhibition, in contrast to sulfate reduction, which was notably
insensitive (Giray and King, 1997a).

Although haloorganics can have strong and selective
inhibitory effects on the activity of specific groups of bacteria,
the extent to which they might structure microbial communities
remains uncertain. Phospholipid fatty acid (PFLA) profiles have
been used to compare burrow communities associated with a
haloorganic-free polychaete (Branchyoasychus americana) and
two haloorganic-containing taxa, an enteropneust (Balanoglossus
aurantiacus), and a polychaete (Notomastus lobatus). Differences
among burrows were observed for several broad lipid classes, e.g.,
monounsaturated PLFA, while markers for specific groups, e.g.,
sulfidogens and Gram-negative bacteria, did not vary (Steward
et al., 1996). The similarity of sulfidogens among burrows might
reflect insensitivity to haloorganics (Giray and King, 1997a), but
since PLFA lack the resolution necessary for elucidating patterns
at family to genus levels, it is unclear what similarities in lipid
markers actually imply.

To identify potential impacts of enteropneusts on benthic
microbial communities, partial 16S rRNA gene sequences
were amplified from extracts of sediments associated with

S. bromophenolosus and a haloorganic-free polychaete, Alitta
(Nereis) virens. Amplicon sequences were obtained using an
Illumina Miseq platform from gut sediments freshly excreted
by S. bromophenolosus, from its fecal castings at the sediment
surface, and from whole, sediment-free animals. In addition,
amplicon sequences were obtained from burrow wall sediments
of S. bromophenolosus and A. virens, and from bulk surface and
sub-surface sediments. Phylogenetic analyses revealed distinct
differences in the compositions of whole S. bromophenolosus and
gut sediment, each of which differed from burrow wall, and bulk
and sub-surface sediments; compositions of the latter sediment
types also varied, but less distinctly.

MATERIALS AND METHODS

Site Description and Sample Collection
Animal and sediment samples were collected in May 2014
and August 2016 from Cod Cove, Maine (approximate GPS
coordinates 44.000954, -69.639964) during low tide at a site
near shore. Approximately 2–3 gram fresh weight (gfw) samples
of surface sediment (n = 5) were collected from the upper
2–3 mm interval using a sterile spatula. This interval was visually
distinct (light brown, oxidized) from darker, reduced sub-surface
sediment. S. bromophenolosus fecal castings (n = 5) on the
sediment surface were identified by their characteristic coiled
structure. Well-defined coils indicative of deposition for < 12 h
were collected with a spatula while avoiding surrounding surface
sediment; the mass of each replicate sample was about 0.5 gfw.
To collect sub-surface (n = 4) and burrow wall sediment as well
as animals, a round-point garden shovel was used to create a
crack approximately the width and depth of the shovel blade.
Bulk sub-surface sediment not obviously associated with burrows
was collected from a depth of about 5 cm relative to the surface
using a sterile spatula as above. Spatulas were also used to collect
the inner 1–2 mm of burrow wall sediments from burrows
containing Alitta virens (n = 5), and from burrows formed by
S. bromophenolosus (n = 6); the latter were readily identified by
their distinctive iron oxide deposits. In general, sample collection
followed methods used previously for animals and sediments in
nearby Lowes Cove, Maine (King, 1986; Giray and King, 1997a,b).
Immediately after collection, all samples were transferred to
sterile 15 ml disposable conical centrifuge tubes containing up to
5 ml Lifeguard solution as a DNA preservative (QIAGEN, Inc.;
Germantown, MD, United States).

Four individual specimens of S. bromophenolosus were
carefully removed from their burrows with a spatula preserving
as much of the fragile trunk as possible. Individuals collected
in 2014 were placed in ethanol-sterilized polystyrene weighing
dishes (8.9 cm × 8.9 cm × 2.5 cm depth length-width-depth)
containing about 20 ml of 0.2 µm filter-sterilized seawater.
Sediment contained in the gut was collected after it was voided,
and transferred to disposable centrifuge tubes with Lifeguard
solution as above. Seven individuals collected in 2016 were
treated similarly, with the exception that whole, sediment-free
animals were transferred to centrifuge tubes with Lifeguard.
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DNA Extraction and Sequence Analysis
DNA was extracted using a Qiagen Powersoil kit (QIAGEN,
Germantown, MD, United States) following the manufacturer’s
protocol after removing Lifeguard. Whole animals collected
in 2016 were homogenized first, then sub-samples of the
homogenate were transferred to bead-beating tubes for
extraction. Purified DNA extracts were submitted to the
Research Technology Support Facility of Michigan State
University for PCR amplification and barcoding of the 515–806
(V4–V5) region of the 16S rRNA gene according to Kozich
et al. (2013). The sample libraries were sequenced on a Miseq
platform using a v2 reagent cartridge for a 2 × 250 bp paired-end
format. Sequencing yielded a total of 6,273,492 reads. Sequences
have been deposited in the NCBI SRA archive as Bioprojects
PRJNA480512 (Saccoglossus bromophenolosus microbiome) and
PRJNA480505 (Intertidal and enteropneust microbiome).

The resulting sequences were processed using a mothur
pipeline (v 39.5) to filter reads for quality, create contigs and
reduce noise (Kozich et al., 2013). Sequences were aligned
with SILVA database release 128 (Quast et al., 2013), and the
SILVA taxonomy was used for classification of representative
sequences and operational taxonomic units (OTUs), which were
defined at an evolutionary distance of 0.03 using mothur’s
cluster.split algorithm with the “opticlust” option and “taxlevel”
set at 4 for splitting the distance matrix. Chimeras were
identified and removed with the chimera.uchime option. Alpha
diversity (e.g., Chao1, Shannon and inverse Simpson indices, and
coverage) for individual samples was estimated using mothur
and MicrobiomeAnalyst (Dhariwal et al., 2017)1 with normalized
read abundances excluding singletons. Samples analyzed with
MicrobiomAnalyst were filtered for low abundance based on
the mean abundance of OTUs, and for low variability using the
inter-quantile range assessment. After filtering, OTU abundances
were transformed using the centered log ratio. The significance
of differences in alpha diversity among sample groups was
tested using analysis of variance (ANOVA) with a Bonferroni
post hoc test and correction of p-values for multiple comparisons.
Both platforms were also used to generate beta diversity indices
and to visualize community (dis)similarities using principle
coordinates analyses (PCoA) and non-metric multidimensional
scaling (nMDS) of Bray-Curtis, unweighted Unifrac, and
weighted Unifrac distance matrices [with tests of significance
using permuted analysis of variance (PERMANOVA), permuted
analysis of dispersion (PERMDISP), and analysis of similarity
(ANOSIM)].

RESULTS AND DISCUSSION

Surface, Sub-Surface, Burrow Wall, and
Fecal Cast Sediment Communities
Although 107 classes were identified among the various sediment
communities, most were rare ( < < 1%), with just 14 accounting
for 81.3–86.4% of total OTU abundance (Figure 1 and Table 1).
The latter included various members of the Acidobacteria,

1www.microbiomeanalyst.ca

Bacteriodetes, Chloroflexi, Planctomycetes, Proteobacteria, and
Spirochaetes. In general, patterns observed for the most abundant
OTUs in Cod Cove sediments were similar to those reported for
intertidal sediments by Gobet et al. (2011) and Zheng et al. (2014).
Similar results were also reported by Zinger et al. (2011), who
synthesized results from a global ocean dataset. However, lower
abundances of Actinobacteria, Betaproteobacteria and Firmicutes
in Cod Cove were notable. These differences might reflect more
general patterns for intertidal sediments, but additional studies
will be necessary to verify them.

Proteobacteria dominated all Cod Cove sediments, accounting
for 63.1–69.4% of the OTU abundances (Table 1). Similar
results have been obtained for other coastal sediments (e.g.,
Lasher et al., 2009), but surprisingly few studies have addressed
unvegetated, unpolluted intertidal mud flats (Bong-Soo et al.,
2004; Musat et al., 2006; Gobet et al., 2011; Wang et al.,
2012, 2016; Zheng et al., 2014). Alphaproteobacteria and
Epsilonproteobacteria occurred at abundances from 2.6 to 9.4%,
and 1.6 to 8.0%, respectively (Table 1), consistent with other
sediment studies (e.g., Gobet et al., 2011; Wang et al., 2012).
Deltaproteobacteria abundances were even higher, and typically
comparable to or greater than those for Gammaproteobacteria
(25.0–35.3% and 22.2–28.7%, respectively, Table 1) in all but
freshly excreted gut sediments (Figure 1 and Table 1).

Deltaproteobacteria Distribution
Deltaproteobacteria were dominated by sulfidogens as expected
for marine sediment (Lasher et al., 2009), but members of the
facultatively anaerobic class, Myxococcales, and aerobic family,
Bacterivoraceae, collectively accounted for 1.79–2.01% of all
OTUs (Table 2). Myxococcales have been previously reported
in intertidal sediments populated by a polychaete, Hediste
diversicolor; greatest abundances occurred in burrow walls,
with lower abundances in surface and sub-surface sediments
(Pischedda et al., 2011). In contrast, Myxococcales abundances
were similar in all Cod Cove sediments, with the exception of
freshly excreted gut sediments. In spite of their abundance, the
role this group plays in marine sediments is largely unknown
other than what might be inferred from their heterotrophic
lifestyle (e.g., Li et al., 2012).

Among the sulfidogens, Desulfobulbus was by far the most
abundant genus, accounting for up to 13.8% of OTUs in S.
bromophenolosus burrow sediments (Table 2). Desulfobulbus also
dominates sulfidogen communities in other marine sediments,
although reports of its distribution in animal burrows are
limited (e.g., Zheng et al., 2014). Relatively high abundances
in S. bromophenolosus burrows suggest that Desulfobulbus is
likely unaffected by bromophenols that occur there (King, 1986);
whether it can metabolize these compounds or dehalogenate
more generally is unknown.

Excluding gut sediments, the distribution of other sulfidogen
lineages among sediment types exhibited only minimal
differences (Table 2 and Supplementary Figure 1), a finding that
supports conclusions of Steward et al. (1996) based on analyses
of signature PFLAs, and of King (1988) based on patterns of
2,4-dibromophenol degradation by sediment slurries. In this
context it is also noteworthy that OTUs representing sulfidogen
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FIGURE 1 | Percent composition of animal and sediment microbial communities. Percent composition by class of microbial communities in surface and sub-surface
sediments, burrows of Alitta virens, burrows of Saccoglossus bromophenolosus, S. bromophenolosus fecal castings, S. bromophenolosus gut sediments, and
whole, sediment-free S. bromophenolosus. Delta- and Gammaproteobacteria dominate sediment samples, while Gammaproteobacteria and Spirochaetes dominate
S. bromophenolosus gut sediments, and whole, sediment-free S. bromophenolosus, respectively.

lineages known to dehalogenate, e.g., Desulfitobacterium,
Desulfomonile, and Desulfovibrio (e.g., Boyle et al., 1999; Knight
et al., 1999) were relatively rare and distributed evenly among
sediment types. Similar results were found for Propionigenium
OTUs (Fusobacteria). The later OTUs are of interest, because
a bromophenol-degrading Propionigenium maris isolate was
obtained from burrows of a bromophenol-producing polychaete
(Watson et al., 2000). Nonetheless, bromophenol excretion
by S. bromophenolosus does not appear to lead to significant
enrichments of bromophenol degraders.

Gammaproteobacteria Distribution
The Gammaproteobacteria were comprised of several common,
widely distributed lineages, including Thiogranum (an obligately
chemolithoautotrophic sulfur oxidizer, e.g., Mori et al., 2015),
Halioglobus and Haliea (planktonic heterotrophs, e.g., Urios
et al., 2008; Park et al., 2012). However, uncultured, unclassified,
or relatively rare taxa collectively accounted for 89.1% of
the observed richness (Sobs), 64.0% of the abundance of the
Gammaproteobacteria overall, and 9.5–12.2% of total OTU

abundance in the various sediment samples (Table 3). Although
biogeochemical functions cannot be attributed to many of these
OTUs, others have been directly or indirectly implicated in
sulfur/sulfide oxidation, e.g., the BD7 group (Dyksma et al.,
2016), or oligotrophic carbon metabolism, e.g., members of the
KI89A and OM182 clades (Cho and Giovannoni, 2004).

In addition to these clades, several other distinct
Gammaproteobacteria groups also accounted for significant
fractions of total OTU abundances (Table 3). These included
Sva0071 (1.47–2.06%) and JTB255 (1.47–2.06%), both of
which are widespread, and have been implicated in sulfide/sulfur
oxidation and dark chemoautotrophic CO2 fixation (Ravenschlag
et al., 1999; Nercessian et al., 2005; Zheng et al., 2014; Mußmann
et al., 2017; Probandt et al., 2018). A third abundant group,
HOC36 (0.61–2.01%), is also widely distributed, but poorly
known (Probandt et al., 2018). Taken together the results suggest
that sulfide and sulfur oxidizers account for a large portion of
Gammaproteobacteria diversity in Cod Cove sediments, where
they likely complement similarly diverse Deltaproteobacteria in
an active sulfur cycle.
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TABLE 1 | Major classes as a percentage of surface, sub-surface (Sub), Alitta
virens burrows (A. v.), Saccoglossus bromophenolosus burrows (S. b.),
S. bromophenolosus fecal castings (Fecal), S. bromophenolosus gut contents
(gut), and sediment-free whole S. bromophenolosus (Whole) microbial
communities; data are means for each sample type.

Classes Surface Sub A. v. S. b. Fecal Gut Whole

Alphaproteobacteria 9.44 2.57 6.38 2.71 8.17 3.27 13.49

Anaerolineae 1.94 2.96 2.23 2.88 1.99 1.53 1.15

Bacteroidetes_BD2_2 2.86 4.95 3.87 4.60 2.46 2.36 0.73

Bacteroidia 0.68 1.71 1.14 1.10 0.61 0.54 0.09

Betaproteobacteria 0.45 0.30 0.51 0.56 0.38 0.40 1.80

Chloroplast 2.74 4.83 3.86 2.49 5.67 1.03 5.43

Cytophagia 2.42 2.90 2.86 3.05 1.85 1.26 0.47

Deltaproteobacteria 25.04 35.34 29.25 33.65 27.26 10.96 7.49

Epsilonproteobacteria 3.48 1.65 3.12 8.04 3.81 7.23 4.33

Gammaproteobacteria 27.62 22.15 25.81 22.57 28.67 52.67 7.07

Holophagae 1.29 1.45 1.17 1.22 1.29 0.28 0.93

Planctomycetacia 0.65 0.66 0.68 0.56 1.98 0.34 0.94

Sphingobacteriia 3.16 2.72 3.06 2.39 1.83 1.60 1.46

Spirochaetes 0.29 0.49 0.29 0.33 0.17 3.32 35.99

Other 17.96 15.31 15.76 13.84 13.86 13.21 18.64

Total proteobacteria 67.17 63.07 66.25 68.85 69.35 74.92 34.55

Total bacteroidetes 14.40 14.69 14.47 12.37 9.61 10.92 4.94

Alphaproteobacteria Distribution
Members of the genus, Boseongicola (Rhodobacteriaceae,
heterotrophic), dominated the Alphaproteobacteria (6.6% of
Alphaproteobacteria), which were generally much less abundant
than Delta- or Gammaproteobacteria (Figure 1 and Table 1).
Boseongicola was originally isolated from an intertidal site
at Jeju Island (South Korea; Park et al., 2014), but has since
been observed in sediments from depths >3000 m along a
latitudinal transect in the Pacific from 0◦ S to 59◦N (Pohlner
et al., 2017). Its presence in Cod Cove sediment indicates that it
has a potentially cosmopolitan distribution, and that it might be

a member of a core community of benthic Alphaproteobacteria
(Probandt et al., 2018). Members of Methyloceanibacter were
also relatively abundant (2.9% of all Alphaproteobacteria).
Methyloceanibacter includes benthic methylotrophs and
methanotrophs (Takeuchi et al., 2014; Vekeman et al.,
2016). Methylotrophic representatives likely use methanol
and methylamines that have been observed at micromolar
concentrations in nearby Lowes Cove intertidal sediments (King
et al., 1983; King, 1984), which support a fauna similar to that
of Cod Cove. Other relatively abundant Alphaproteobacteria
OTUs were affiliated with cultured heterotrophic and sulfur-
cycling taxa including Anderseniella (Brettar et al., 2007),
Filomicrobium (Schlesner, 1987), Pseudahrensia (Jung et al.,
2012), and Sulfitobacter (Yoon et al., 2007).

Nonetheless, unclassified and uncultured groups from order
to genus levels accounted for a significant fraction of the
Alphaproteobacteria OTUs. Two unclassified Rhodobacteraceae
were especially notable, since they accounted for 3.2 and
5.2% of total Alphaproteobacteria abundance, respectively. More
generally, only 776 (17.9%) of 4344 OTUs were identifiable at
the genus level, accounting for only 39.0% of total abundance
for the class, outcomes that were comparable to those for
Gammaproteobacteria. Collectively these results suggest that Cod
Cove harbors a remarkable level of diversity that encompasses
taxa that might have limited geographic distributions, as well
as cosmopolitan taxa with global distributions. Communities
such as these present possibilities for addressing questions about
speciation, and micro- to macro-scale determinates of benthic
bacterial community assembly.

Epsilonproteobacteria Distribution
Epsilonproteobacteria were comparable in abundance to
Alphaproteobacteria overall (Figure 1 and Table 1), but were
represented by far fewer OTUs (353 versus 4344). In contrast
to other Proteobacteria groups the Epsilonproteobacteria were
largely comprised of OTUs identifiable to genus (96.2%).

TABLE 2 | Major contributors to Deltaproteobacteria in surface, sub-surface, Alitta virens (A. v.) burrows, Saccoglossus bromophenolosus (S. b.) burrows,
S. bromophenolosus fecal casts, S. bromophenolosus gut contents, and sediment-free whole S. bromophenolosus (Whole) microbial communities.

Taxonomy Surface Sub-surface A. v. burrow S. b. burrow S. b. fecal S. b. gut Whole

Myxococcales 1.56 (0.11) 1.78 (0.19) 1.71 (0.14) 1.72 (0.14) 1.79 (0.24) 0.44 (0.16) 4.08 (0.64)

Bacterivoraceae 0.18 (0.04) 0.10 (0.02) 0.20 (0.02) 0.10 (0.02) 0.18 (0.05) 0.30 (0.11) 0.04 (0.01)

Bdellovibrio 0.05 (0.01) 0.03 (0.0) 0.05 (0.0) 0.05 (0.01) 0.05 (0.01) 0.05 (0.02) 0.29 (0.06)

Desulfatiglans 0.97 (0.33) 1.31 (0.15) 1.07 (0.12) 1.39 (0.13) 0.71 (0.14) 0.86 (0.26) 0.06 (0.03)

Unclassified Desulfobacteria 1.11 (0.31) 1.77 (0.18) 1.06 (0.07) 1.38 (0.08) 0.92 (0.16) 0.52 (0.21) 0.12 (0.07)

Desulfococcus 0.10 (0.02) 0.14 (0.01) 0.12 (0.01) 0.11 (0.01) 0.09 (0.02) 0.04 (0.02) 0.01 (0.01)

Desulfosarcina 0.82 (0.18) 1.26 (0.11) 1.01 (0.07) 1.07 (0.09) 0.94 (0.17) 0.47 (0.24) 0.06 (0.03)

Unclassified Desulfobulbus 1.98 (0.18) 3.28 (0.81) 2.19 (0.17) 2.04 (0.13) 3.05 (0.2) 0.54 (0.25) 0.27 (0.12)

Desulfobulbus 6.69 (0.64) 10.4 (0.86) 9.86 (0.82) 13.81 (1.09) 6.95 (1.85) 1.64 (0.82) 0.59 (0.25)

Deltaproteobacteria Sva0485 0.76 (0.09) 1.16 (0.1) 0.98 (0.06) 1.04 (0.09) 0.73 (0.13) 0.35 (0.13) 0.07 (0.03)

Deltaproteobacteria Sva0081 3.08 (0.65) 4.7 (0.46) 3.48 (0.29) 4.05 (0.29) 4.25 (0.68) 1.39 (0.48) 0.52 (0.24)

Desulfuromonadales Sval033 2.94 (0.19) 2.8 (0.39) 2.54 (0.14) 1.78 (0.23) 2.48 (0.54) 0.34 (0.25) 0.13 (0.05)

Desulfurellaceae 0.02 (0.0) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.97 (0.09)

Geobacter 0.23 (0.06) 0.03 (0.01) 0.18 (0.03) 0.10 (0.02) 0.18 (0.05) 0.03 (0.01) 1.79 (0.22)

Data are means ± 1 standard error.
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TABLE 3 | Major contributors to Gammaproteobacteria in surface, sub-surface, Alitta virens (A. v.) burrows, Saccoglossus bromophenolosus (S. b.) burrows,
S. bromophenolosus fecal casts, S. bromophenolosus gut contents, and sediment-free whole S. bromophenolosus (Whole) microbial communities.

Taxonomy Surface Sub-surface A. v. burrow S. b. burrow S. b. fecal S. b. gut Whole

Colwellia 0.01 (0.0) 0.01 (0.0) 0.03 (0.01) 0.05 (0.02) 0.02 (0.01) 2.83 (0.48) 0.0 (0.0)

Pseudoalteromonadaceae 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 20.17 (7.18) 0.0 (0.0)

Halieaceae 6.05 (0.84) 3.09 (0.22) 4.81 (0.39) 3.20 (0.25) 6.27 (1.21) 0.97 (0.41) 0.47 (0.18)

Chromatiales 2.94 (0.16) 2.62 (0.16) 2.75 (0.09) 2.78 (0.20) 3.60 (0.30) 0.64 (0.19) 0.24 (0.10)

γ -Proteobacteria HOC36 0.61 (0.11) 1.16 (0.12) 0.61 (0.04) 0.81 (0.14) 2.05 (0.94) 0.10 (0.03) 0.21 (0.08)

Pseudomonadales 0.05 (0.01) 0.01 (0.0) 0.02 (0.01) 0.0 (0.0) 0.04 (0.01) 3.73 (0.95) 0.03 (0.01)

γ -Proteobacteria Sva0072 1.66 (0.10) 1.47 (0.19) 1.83 (0.11) 1.82 (0.11) 2.06 (0.37) 0.49 (0.14) 0.26 (0.10)

Thiotrichales 1.32 (0.26) 1.58 (0.17) 1.77 (0.18) 1.84 (0.14) 1.55 (0.31) 0.97 (0.24) 0.08 (0.03)

Vibrionaceae 0.02 (0.0) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 20.89 (5.42) 0.01 (0.01)

γ -Proteobacteria JTB255_MBG 2.08 (0.16) 1.81 (0.18) 2.12 (0.05) 1.83 (0.12) 1.59 (0.30) 0.63 (0.34) 0.20 (0.07)

Other 12.16 (0.81) 9.54 (0.28) 11.11 (0.31) 9.64 (0.29) 11.63 (0.73) 7.67 (0.76) 3.93 (0.23)

Data are means ± 1 standard error.

Two genera dominated bulk, burrow and fecal cast sediment
samples: Sulfurovum (1.42–6.96%) and Sulfurimonas
(0.12–0.71%). Both have been reported at similar levels,
and were among the most abundant OTUs in Chinese coastal
sediments (Zheng et al., 2014). Both oxidize reduced sulfur
compounds, and contribute to benthic sulfur cycling (Inagaki
et al., 2004; Han and Perner, 2015). A recent proposal to separate
Epsilonproteobacteria as a new phylum, Epsilonbacteraeota
that includes the Deltaproteobacteria order, Desulfurellales
(Waite et al., 2017), does not alter these outcomes. Although the
Desulfurallales are anaerobic sulfate reducers that expand the
physiological and ecological capacity of the Epsilonbacteraeota,
they were comprised of only 96 mostly rare OTUs that collectively
accounted for <0.01% of total OTU abundance.

Bacteroidetes and Chloroflexi
Distribution
Numerous additional phyla occur in Cod Cove sediments, but
only Bacteroidetes and Chloroflexi consistently accounted for
>1–2% of total OTU abundance (Table 1). The Anaerolineae
(Chloroflexi) ranged in abundance from 1.9 to 3.0% for sediment
samples with no distinct trend among them (Table 1). Most
of the Anaerolineae belonged to unclassified lineages (97.9%
of total Anaerolineae abundance), but a small number were
classified in genera that have been isolated from shallow
or deep-sea marine sediments (e.g., Pelolinea, Imachi et al.,
2014; and Thermomarinilinea, Nunoura et al., 2013). Since the
class is largely known from non-saline, terrestrial systems, the
observation of novel groups in accessible, intertidal sediments
offers an opportunity to substantially expand libraries of isolates
as well as insights regarding the physiology and ecology of
Anaerolineae (Yamada et al., 2006). Contributions to sulfur
cycling would be of particular interest, since the class is not
currently known to reduce or oxidize sulfur compounds.

Bacteroidetes abundance generally exceeded that of
Alphaproteobacteria, accounting for 9.6–14.7% of all OTUs
(Table 1). Similar patterns have been reported for other
intertidal systems in marked contrast to trends for nearshore
bacterioplankton (e.g., Pommier et al., 2007; King et al., 2013).

Unclassified or uncultured members of Bacteroidetes group
BD2-2, and the classes, Bacteroidia, Cytophagia, and
Sphingobacteriia were dominant. Among the Bacteriodetes
with cultured representatives, OTUs identified as Lutimonas or
Lutibacter were most abundant. These two genera have been
isolated from intertidal sediments as well as several marine
invertebrates (Choi and Cho, 2006; Yang et al., 2007; Park et al.,
2010, 2015; Kim et al., 2014), and were among the 20 most
abundant OTUs in a survey of six distinct intertidal sediments
(Zheng et al., 2014).

Freshly Excreted Gut Sediment
Communities
At a class level, the composition of freshly excreted gut
sediments was similar to that of other sediment samples,
but with several notable exceptions. Deltaproteobacteria,
Holophagae, Planctomycetacia, and Sphingobacteriia were
distinctly lower in gut sediments, while Epsilonproteobacteria,
Gammaproteobacteria and Spirochaetes were distinctly
higher (Table 1 and Figure 1). Gammaproteobacteria were
especially abundant, accounting for >52% of all OTUs. Major
genera included Colwellia, Photobacterium, Psychrobacter,
Pseudoalteromonas, and Vibrio, each of which was typically rare
in other sediment samples as well as in sediment-free whole
S. bromophenolosus.

Relative to surface sediments and fecal casts, the composition
of S. bromophenolosus gut sediments suggests that digestion
substantially alters microbial communities. However, very
little is known about bacterial fates in enteropneust guts.
Carey and Mayer (1990) observed only small decreases
in bacterial abundance when comparing S. bromophenolosus
food sources (surficial sediments) with fresh fecal castings.
However, they did not examine gut sediment directly, nor
consider the possibility of growth within the gut. Dobbs and
Guckert (1988) observed differences in the feeding depressions
and fecal casts of Ptychodera bahamensis, but also did not
examine gut contents, and neither group explored changes
in specific microbial taxa. Plante and Mayer (1994) explored
bacteriolytic activity in the gut of Stereobalanus canadensis, but
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likewise did not conduct phylogenetic analyses of microbial
communities.

In contrast, somewhat more is known about the fates
of bacteria in molluscs, crustacea and polychaetes. Distinct
microbial communities have been documented in the stomachs
and guts of Crassostrea virginica (King et al., 2012), and Vibrio
has been documented as a major component of the culturable
community of shrimp guts (Litopenaeus vannamei, Moss et al.,
2000). Plante et al. (1989) observed selective losses of bacteria
in the midgut of the polychaete, Abarenicola vagabunda, with
rapid regrowth in the hindgut. Doubling times of 50–70 min
were estimated for taxa that survived mid-gut digestion. Selective
losses were also inferred for bacteria digestion by Arenicola
marina, with bacteriolysis dependent on cell wall structure
(e.g., Gram-positive versus Gram-negative) and presence of
exopolymeric substances (Plante et al., 1996; Plante and Shriver,
1998). Rapid hindgut regrowth has also been reported for
A. marina (Andresen and Kristensen, 2002).

Similar phenomena occurring in the digestive tract of
S. bromophenolosus could account for selective losses of
some taxa and enrichments of others. Blooms of Gamma-
proteobacteria (e.g., Colwellia, Photobacterium, Psychrobacter,
Pseudoalteromonas, and Vibrio) are of particular interest, since
they indicate that S. bromophenolosus gut sediments might
represent “hot spots” that serve as reservoirs for specific taxa at
local or even regional scales.

Sediment-Free Whole
S. bromophenolosus Communities
The composition of sediment-free, whole animals differed
markedly from that of all other samples, including freshly
excreted gut sediment (Table 1 and Figure 1). At a class level
Bacteriodetes, Deltaproteobacteria, and Gammaproteobacteria
were distinctly lower, while Actinobacteria, Alphaproteobacteria,
Spartobacteria, and especially Spirochaetes were relatively more
abundant. The Spirochaetes were notable, as they accounted for
36% of total OTU abundance. A single unclassified member of
the Spirochaetaceae that was most closely related to an anaerobic,
haloalkaliphilic isolate from Mono Lake (Spirochaeta americana,
Hoover et al., 2003) dominated these OTUs.

This same unclassified Spirochaete was present in freshly
excreted gut sediments collected independently 2 years earlier,
indicating that it might form stable associations with Cod
Cove S. bromophenolosus populations. Whether this or related
Spirochaetes form associations with other S. bromophenolosus
populations, or other enteropneusts, and what role they might
play is unknown. However, many Spirochaetes, including
S. americana, degrade sugars and polysaccharides (Hoover et al.,
2003), which suggests that they might be selectively enriched by
the copious mucus S. bromophenolosus secretes.

Though less abundant than Spirochaete OTUs, a small
number of Spartobacteria OTUs most closely related to
Chthoniobacterales clone Da101 (Felske et al., 1998) were
uniquely associated with sediment-free S. bromophenolosus. The
functional traits of this group have not yet been identified, but a
related soil isolate, Chthoniobacter flavus (Sangwan et al., 2004),

has been described as a sugar and polysaccharide specialist.
Thus, like Spirochaete OTUs, these OTUs might be enriched by
S. bromophenolosus mucus.

Community Structure
To select the most informative OTUs, samples were filtered
based on mean abundances and variances prior to analyzing
alpha and beta diversity; abundances of the OTUs remaining
after filtering were standardized using a centered log ratio
transformation. Filtering yielded 2536 informative OTUs from
a total of 65,939. The Chao1 richness index derived from the
filtered and transformed dataset varied from a low of 3608 ± 391
(standard error, S.E) for whole S. bromophenolosus to a maximum
of 8709 ± 462 for surface sediment (Figure 2). Analysis of
variance (ANOVA) indicated that OTU richness was lowest for
whole S. bromophenolosus and freshly excreted gut samples,
which did not differ from each other, based on a Bonferroni
post hoc analysis (Supplementary Table 1). Significantly greater
richness was observed in surface, sub-surface and burrow wall
sediments, which did not differ statistically from each other
(Supplementary Table 1).

Richness (Chao1) in Cod Cove surface, sub-surface and
burrow wall sediments (Figure 2) fell within a range of values
reported for other nearshore marine sediments with similar
numbers of observed OTUs (e.g., Wang et al., 2012; Zheng et al.,
2014; Choi et al., 2016). Although the database for intertidal
systems is limited, it is noteworthy that the lowest richness
has been observed for the northernmost sites, e.g., Cod Cove
at 44◦N (Chao1 = 7840–8709) and Liaodong Bay (China) at
40◦N (Chao1 = 4945–6816), both of which experience freezing
temperatures and ice scouring in winter (Li et al., 2013) that do
not occur at sites on Jeju Island (33◦N, Choi et al., 2016) or in
Hong Kong (22◦N, Wang et al., 2012), which supported higher
richness (Chao1 = 8538–14,439). Though one might propose
that differences in temperature regimes and physical disturbances
account for differences in richness, this relationship has not yet
been validated generally, and other variables, e.g., organic matter,
benthic primary production, and sediment texture, might prove
more important.

The fact that richness did not vary significantly among
surface, sub-surface and the two burrow wall sediment types
suggests that the impacts of animal populations on microbial
communities in Cod Cove might be limited to composition.
This could reflect relatively rapid sediment turnover (or
mixing) due to bioturbation, and commercial worm and clam
harvesting (Brown and Wilson, 1997). Based on cell counts
and assays of metabolic potential, Plante and Wilde (2001) also
speculated that due to rapid recovery rates, deposit feeders
were unlikely to affect benthic microbial community structure.
In addition, intrinsic differences between S. bromophenolosus
and A. virens might be less important than other variables,
e.g., organic contents, in controlling burrow wall community
richness.

Relatively low richness in gut sediments (Chao1 was 56%
of surface sediment values, Figure 2), along with differences in
composition, likely reflects selective losses of taxa and differential
population regrowth during sediment passage through the
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FIGURE 2 | Chao1 index for animal and sediment microbial communities. Chao1 index for whole, sediment-free S. bromophenolosus, S. bromophenolosus gut
sediments, and various associated sediments; mean, upper and lower quartiles and data extremes indicated. ANOVA: F = 18.882, p < 0.00001.

FIGURE 3 | Principal coordinates analysis of animal and sediment microbial communities. Principal coordinates analysis of sample OTUs based on weighted UniFrac
distances. PERMANOVA: r2 = 0.738, p < 0.001; PERMDISP: F = 2.291, p = 0.061.

gut. Both phenomena have been observed for polychaetes
(Plante et al., 1989; Plante and Shriver, 1998; Andresen and
Kristensen, 2002), but neither has been specifically associated
with changes in diversity metrics. Although few other studies

of marine invertebrates are available for additional comparisons,
analyses of stomach and gut microbiomes of oysters (Crassostrea
virginica) revealed lower values for Chao1 in stomachs. The
patterns for oyster stomach and gut richness are consistent with
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a decrease in diversity during the initial phase of digestion,
and an increase in diversity during later stages (King et al.,
2012).

Sediment-free, whole S. bromophenolosus richness was
markedly lower than that of gut sediment or other samples
(Figure 2). In addition, many of the low abundance OTUs
might have been incidentally associated with the animals’
mucus coating, thus further reducing the number of OTUs that
might be considered characteristic of S. bromophenolosus. Thus,
whether or not S. bromophenolosus harbors a core bacterial
community or host-specific symbionts remains unknown,
although the relatively high abundance of a Spirochete found
only in association with whole animals or gut sediments
suggests a potentially specific relationship that warrants further
exploration.

In contrast to estimates of richness, the Shannon index
did not vary statistically among samples with the exception
of gut sediments, for which values were lower than all other
sample groups (p < 0.0001; Supplementary Figure 2 and
Supplementary Table 2). This outcome provides additional
support for the proposal by Plante and Wilde (2001; see
above). The decrease for gut sediments again indicates that
S. bromophenolosus digestive processes alter microbial diversity.
However, those impacts appear short lived, since the Shannon

index of fecal castings was equivalent to that of surface sediments.
Setting aside the gut sediments, the Shannon indices of the
remaining samples were similar to values reported in other
studies of nearshore and intertidal systems (e.g., Wang et al.,
2012; Zheng et al., 2014; Choi et al., 2016). Prior studies
with polychaete and shrimp burrows have also reported little
difference in Shannon indices relative to surface and sub-
surface sediments (Laverock et al., 2010; Pischedda et al.,
2011).

Principal coordinate analyses based on Bray-Curtis and
weighted Unifrac distances yielded sample clusters that were
consistent with patterns evident in Chao1 and Shannon indices
(Figure 3). Freshly excreted gut sediments and sediment-free
whole animals formed distinct clusters, while the remaining
sediment samples formed a third group (Figure 3). Differences
in the locations of centroids for gut sediment, whole animal,
and the several sediment groups were statistically significant
based on PERMANOVA (r2 = 0.694 and 0.706 for Bray-
Curtis and weighted Unifrac PCoA, respectively, p < 0.001 for
both).

Hierarchical cluster analyses (Supplementary Figure 3A)
and heatmaps of OTU abundance (Figure 4) revealed similar
relationships for gut sediment and whole animals, but they
also showed that burrow and sub-surface sediments largely

FIGURE 4 | Heatmap of animal and sediment microbial communities. Heatmap of OTU relative abundances observed for individual S. bromophenolosus, gut and
sediment samples. Pearson’s correlation coefficient was used as a distance metric, with clustering based on Ward’s algorithm as implemented by
MicrobiomeAnalyst (Dhariwal et al., 2017).
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clustered together, as did fecal casting and surface sediments; in
addition, surface and sub-surface sediments clustered distinctly
(Supplementary Figure 3B). The associations of burrow wall
with sub-surface sediments reflect the fact that burrow wall
microbes originate in part from the sub-surface. Many of these
populations may vary only modestly in their abundances relative

to bulk sediment, in spite of changing biogeochemical conditions
within burrows. The depth interval collected during burrow wall
sampling, 2–3 mm, might also have included sediment unaffected
by the burrows, thus reducing distinctions between burrows
and the sub-surface that might be evident with finer resolution
sampling.

FIGURE 5 | LEfSe cladogram of animal and sediment microbial communities. Cladogram based on LEfSe analysis of the 1000 most abundant OTUs in the data set,
showing the phylogenetic distribution of lineages associated with various animal and sediment groups as indicated by the source color key for lineages with LDA
values ≥3.5. Circle diameters are proportional to OTU abundance with phylogenetic levels from domain to family from outside to inside. Key to discriminant lineages
a, Flavobacteriia; b, Cytophagia; c, Bacteroidia; d, Bacteroidetes_vadinHA17; e, Bacteroidetes_unclassified; f, Bacteroidetes_VC2_1_Bac22; g,
Bacteroidetes_Incertae_Sedis; h, Bacteroidetes_BD2_2; i, Bacteria_unclassified; j, Atribacteria; k, Aminicenantes; l, Thermoleophilia; m, Actinobacteria; n,
Subgroup_6; o, Subgroup_26; p, Subgroup_22; q, Subgroup_21; r, Subgroup_2; s, Subgroup_18; t, Solibacteres; u, Holophagae; v, Acidobacteria; w,
Lokiarchaeota; x, Thermoplasmata; y, Bathyarchaeota; z, Archaea_unclassified; a1, Ancient_Archaeal_Group_AAG; a2, Verrucomicrobiae; a3, Spartobacteria; a4,
R76_B128; a5, Opitutae; a6, OPB35_soil_group; a7, Spirochaetes; a8, Zetaproteobacteria; a9, Proteobacteria_unclassified; b1, Proteobacteria_Incertae_Sedis; b2,
Milano_WF1B_44; b3, Gammaproteobacteria; b4, Epsilonproteobacteria; b5, Deltaproteobacteria; b6, Betaproteobacteria; b7, Alphaproteobacteria; b8,
AEGEAN_245; b9, Planctomycetacia; c, Bacteroidia; c1, Phycisphaerae; c2, Peregrinibacteria; c3, Candidatus_Moranbacteria; c4, Nitrospira; c5,
Marinimicrobia__SAR406ade_; c6, Latescibacteria; c7, KSB3__Modulibacteria_; c8, Ignavibacteria; c9, Gracilibacteria; d1, BD2_11_terrestrial_group; d2,
Fusobacteriia; d3, Clostridia; d4, Bacilli; d5, Fibrobacteria; d6, Deferribacteres_Incertae_Sedis; d7, Chloroplast; d8, SJA_15; d9, Dehalococcoidia; e1,
Chloroflexi_unclassified; e2, Caldilineae; e3, Ardenticatenia; e4, Anaerolineae; e5, Sphingobacteriia; e6, SB_5.

Frontiers in Microbiology | www.frontiersin.org 10 December 2018 | Volume 9 | Article 3066

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-03066 December 12, 2018 Time: 14:18 # 11

King Enteropneust Microbiomes

Although freshly excreted gut sediments harbor distinct
microbial communities, that signature appears to be lost within
24 h after deposition on the sediment surface. Four of six
fecal casts clustered with sediment surface samples, indicating
that their communities had changed substantially from those
in the gut. This is consistent with observations by Plante and
Wilde (2001), who observed rapid recovery (2 h) of bacterial
numbers and Biolog substrate utilization patterns for fecal casts
of B. aurantiacus and Nereis (Alitta) succinea. In this context, it
is notable that one of the fecal casts clustered with gut sediments
(Supplementary Figure 3B, also evident in Figure 4), possibly
indicating that it had been deposited very recently.

Hierarchical cluster analyses indicated that some of the
S. bromophenolosus burrow wall samples were distinct from those
of A. virens burrows (Supplementary Figure 3B), which suggests
that the impacts of S. bromophenolosus haloorganics on microbial
communities might be variable, or possibly constrained to a
burrow wall depth interval less than that sampled for this study
(e.g., ≤ 2 mm). This outcome agrees in general with observations
of Steward et al. (1996), who observed that differences in burrow
walls of B. aurantiacus and surrounding sediments varied with
PLFA classes.

Biomarker analysis using linear discriminate analysis effect
size (LEfSe, Segata et al., 2011) as implemented in mothur
(Kozich et al., 2013) revealed 7195 discriminant features with
an LDA score >2 among 65,939 OTUs overall. The top 10
discriminant OTUs for each sample were consistent with
patterns in sample taxonomic composition. For example,
sediment-free Saccoglossus were distinguished by the presence of
Spirochaetes, several modestly abundant Acidobacteria, and two
Cyanobacteria/chloroplast OTUs that were absent or very low in
other samples. Freshly excreted gut sediments were distinguished
by abundant OTUs that represented Pseudoalteromonas,
Vibrionaceae, Psychrobacter, and Gracilibacteria, among others
(Supplementary Table 3). S. bromophenolosus and A. virens
burrows were distinguished by members of Desulfobulbus,
Sulfurovorum, and Thiotrichaceae in the former and various
uncultured or unclassified Gammaproteobacteria, including the
JTB255 marine benthic group, in the latter (Supplementary
Table 3).

The 1000 most abundant OTUs, which comprised 82.0% of
all reads, were also analyzed by LEfSe using the Huttenhower
Galaxy platform (Segata et al., 2011). Discriminant OTUs were
derived primarily from Gamma- and Deltaproteobacteria for
sediment groups, and from a mix of phyla and classes, including
Spirochaetes, for whole S. bromophenolosus (Figure 5).

CONCLUSION

Results from this study indicated that sediment-free whole
S. bromophenolosus harbors a Spirochaete OTU and a small
number of additional taxa that might constitute a core
microbiome or represent symbionts, the functions of which
remain unknown at present. The Spirochaete OTU was also
observed in S. bromophenolosus gut sediments, but not other
sediment samples, which further supports a possible previously

unrecognized host-specific association. Gut sediments also
harbored Gammaproteobacteria that were uncommon in other
sediment samples, and that might have “bloomed” within
S. bromophenolosus after the initial stages of digestion. However,
the relative abundance of many other taxa was substantially
reduced in gut sediments, indicating differential losses during
early stages of digestion. Nonetheless, the composition and
diversity of S. bromophenolosus fecal castings resembled that of
surface sediments, and was largely distinct from gut sediments,
which indicated that recovery was rapid post-deposition.

Although burrow wall, surface and sub-surface samples shared
most of the sediment OTUs, distinct communities developed
within each as indicated by hierarchical cluster and LEfSe
analyses. The observed differences likely reflected changes in the
relative abundance of OTUs due to local differences in variables
such as oxygen availability, benthic primary production, and
organic matter availability. For example, surface sediments are
continuously oxygenated, sub-surface sediments are anoxic, and
burrow wall sediments are oxygenated variably. At a large scale,
i.e., the mudflat, sediment mixing through bioturbation, physical
processes and anthropogenic activity might act to homogenize
community composition. Although Cod Cove, Maine is a
relatively isolated intertidal system on a marine river, community
members included groups with cosmopolitan distributions and
roles in sulfur cycling, e.g., Gammaproteobacteria BD7 and
Sva0071, as well as numerous novel OTUs representing a large
number of phyla.
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