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Considering the short shelf-life of certain food products such as red meat, there
is a need for rapid and cost-effective methods for pathogen detection. Routine
pathogen testing in food laboratories mostly relies on conventional microbiological
methods which involve the use of multiple selective culture media and long incubation
periods, often taking up to 7 days for confirmed identifications. The current study
investigated the application of omics-based approaches, proteomics using matrix-
assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-ToF
MS) and metabolomics using gas chromatography-mass spectrometry (GC-MS), for
detection of three red meat pathogens – Listeria monocytogenes, Salmonella enterica
and Escherichia coli O157:H7. Species-level identification was achieved within 18 h
for S. enterica and E. coli O157:H7 and 30 h for L. monocytogenes using MALDI-
ToF MS analysis. For the metabolomics approach, metabolites were extracted directly
from selective enrichment broth samples containing spiked meat samples (obviating the
need for culturing on solid media) and data obtained using GC-MS were analyzed using
chemometric methods. Putative biomarkers relating to L. monocytogenes, S. enterica
and E. coli O157:H7 were observed within 24, 18, and 12 h, respectively, of inoculating
meat samples. Many of the identified metabolites were sugars, fatty acids, amino
acids, nucleosides and organic acids. Secondary metabolites such as cadaverine,
hydroxymelatonin and 3,4-dihydroxymadelic acid were also observed. The results
obtained in this study will assist in the future development of rapid diagnostic tests
for these important foodborne pathogens.

Keywords: food safety, mass fingerprint, proteome, metabolomic profiling, biomarkers, chemometrics, statistical
discrimination

INTRODUCTION

Food safety is a major global concern. Many people suffer from illnesses through consumption of
food products contaminated by a variety of foodborne pathogens. Bacteria, viruses, and protozoa
are mostly responsible for the high mortality and morbidity rates associated with foodborne
illnesses (Li and Zhu, 2017). Many food outbreaks due to pathogens such as Salmonella spp.,
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Escherichia coli, Shigella spp., Listeria monocytogenes and
Campylobacter jejuni have been reported in recent years (Sofos,
2008; Marušić, 2011). Increased industrialization and mass
production of agricultural products, globalization of the food
supply chain and changes in consumer lifestyle and associated
variations in food consumption patterns have caused the
emergence of new foodborne pathogens or the re-emergence of
other pathogens (Pinu, 2016). In addition, food contamination
can lead to expensive product recalls (Sofos, 2008). Therefore, it
is necessary to have robust, rapid and reliable methods to detect
pathogens in different food products.

Routine testing in food laboratories is still largely dependent
on traditional identification using time-consuming culture-based
techniques (Jasson et al., 2010; Li and Zhu, 2017). On the
contrary, immunological or molecular approaches are more rapid
and reliable; however, these methods are expensive and labor-
intensive (Anderson et al., 2012). There is a need for techniques
that enable rapid and early detection of pathogens to ensure
enhanced food safety. Early identification and accurate detection
of food pathogens will (1) reduce costs of holding products
in cold storage while routine testing is conducted, and results
are confirmed and (2) mitigate product recalls. Early pathogen
detection not only reduces the risk of food outbreaks but also
provides greater product assurance. There is scope for developing
innovative pathogen detection tools and/or improving current
pathogen detection techniques; omics-based approaches such as
proteomics, and metabolomics have great potential in food safety
research (Bergholz et al., 2014).

In recent years, proteomics-based matrix-assisted laser
desorption ionization time-of-flight mass spectrometry (MALDI-
ToF MS) has emerged as a tool for microbial identification
and diagnostics (Singhal et al., 2015). MALDI-ToF MS is a
rapid, sensitive and an inexpensive technique that involves
analysis of intact microbial cells or cell extracts. This process
has been used for a number of applications, including microbial
identification and strain typing (Jadhav et al., 2014, 2015),
epidemiological studies (Croxatto et al., 2012), detection of
antibiotic resistance (Wolters et al., 2011; Knox et al., 2014),
detection of pathogens in blood (Egli et al., 2015), urine (Burillo
et al., 2014), food (Vithanage et al., 2014; Vithanage et al.,
2017) and water bodies. This technology relies primarily on
the characterization of microbes by analyzing the whole cell
proteome in a typical mass range m/z of 2–20 kDa (mainly
ribosomal proteins). We previously developed a 30 h detection
scheme for L. monocytogenes from various food items, such
as milk, cantaloupe, and chicken pâté (Jadhav et al., 2014).
One of the disadvantages of MALDI-ToF MS is that it is
reliant on existing spectral databases of the mass fingerprints
of known microbes and is unable to identify new species.
In order to establish a customized spectral database, careful
quality control is necessary, but this is an elaborate process.
Proteomics can, therefore, be complemented with metabolomics
to develop a robust and reliable tool for microbial identification
and diagnostics.

Metabolomics is another “omics” approach that analyses
low molecular weight compounds (metabolites, molecular
weight < 1.5 kDa) in a given biological sample. Research in “food

metabolomics” has only gained momentum in the last decade.
A few studies have applied this approach for the detection of
foodborne pathogens (Cevallos-Cevallos et al., 2011; Singh et al.,
2011; Beale et al., 2014). It has been mainly used to determine
the composition and traceability of foods, food quality and food
safety (Pinu, 2015, 2016). Extensive research has been conducted
in the area of metabolomics applied to drug discovery (Cisek
et al., 2016), disease diagnosis (Kouremenos et al., 2012), biofilms
(Beale et al., 2010, 2013), agriculture (Hall and de Maagd, 2014;
Lima et al., 2014), toxicology (Hines et al., 2010), natural products
discovery (Kim et al., 2010) and nutrition (Heinzmann et al.,
2010; Savolainen et al., 2017).

The current study investigated the application of proteomics
and metabolomics approaches for the detection of meat
pathogens, namely L. monocytogenes, E. coli O157:H7 and
S. enterica. Salmonella spp. and L. monocytogenes are responsible
for salmonellosis and listeriosis, respectively, while the Shiga
toxin-producing E. coli O157:H7 can sometimes result in a
serious manifestation called hemolytic uremic syndrome (HUS)
in susceptible populations (Rhoades et al., 2009). Current
methods of pathogen detection generally rely on a multi-
step selective enrichment procedure followed by plating on
different solid culture media. Confirmation is performed using
biochemical tests (Li and Zhu, 2017) or 16S rRNA sequencing.
Routine testing of pathogens such as the ones used in the
current study usually takes up to 7 days for detection and
confirmation. The current study proposes direct detection of
pathogens from selective enrichment broths using MALDI-ToF
MS (proteomics) and simultaneous identification of a putative
biomarkers using gas chromatography-mass spectrometry (GC-
MS-based metabolomics). These analyses would save time and
cost by eliminating the need to further test pathogen-negative
meat samples, thus enabling greater laboratory throughput. This
will enhance product assurance and lead to increased consumer
confidence.

MATERIALS AND METHODS

Bacterial Strains and Culture Conditions
The bacteria used in this study included L. monocytogenes
(ACM 98, Australian Collection of Micro-organisms),
S. enterica subsp. enterica serovar Typhimurium (American
Type Culture Collection; ATCC 13311), E. coli O157:H7
(ATCC 43895) and E. coli (ATCC 8739). E. coli (ATCC 8739)
was used as a reference strain for external calibration of
MALDI-ToF MS. Media included brain heart infusion agar
(BHIA, Sigma-Aldrich, Australia), Oxoid novel enrichment
(ONE) broth for L. monocytogenes (OBL, Oxoid, Hampshire,
United Kingdom), ONE broth for Salmonella (OBS, Oxoid,
Hampshire, United Kingdom), Rappaport-Vassiliadis Soya
Peptone broth (RVSP, Sigma-Aldrich, NSW, Australia), Muller-
Kauffmann tetrathionate broth supplemented with novobiocin
(MKTTn, Micromedia, VIC, Australia), E. coli medium (EC,
Sigma-Aldrich, NSW, Australia), EC supplement with 4-
methylumbelliferyl-β-D-glucuronide (EC-Mug, Sigma-Aldrich,
NSW, Australia) and tryptic soy broth supplemented with
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novobiocin (TSBn, Sigma-Aldrich, NSW, Australia). All bacteria
were initially grown on BHIA at 37◦C, then used for spiking
into minced beef samples (purchased from a local supermarket).
The spiked foods were enriched in OBL for L. monocytogenes or
MKTTn for S. enterica or TSBn for E. coli O157:H7.

Prior to all experiments, a 24 h culture of each pathogen
was adjusted to a 0.5 McFarland Standard (equivalent to
1.5 × 108 cfu/mL) in sterile saline using a Vitek colorimeter
(Vitek Systems, bioMérieux, Marcy l ‘Etoile, France). This will be
referred to as the standardized culture in the subsequent sections.

Spiking Procedure
Minced beef (25 g) was placed in a sterile Stomacher R© bag
(Seward Limited, Worthing, United Kingdom) with 225 mL of
selective enrichment broth. The standardized culture was then
added to the beef samples in the sterile filter bag to achieve
an initial spiking load of 10 cfu/mL. The spiked samples were
homogenized using a Stomacher R© 400 laboratory paddle blender
(Seward Limited, Worthing, United Kingdom) for 1 min and
incubated at 37◦C for various time intervals. Aliquots were
collected at specified time intervals and subjected to MALDI-ToF
MS and GC-MS analysis (see Sections “MALDI-ToF Analysis of
Spiked Meat Samples” and “Metabolic Profiling of Spiked Meat
Samples Using GC-MS”, respectively).

For process validation, beef samples were screened for the
presence of pathogen of interest prior to any further experiments.
This was done by enriching the minced beef sample for 24 h in a
selective enrichment broth, followed by isolation on pathogen-
specific chromogenic agar. Only clean food samples (i.e., those
without the pathogen of interest) were used in subsequent
experiments.

MALDI-ToF Analysis of Spiked Meat
Samples
To investigate the ability of MALDI-ToF MS to identify
bacteria from selective enrichment broth, pilot experiments were
performed with different media. The most appropriate broth was
used for subsequent experiments.

1. For selective enrichment of L. monocytogenes, OBL broth was
used according to the method described previously (Jadhav
et al., 2014, 2019).

2. For selective enrichment of S. enterica, OBS, RVSP and
MKTTn broths were used. MKTTn broth was used for further
experiments on S. enterica.

3. For selective enrichment of E. coli O157:H7, EC medium,
EC-Mug and TSBn were used. TSBn was used for further
experiments on E. coli O157: H7.

For detection of L. monocytogenes, our previously described
30 h detection scheme (Jadhav et al., 2014) was used. Briefly, a
primary enrichment of the spiked meat was performed in OBL
broth for 24 h which was followed by a secondary enrichment
in OBL for an additional 6 h. Aliquots (1 mL) of the selective
enrichment broths were taken at different sampling times for
analysis using MALDI-ToF MS.

For detection of S. enterica, a single enrichment was
performed in MKTTn broth and the broth was sampled at 12
and 18 h. Aliquots (1 mL) of the selective enrichment broths
were taken at different sampling times for analysis using MALDI-
ToF MS.

In the case of E. coli O157:H7, since no single enrichment
broth yielded consistent identification, a primary enrichment
of the spiked meat was performed in TSBn and 1 mL aliquots
were analyzed using MALDI-ToF MS after 12, 18, and 24 h of
incubation. Since consistent identifications could not be achieved
for any of these conditions, a different scheme was developed.
This involved selective enrichment in TSBn for 6 h which was
followed by incubation on Rainbow agar for a further 18 h
(37◦C). Individual colonies showing characteristic morphologies
of E. coli O157:H7 (as per manufacturer’s instructions) were
analyzed using MALDI-ToF MS.

Sample Processing for MALDI-ToF MS
The broth aliquots taken for MALDI-ToF MS analysis were
processed as per the protocol previously reported (Jadhav et al.,
2014). In the case of E. coli O157:H7, individual colonies were
spotted on the MALDI target plate in triplicate and overlaid with
1 µL CHCA matrix solution. The spots were allowed to air dry
prior to analysis.

Evaluation of Profiles Using MALDI-ToF MS
Mass spectral peak lists for the test samples were obtained in
the mass range of 2 to 20 kDa using the Launchpad software
(version 2.9, Shimadzu) and exported to the SARAMIS database
(version 4.10) for identification (Jadhav et al., 2014, 2015).
The identification in SARAMIS is based on a pattern-matching
algorithm wherein the test spectra exported are compared with
“SuperSpectra” in the database, resulting in the identification with
a confidence score ranging from 75 to 99.9%. In the current study,
since well-characterized isolates were used, the identification
at the genus or species level was considered as a confirmed
identification for confidence scores ≥75%.

When a test spectrum does not find a match to any of
the SuperSpectra in the database, occasionally the system uses
an in-built functionality to find the closest match to the
reference spectra which is referred to as the “comparison”
result here. A “comparison” result is a reliable match but not
a confirmed identification if the test spectra matches to one
or more spectral profiles from a single genus/species in the
database. A comparison result can be obtained for confidence
scores >70%.

Metabolic Profiling of Spiked Meat
Samples Using GC-MS
Spiking experiments were performed as described in
Section“Spiking Procedure”. OBL broth for L. monocytogenes,
MKTTn broth for S. enterica and TSBn broth for E. coli O157:H7
were used to enrich the spiked meat samples (10 cfu/mL of
final enrichment broth). In the case of L. monocytogenes, the
enrichment broth was sampled for GC-MS analysis after 18 and
24 h of incubation (37◦C). After 24 h of incubation, 1 mL of
the enrichment broth was transferred to 9 mL of sterile OBL.
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This secondary enrichment broth was sampled for GC-MS
analysis after a further 6 h of incubation. For experiments with
S. enterica and E. coli O157:H7, broths were sampled after 12,
18, and 24 h of incubation (42◦C for MKTTn and 41◦C for
TSBn). Aliquots (5 mL) were taken at each sampling point. The
non-spiked control samples were sampled simultaneously for
GC-MS analysis.

Sample Processing for GC-MS
Samples for GC-MS were processed to extract metabolites using
the protocol given by Ng et al. (2012) with some modifications.
Briefly, approximately 40–50 mg of the freeze-dried sample
was used for metabolite extraction. Cold absolute methanol
(1 mL, HPLC grade, ScharLab, Sentemanat, Spain) containing
13C stearic acid (20 µg/mL, Sigma-Aldrich, NSW, Australia)
and 13C sorbitol (20 µg/mL, HPLC grade, Sigma-Aldrich, NSW,
Australia) as internal standards were added to the dried sample.
The samples were vortexed for 1 min and centrifuged at 573 g
for 15 min at 4◦C. The extract (50 µL) was dried in an RVC
2-18 CD plus rotational vacuum concentrator (Martin Christ
Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany)
at 210 g at 40◦C. Samples were derivatized using the protocol
described by Karpe et al. (2015). The derivatized sample was
transferred to a glass vial with a salinized insert for further
analysis by GC-MS.

GC-MS Analysis
An Agilent 6890 GC oven coupled with a single-quadrupole
5977A MSD (Agilent Technologies, Australia) was used for the
GC-MS analysis (Jadhav et al., 2019). Five experimental replicates
of independent samples were analyzed for all conditions.

Chemometric Analysis of GC-MS Data
The GC-MS data were initially normalized using the internal
standard and then analyzed using multivariate data analysis
software SIMCA (version 14.1, MKS Umetrics, Sweden). Initially,

principal component analysis (PCA) was undertaken, which is an
unsupervised approach to find statistically significant differences
between datasets. PCA was followed by partial least square
discriminate analysis (PLS-DA). PLS-DA is a supervised model
that is a regression extension of PCA that takes advantage
of metabolite class information, retention time and relative
intensity in order to maximize the statistical discrimination
between groups of observations, i.e., spiked and control beef
samples in this case. To determine the validity of the PCA
and PLS-DA models, R2X, R2Y, and Q2 values were considered.
The R2X and R2Y values define a variation between X and
Y variables of various components in the sample set and
Q2 gives predictability of the model (Azizan et al., 2012). In
addition, volcano plots were generated using univariate statistical
tools (MetaboAnalyst, version 3.0) (Xia et al., 2015; Xia and
Wishart, 2016). Volcano plots assist in quick dissemination and
identification of statistically significant metabolites based on
metabolite fold changes (ratio of metabolites across control and
spiked samples) and FDR adjusted p-values.

RESULTS

Pathogen Detection From Selective
Enrichment Broth Using MALDI-ToF MS
L. monocytogenes and S. enterica were directly detected from
selective enrichment broths after specified time intervals. Based
on our previous findings, OBL was used for enrichment of
L. monocytogenes. To identify the most appropriate media for
the detection of S. enterica using MALDI-ToF MS, OBS, RVSP,
and MKTTn media (without beef samples) were evaluated.
Poor identification scores were obtained for all broths (data
not shown). MKTTn was the only medium that produced
species-level identification, albeit with low confidence score.
Table 1 summarizes the results obtained for direct detection of

TABLE 1 | Detection of pathogens directly from selective enrichment broth containing spiked minced beef sample using MALDI-ToF MS.

Pathogen of interest Spiking load (cfu/mL) Period of incubation (h) Level of identification MALDI-ToF MS identification

L. monocytogenes1 1 24 Genus Listeria

30 Genus Listeria

10 24 Genus Listeria

30 Species L. monocytogenes

S. enterica2 1 12 ND S. enterica∗

18 Species S. enterica

10 12 ND S. enterica∗

18 Species S. enterica

E. coli3 1 12 ND No ID#

18 ND No ID#

10 12 ND No ID#

18 ND No ID#

1Selective enrichment broth: OBL; 2selective enrichment broth: MKTTn; 3selective enrichment broth: TSBn; ∗ indicates that the sample produced a “comparison” result
(The SARAMIS R© database only provides an identification above 75% confidence scores. Using an in-built functionality, one can find the closest match to the reference
spectra which is referred to as the “comparison” result here. A “comparison” result can be obtained at confidence scores above 70%). # indicates that the sample
produced inconsistent identifications, occasionally 77–80% confidence scores were obtained while No Identification (No ID) was recorded on other occasions; ND: no
detection.
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L. monocytogenes and S. enterica from spiked beef samples at
various periods of incubation.

The results in Table 1 show that a genus-level identification of
L. monocytogenes was achieved for all spiked samples irrespective
of initial spiking load and period of incubation. Species-level
identification was obtained only when the beef sample was
spiked at a higher spiking load (10 cfu/mL) after a two-
step 30 h incubation. In case of S. enterica, a valid species-
level identification was achieved only after 18 h of incubation
(Table 1). A result is considered “valid” when the confidence
score of identification is above 75%. However, a “comparison”
result identified presence of S. enterica at an initial spiking load
of 10 cfu/mL after a 12 h incubation period.

For the detection of E. coli O157: H7, three selective
enrichment broths, namely EC, EC-mug and TSBn, were
evaluated. None of these media yielded consistent identification.
Similarly, no identifications were obtained from mass spectra
generated from the sample cultured on EC medium. Spectra
obtained from samples cultured on EC-Mug and TSBn gave
inconsistent identifications, albeit at low confidence values.
Despite these results, TSBn was used for further experiments
on E. coli due to its wide use in several food standard methods
such as EN ISO and FDA BAM methods (British Standards
Institution, 2001; Feng et al., 2002, 2011) for identification of
E. coli O157: H7.

An alternate scheme of detection of E. coli O157:H7 from
beef samples was proposed in the current study. The proposed
scheme includes a 6 h enrichment of the spiked beef sample
in TSBn at 41◦C, followed by incubation on a chromogenic
culture medium, such as Rainbow agar, for another 18 h. Rainbow
agar supplemented with tellurite gives extra selectivity for E. coli
O157:H7 (Manafi and Kremsmaier, 2001). The typical black gray
colonies obtained for E. coli O157:H7 were then analyzed using
the direct spotting method. Positive identifications were obtained
for the pathogen using this 24 h detection scheme. In the case
of a naturally contaminated meat sample, further confirmation
of the presence of the Shiga toxin gene would be required using
molecular methods.

Metabolomic Profiling of Pathogens
Using GC-MS
Untargeted metabolomic profiling was performed on control and
spiked beef samples collected at various incubation periods. The
aim of this exercise was to determine the shortest incubation time
required for discriminating the metabolome of spiked samples
from that of control samples. The pathogen metabolizes both
the substrate (meat) and the broth and, therefore, bacterial
metabolites were not separated from the meat and enrichment
broth metabolites, i.e., the “system metabolome.” Overall, 501
metabolite features were observed across all samples investigated
in this study. A metabolite feature is the disaggregation of each
metabolite based on retention time and mass fragment data and
does not necessarily represents one metabolite (Beale et al., 2014).
A total of 104 metabolites for L. monocytogenes contaminated
beef samples, 92 metabolites for S. enterica contaminated beef
samples and 104 metabolites for E. coli O157:H7 contaminated

FIGURE 1 | Characterization of total “identified” metabolites. A total of 104
metabolites for Listeria monocytogenes, 92 metabolites for S. enterica and
104 metabolites for E. coli O157:H7 were identified (see Supplementary
Information for list of all identified metabolites).

beef samples were identified. Figure 1 shows a Venn diagram that
illustrates the total “identified” metabolites.

PCA analysis of inoculated pathogens in beef samples
(enriched in selective enrichment medium) showed reasonable
discrimination between the spiked and control samples (see
Supplementary Information). Due to the unsupervised nature
of the data, PCA was observed as a less satisfactory method to
discriminate between the metabolite distributions. To strengthen
the discrimination between the spiked and control beef samples,
PLS-DA analysis was performed on the PCA scatter plot.
Figures 2–4 illustrate the PLS-DA scatter plots of inoculated
L. monocytogenes, E. coli O157:H7, and S. enterica, respectively,
in beef samples. Statistically significant discrimination between
the control and spiked samples was obtained at 24 h of
incubation for L. monocytogenes (Figure 2), 12 h for E. coli
O157:H7 (Figure 3) and 18 h for S. enterica (Figure 4).
The Q2 value for all PLS-DA models were above 90%
which is indicative of a model that reasonably fits the data
and has a good predictive capability (>70%) (Beale et al.,
2017).

Figure 5 illustrates the volcano plots of inoculated pathogens
in beef samples (against control beef samples). Tables 2–4 list
the top ten metabolites for beef samples contaminated with
L. monocytogenes, S. enterica, and E. coli O157:H7, respectively,
that were identified from the volcano plots.

In case of L. monocytogenes, Figures 2, 5A illustrate the
PLS DA and volcano plots of the inoculated L. monocytogenes
minced beef samples, respectively. A total of 104 metabolites
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FIGURE 2 | PLS-DA scatter plots of L. monocytogenes inoculated in enriched selective media containing beef sample. (A) PLS-DA Score scatter plot
(R2X = 91.5%, R2Y = 100%, Q2 = 91.7%). Green circles (•) indicate data obtained from control beef samples and red stars (F) indicate data from spiked beef
samples after 24 h of incubation for L. monocytogenes. The PLS-DA ellipse (solid line) represents the 95% confidence interval. (B) PLS-DA Loading scatter plot.

were identified across all samples grown in OBL; however,
only a small subset, i.e., 10 metabolites, were identified as
statistically significant (p ≤ 0.05). Table 2 lists the top ten putative
biomarker metabolites that resulted in sample discrimination. It
is noteworthy that sample discrimination using metabolomics
was achieved within 24 h as compared to MALDI-ToF MS
which required 30 h for high confidence discrimination.

Significantly higher levels (fold change ≥ 2, p ≤ 0.05) of 2,6-
dihydroxybenzoic acid (fold change ∼77.5), guanosine (fold
change ∼15.6), 3,4-dihydroxymadelic acid (fold change ∼15.2),
adenine (fold change ∼6.9), inulobiose (fold change ∼4.2) and
erythro-dihydrosphingosine-1-phosphate (fold change ∼2.3)
were found in spiked beef samples as compared to control
samples. In contrast, the levels of glucose (fold change ∼0.16),
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FIGURE 3 | PLS-DA scatter plots of S. enterica inoculated in enriched selective media containing beef sample. (A) PLS-DA Score scatter plot (R2X = 83.5%,
R2Y = 100%, Q2 = 97.8%). Green circles (•) indicate data obtained from control beef samples and red stars (F) indicate data from spiked beef samples after 18 h of
incubation for S. enterica. The PLS-DA ellipse (solid line) represents the 95% confidence interval. (B) PLS-DA Loading scatter plot.

arabinose (fold change ∼0.21), cadaverine (fold change ∼0.37)
and uracil (fold change ∼0.40) were reduced in spiked beef
samples. These metabolites could serve as putative biomarkers
and form the basis for developing a targeted metabolomics
approach for rapid pathogen detection from minced beef
samples.

In the case of S. enterica, a total of 92 metabolites
were identified across all samples enriched in MKTTn.

Table 3 lists the top ten putative biomarker metabolites that
resulted in sample discrimination. A total of 40 significant
putative biomarker metabolites were identified in the inoculated
beef samples. The levels of trehalose (fold change ∼51.8),
nonanoic acid (fold change ∼29.7), glucose (fold change
∼10.2) and homocysteine (fold change ∼7.0) in spiked
beef samples were significantly higher (fold change ≥ 2,
p ≤ 0.05) than those found in un-inoculated control samples.
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FIGURE 4 | PLS-DA scatter plots of E. coli O157:H7 inoculated in enriched selective media containing beef sample. (A) PLS-DA Score scatter plot (R2X = 82.8%,
R2Y = 100%, Q2 = 99.3%). Green circles (•) indicate data obtained from control beef samples and red stars (F) indicate data from spiked beef samples after 12 h of
incubation for E. coli O157:H7. The PLS-DA ellipse (solid line) represents the 95% confidence interval. (B) PLS-DA Loading scatter plot.

In contrast, levels of other putative metabolites such as
succinic acid (fold change ∼0.04), valine (fold change ∼0.12),
butanedioic acid (fold change ∼0.13) and norleucine (fold
change ∼0.14) were reduced compared to their control
counterparts.

In the case of E. coli O157:H7, A total of 104 metabolites were
identified across all samples enriched in TSBn and 43 of these
were found to be statistically significant (p ≤ 0.05). Table 4 lists

the top ten putative biomarker metabolites that resulted in sample
discrimination. There was a significant increase (fold change ≥ 2,
p ≤ 0.05) in the levels of glucose (fold change ∼97.6) with three
unknown compounds extracted from inoculated beef samples.
A targeted metabolomics study would be useful in identifying
the unknown metabolites. Levels of other putative biomarker
metabolites, such as 6-hydroxymelatonin (fold change ∼0.01),
sophorose (fold change ∼0.02), aspartic acid (fold change ∼0.03),
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butanedioic acid (fold change ∼0.03), uridine (fold change
∼0.06) and cadaverine (fold change ∼0.07), were significantly
reduced (p ≤ 0.05).

Figure 6 is a Venn diagram that illustrates the number of
significant metabolites that are “similar” and “unique” to the
investigated pathogens of interest.

DISCUSSION

Conventional methods of pathogen detection are still widely
used in food laboratories. These methods rely heavily on a range
of selective media and are known to be time-consuming and
cumbersome (Li and Zhu, 2017). The approaches suggested in
the current study have the ability to transform routine diagnostics
into a more rapid and sensitive process.

TABLE 2 | Identified significant putative biomarker metabolites (p-value < 0.05) in
beef sample enriched in OBL and inoculated with L. monocytogenes.

Number Metabolite1 Fold change∗ p-value

1 2,6-Dihydroxybenzoic acid 77.4640 5.60e−06

2 Guanosine 15.5800 1.13e−05

3 3,4-dihydroxymandelic acid 15.1690 5.82e−03

4 Adenine 6.8596 6.16e−04

5 Inulobiose 4.2365 8.35e−04

6 Erythro-Dihydrosphingosine-1-
phosphate

2.3200 2.70e−02

7 Glucose 0.1568 1.99e−04

8 Arabinose 0.2140 2.13e−02

9 Cadaverine 0.3711 2.40e−02

10 Uracil 0.4002 4.64e−02

1Refer to Supplementary Table S1 for full list of metabolites, ∗fold change = 2.0
represents an increase in metabolite concentration, while lower values (anything
below FC = 1) represents decrease. An increase of FC = 2 is equivalent to a
decrease of FC = 0.5 [on both sides of (0, 0)] on the graph. The metabolites of
FC < 0.5 indicate the depleted metabolites and are considered here.

TABLE 3 | Identified significant putative biomarker metabolites (p-value < 0.05) in
beef sample enriched in MKTTn and inoculated with S. enterica.

Number Metabolite2 Fold change∗ p-value

1 Trehalose 51.8240 3.10e−05

2 Nonanoic acid 29.6590 7.34e−05

3 Unknown 1 20.2530 1.96e−03

4 Unknown 2 12.1140 1.39e−04

5 Glucose 10.2130 1.92e−04

6 Homocysteine 7.0323 2.43e−04

7 Succinic acid 0.0357 8.05e−08

8 Valine 0.1158 2.88e−03

9 Butanedioic acid 0.1250 3.03e−03

10 Norleucine 0.1424 1.58e−02

2Refer to Supplementary Table S2 for full list of metabolites, ∗fold change = 2.0
represents an increase in metabolite concentration, while lower values (anything
below FC = 1) represents decrease. An increase of FC = 2 is equivalent to a
decrease of FC = 0.5 [on both sides of (0, 0)] on the graph. The metabolites of
FC < 0.5 indicate the depleted metabolites and are considered here.

Previous studies performed in our laboratory indicate that
identification of bacteria from solid culture media using MALDI-
ToF MS is a rapid method of detection (Jadhav et al., 2014, 2015).
Direct detection of bacteria from selective enrichment broth may
attract particular interest given that it may further reduce the time
required for testing. The reduced time required for testing will
not only apply to food samples contaminated with pathogens but
will also apply to pathogen-free food samples, thereby reducing
the overall testing time. From our findings, direct detection
from selective enrichment broth promises to reduce this time to
under 30 h.

Successful identification at genus-level with MALDI-ToF MS
was not achieved for beef samples spiked with L. monocytogenes
at an initial spiking load of 1 cfu/mL after 24 h or 30 h and
at 10 cfu/mL after 24 h. A two-step enrichment was required
in OBL broth for successful species-level identification at a
spiking load of 10 cfu/mL. In the case of S. enterica, only
“comparison” results produced an identification after 12 h of
incubation with the version of the SARAMIS R© database used
here. These results are consistent with our previous findings
on complex foods containing other inherent microbiota (Jadhav
et al., 2014). The presence of interfering spectral peaks due to
media and meat proteins in the enrichment broth may interfere
with the algorithm used for speciation. Thus, a secondary
enrichment is deemed necessary to eliminate these interfering
peaks. This may explain the inability of SARAMIS to speciate
confidently after 30 h from OBL at a lower initial load. Similar
findings were reported by Sparbier et al. (2012), where a
lower identification rate for Salmonella sp. was observed due
to the presence of interfering fecal proteins in Salmonella-
specific enrichment broth. In the case of E. coli isolates,
none of the selective enrichment broths tested was able to
identify the O157:H7 strain with a high confidence score.
Therefore, a two-step scheme was considered which involved
a 6 h incubation in TSBn followed by an 18 h plating on

TABLE 4 | Identified significant putative biomarker metabolites (fold change limit of
2, p-value < 0.05) in beef sample enriched in TSBn and inoculated with E. coli
O157:H7.

Number Metabolite3 Fold change∗ p-value

1 Glucose 97.5820 5.55e−03

2 Unknown 3 38.8170 1.76e−05

3 Unknown 4 32.1110 1.52e−04

4 Unknown 1 21.7020 5.07e−07

5 6-Hydroxymelatonin 0.0144 1.52e−08

6 Sophorose 0.0179 4.13e−07

7 Aspartic acid 0.0309 3.74e−10

8 Butanedioic acid 0.0341 4.05e−10

9 Uridine 0.0560 3.31e−02

10 Cadaverine 0.0662 3.58e−08

3Refer to Supplementary Table S3 for full list of metabolites, ∗fold change = 2.0
represents an increase in metabolite concentration, while lower values (anything
below FC = 1) represents decrease. An increase of FC = 2 is equivalent to a
decrease of FC = 0.5 [on both sides of (0, 0)] on the graph. The metabolites of
FC < 0.5 indicate the depleted metabolites and are considered here.
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FIGURE 5 | Continued
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FIGURE 5 | Volcano plots of (A) L. monocytogenes, (B) S. enterica and (C) E. coli O157:H7 enriched in selective media containing the minced beef samples. Green
circles (•) and red stars (F) indicate statistically significant putative biomarker metabolites found in control beef samples and spiked meat samples, respectively, after
specified period of incubation (For L. monocytogenes: 24 h; for S. enterica: 18 h and E. coli O157:H7: 12 h). A few statistically significant metabolites in spiked
samples are labeled in the volcano plots (see Tables 2–4 for top ten statistically significant metabolites). Please refer to Supplementary Information for list of other
statistically significant metabolites. Blue open circles (◦) indicate metabolites that are not statistically significant for the discrimination
(see Supplementary Information). The dashed lines on the volcano plot represent a p-value of 0.05 (Y-axis) and a fold change of 2 (X-axis).

FIGURE 6 | Characterization of “similar” and “unique” metabolites that are statistically significant. Top ten metabolites identified in Tables 2–4 have been used to
construct the Venn diagram.

Rainbow agar. The proposed detection schemes will have to
be validated using naturally contaminated meat samples which
may contain various inherent microbiota and will be the subject
of future research. Overall, with some customization of the
database, MALDI-ToF MS seems to be a plausible option
for detecting the three meat pathogens investigated in this
study.

The proteomics-based approach was complemented with a
metabolomics-based approach. Since a whole-cell metabolome
approach was used, most of the identified metabolites were
sugars, fatty acids, amino acids, nucleobases and organic
acids (Figure 1). Secondary metabolites were also observed.
Using chemometrics, putative biomarker metabolites were
identified that differentiated an artificially spiked meat sample
from a control meat sample. These biomarkers could be
useful in developing rapid diagnostic tests for foodborne
pathogens.

In case of L. monocytogenes, 10 statistically significant
metabolites were identified (Table 2). Some of these, such as
2,6-dihydroxybenzoic acid and 3,4-dihydroxymadelic acid, are
common compounds involved in aminobenzoate degradation
pathways (sourced from KEGG database) (Kanehisa and Goto,
2000); however, the actual amount synthesized may vary in
different bacteria. Common compounds such as amino acids
and cadaverine (generally produced due to putrefaction of

animal tissue) were also found in our study, which was in
accordance with Cevallos-Cevallos et al. (2011). In comparison
with the proteomics approach that required 30 h for a confirmed
identification of Listeria, the metabolomics approach only
required 24 h.

For S. enterica, 40 significantly changing metabolites were
observed between the control and inoculated samples. While
no single putative biomarker was found to be present in
the inoculated samples and absent in the control samples,
the levels of sugars, such as trehalose and glucose, were
found to be significantly different between the two groups.
Two unknown compounds were also found in inoculated beef
samples at significantly higher levels (p ≤ 0.05). A targeted
metabolomics protocol using LC-MS or NMR would be required
to identity these unknown compounds. The putative biomarker
metabolites were identified in 18 h, comparable with MALDI-
ToF MS.

In the case of E. coli O157:H7, 43 metabolites were
found to be significantly different between the control and
inoculated samples. Unlike MALDI-ToF MS analysis, a different
metabolomics detection scheme was not required for E. coli
O157:H7. Selective enrichment of E. coli O157:H7 in TSBn for
12 h, without the requirement of a secondary enrichment, was
sufficient for GC-MS based sample differentiation. The levels of
sugars such as sophorose and glucose and amino acids such as
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L-aspartic acid were found to be significantly different between
the two groups. Other common compounds, such as cadaverine,
butanedioic acid, and uridine were also found to be significantly
different between the two groups. Three unknown compounds
were found in inoculated beef samples at significantly higher
levels (p ≤ 0.05).

Figure 6 shows that glucose is a significant metabolite
identified in all samples irrespective of contaminating pathogen.
Whilst levels of glucose increased significantly in S. enterica
(fold change ∼10.2) and E. coli O157:H7 (fold change
∼97.6), there was a drastic decrease of glucose levels seen in
L. monocytogenes (fold change ∼0.15). Cadaverine was found
in samples contaminated with L. monocytogenes and E. coli
O157:H7. Butanedioic acid and an unknown compound were
found in samples contaminated with S. enterica and E. coli
O157:H7. There are several other significant metabolites that
are unique to the investigated pathogens of interest (see list of
compounds in inset, Figure 6). All these results indicate that a
single biomarker metabolite exclusive to a pathogen (qualitative
analysis) would be difficult to find. However, by performing
a targeted metabolomics study, we can use a combination of
compounds to develop rapid diagnostic tests for these pathogens.
LC-MS investigation may assist in finding additional biomarker
metabolites that can prove to be useful for rapid pathogen
detection and will be the subject of future research.

While both the proteomics and metabolomics approaches
were found to be suitable for detecting the three pathogens, the
authors would like to highlight the importance of controlling
the testing conditions in order to generate reproducible results.
This includes the precise testing times (due to the dynamically
changing metabolites) and, more importantly, standardization
of selective media (as observed in the proteomics approach),
incubation conditions and sample processing.

CONCLUSION

In summary, MALDI-ToF MS proved to be a rapid and reliable
method to detect the target pathogens viz. L. monocytogenes,

S. enterica, and E. coli O157:H7 from meat samples. Direct
detection schemes for L. monocytogenes and S. enterica isolates
from selective enrichment broth (avoiding the need for an
additional step of culturing on solid media) using MALDI-
ToF MS were proposed. The proposed methodologies can
significantly reduce the time required for detecting these three
pathogens. The proposed methodology will have to be further
validated by testing naturally contaminated meat samples.
Another mass spectrometry-based platform viz. GC-MS was used
to identify potential biomarker metabolites from the complex
matrix (beef samples) to identify contamination by the target
pathogens. Since an untargeted metabolomics approach was used
in this study, a large number of unknown metabolites were found
with a few being statistically significant. A targeted approach will
be performed in future studies to assist in the development of
rapid diagnostic tests for these important meat pathogens.
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