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The Gulf of Mexico (GoM) is a dynamic marine ecosystem influenced by multiple natural
and anthropogenic processes and inputs, such as the intrusion of warm oligotrophic
water via the Loop Current, freshwater and nutrient input by the Mississippi River,
and hydrocarbon inputs via natural seeps and industrial spills. Microbial plankton
communities are important to pelagic food webs including in the GoM but understanding
the drivers of the natural dynamics of these passively distributed microorganisms can
be challenging in such a large and heterogeneous system. As part of the DEEPEND
consortium, we applied high throughput 16S rRNA sequencing to investigate the spatial
and temporal dynamics of pelagic microbial plankton related to several environmental
conditions during two offshore cruises in 2015. Our results show dramatic community
shifts across depths, especially between photic and aphotic zones. Though we only
have two time points within a single year, observed temporal shifts in microbial plankton
communities were restricted to the seasonally influenced epipelagic zone (0-200 m), and
appear mainly driven by changes in temperature. Environmental selection in microbial
plankton communities was depth-specific, with variables such as turbidity, salinity, and
abundance of photosynthetic taxa strongly correlating with community structure in the
epipelagic zone, while variables such as oxygen and specific nutrient concentrations
were correlated with commmunity structure at deeper depths.

Keywords: Gulf of Mexico, microbial plankton, 16S rRNA, pelagic, DEEPEND

INTRODUCTION

Understanding the ecology, taxonomy and distribution of diverse marine microorganisms
(bacteria, fungi, protozoans, and viruses) remains a challenging yet important task. The vastness
of the oceans creates highly variable environmental conditions (e.g., aphotic, high/low convection)
and diverse microbial niches in three-dimensional space (e.g., marine snow to deep sea
hydrothermal vents). Marine microbes play important roles in global biogeochemical cycles
(nitrogen fixation, photosynthesis) including the marine microbial loop (Azaml et al., 1983;
Giovannoni et al., 1996; Fuhrman, 2009). Due to their intimate connection with the surrounding
environment, small changes in abiotic factors such as water temperature, salinity, irradiance,
oxygen and oceanic currents can influence microbial community structure and membership
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(Whitman et al., 1998; King et al., 2013; Sunagawa et al., 2015;
Mason et al., 2016; Djurhuus et al., 2017), which may have
cascading effects into higher trophic levels. These forces act
in varying and complex combinations to structure microbial
community composition and function, and thereby driving
the dynamics of crucial members of this vast and important
ecosystem in the world ocean.

The Gulf of Mexico (GoM) is a dynamic and complex
environment whose formation and geologic history helps shape
its present-day biology. The GoM basin is relatively deep
(>3000 m) with shallow sills that connect the GoM to the
Caribbean Sea (Yucatan sill: ~2000 m) and Atlantic Ocean
(Florida sill: ~700 m), and rich hydrocarbon resources (Wilhelm
and Ewing, 1972; Salvador, 1991). Modern-day hydrodynamics
play a big role in the uniqueness of the GoM ecosystem. Variable
mesoscale features powered by the Loop Current dominate
upper level (0-1200 m) seawater dynamics in the GoM (Sturges
et al., 1993; Welsh and Inoue, 2000; Hamilton and Lugo-
Fernandez, 2001). This feature can lead to the formation of
persistent (weeks to months), anti-cyclonic, down-welling eddies
composed of warm oligotrophic Caribbean water, leads to a
high-degree of vertical mixing causing a well-oxygenated oxygen
minimum zone, and may be an important driver of plankton
and nekton dispersal as well as providing distinct pelagic habitat
(Olson, 1991; Rabalais and Turner, 2001; Rivas et al., 2005;
Paulmier and Ruiz-Pino, 2008; Sturges and Kenyon, 2008; Chang
et al, 2011; Lindo-Atichati et al, 2012; Wells et al., 2017).
Additionally, riverine input from the Mississippi River introduces
massive amounts of fresh water laden with agricultural nutrient
runoff and terrigenous sediment from the central United States
(Rabalais and Turner, 2001; Mason et al., 2016).

The GoM represents one of the most biologically diverse
ecoregions (plankton and nekton) among world oceans (Joye
et al., 2016; Sutton et al., 2017). The confluence of tropical and
temperate climate, as well as mesoscale and terrestrial features,
likely contribute to the unique, speciose (nekton) nature of
the GoM (Bangma and Haedrich, 2008; Fisher et al., 2016;
Sutton et al., 2017). With the GoM’s complex and economically
important ecosystem (Adams et al., 2004), understanding its
dynamics is crucial, especially in the context of impacts such
as massive freshwater and seasonal nutrient inputs by the
Mississippi River (Rabalais and Turner, 2001; Gillies et al.,
2015), or the massive Deepwater Horizon oil spill (DWHOS)
and subsequent unprecedented application of dispersant during
cleanup (Joye et al., 2016). DWHOS caused massive shifts in
microbial plankton leading to a shift in the community to one
dominated by taxa that metabolize a variety of hydrocarbons
(Redmond and Valentine, 2012; Rivers et al., 2013; Joye et al,,
2014). However, the input of large volumes of high nutrient,
sediment laden freshwater by the Mississippi River is a more
frequent perturbation, which can lead to dramatic shifts in
microbial plankton communities and to conditions such as
hypoxia that have dramatic effects on coastal marine habitats
(Rabalais et al., 1998, 2007; Rabalais and Turner, 2001; Gillies
et al, 2015). Due to rapid transport by mesoscale features
(e.g., the Loop Current), this plume can extend hundreds
of kilometers offshore into the oceanic pelagic environment

(Ortner et al., 1995), which may extend the negative effects of this
perturbation (e.g., habitat compression) into the offshore pelagic
environment (Diaz and Rosenberg, 2008).

At present, we seek to understand the physical and biological
dynamics of the GoM ecosystem in the context of microbial
plankton communities. Although recent studies have enriched
the knowledge of microbial plankton profiles in the GoM
(e.g., King et al., 2013; Joye et al., 2014; Mason et al., 2016),
there is still much to be learned about this unique ecosystem.
Stemming from the DWHOS, the DEEPEND consortium, has
initiated more extensive sampling of the GoM oceanic-pelagic
environment to include capturing of epipelagic, mesopelagic
and bathypelagic communities. This broad scope moves beyond
single or a few localized sites (e.g., DWH well site) and has a
dynamic component with collections targeting oceanic features
such as the Loop Current, Mississippi River plume (Mason
et al., 2016), intermediate gradients between the Loop Current
and Mississippi River, and assessing temporal variation. This
research was conducted as part of the only consortium focused
exclusively on the oceanic pelagic ecosystem, from surface to
bathypelagic depths. By applying high throughput 16S rRNA
gene sequencing technologies and modern analytical methods we
provide a profile of the “natural variability” envelope in microbial
plankton communities of the offshore pelagic ecosystem.

MATERIALS AND METHODS

Seawater samples were collected in Niskin bottles deployed on
a CTD during two offshore cruises in 2015 in the GoM aboard
the RV Point Sur. The first 2015 cruise (DPO1) occurred May
1-8 and sampled a total of 5 stations, and the second cruise
(DP02) occurred August 8-22 and sampled 11 stations (Figure 1
and Supplementary Table S1). These stations are located at
every 0.5-degree latitude and longitude in the northern GoM.
At each station we collected microbial plankton communities
from a maximum of four discrete depths: Ocean surface
(SRF; 0-15 m), deep Chlorophyll 2 maximum (DCM; 40-
110 m), Oxygen minimum zone (MESO; 450-750 m), and at
approximately 1500 m (BATHY), representing three distinct
pelagic depth zones (Epipelagic, Mesopelagic, and Bathypelagic).
Sampling in the current study is summarized in Supplementary
Table S1. During seawater collection, environmental data were
simultaneously collected with instruments onboard the CTD.
With these instruments, we measured depth (m), temperature
(°C), chlorophyll a fluorescence (mg/m3), salinity (ppt),
turbidity (beam c¢ p), chromophoric dissolved organic matter
(CDOM; 400 nm absorption/m), seawater density (o), and O,
concentration (ml/L).

One liter of collected seawater was filtered through sterile
0.45 pwm filter membranes (Daigger) under low pressure,
immediately after CTD retrieval (n = 3/station/depth). After
filtration, filter membranes were frozen until laboratory analysis
at Nova Southeastern University (NSU). At NSU, DNA was
extracted from half of each filter membrane, and the remaining
half was archived at —80°C. Laboratory preparation and paired-
end sequencing of samples was conducted following published
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FIGURE 1 | Cruise tracks for DPO1 (A) and DP02 (B). White lines represent the cruise tracks. Black dots represent the sampling stations for each cruise. The
background image represents chlorophyll a concentration measured by MODIS aqua and downloaded using NASA's Worldview platform
(worldview.earthdata.nasa.gov). Red shades peak around 20 mg/m?3. Imagery is representative of conditions at the beginning of each cruise.

protocols from the Earth Microbiome Project (EMP; Gilbert
et al, 2014) and using the V4 primers 515F and 806R
(Supplementary Methods; Caporaso et al., 2010). At a subset
of depths and stations, the filtrate was preserved at 4°C in
clean amber bottles for nutrient analysis by the Southeast
Environmental Research Center (Miami FL): [Nitrate, (NO3™)
Nitrite (NO, %), Ammonium (NH4 ), Total dissolved Nitrogen
(TDN), Total dissolved Phosphorus (TDP), Soluble Reactive
Phosphorus (SRP), and Dissolved Organic Carbon (DOC);
Supplementary Table S1].

Initial bioinformatics processing was accomplished in QIIME
(Caporaso et al., 2010). Forward and reverse sequences for
all samples were paired and quality filtered (minimum read
length fraction > 0.75, maximum bad run length < 3,
maximum number of N characters = 0, quality score > 29),
followed by operational taxonomic unit (OTU) picking using the
default settings in the ‘pick_open_reference_otus.py’ script (see
giime.org/scripts for information on default settings). Taxonomy
was assigned to OTUs using the GreenGenes database (DeSantis
and Hugenholtz, 2006; Caporaso et al., 2010), and the SILVA
database was used as a secondary reference for OTU sequences
for instances when GreenGenes provided only limited taxonomic
resolution (Pruesse et al., 2012; Quast et al., 2013; Yilmaz et al.,
2014).

All statistical analysis was done in (R Core Team, 2016).
Analysis was conducted on two datasets: DP02 samples and a
temporal dataset from both cruises. Before analysis, singleton
and doubleton reads were removed along with OTUs found in
fewer than 5% of samples (n > 1 samples in DPOl; n > 6
samples in DP02). These pre-processing steps were done to
remove rare features and reduce noise in the data analysis. OTU
abundance was transformed to relative abundance (proportional
abundance of OTU in whole community) before proceeding
with analysis. Our initial analysis investigated differences in
community diversity (Inverse Simpson’s index), which assesses
community richness and evenness, phylogenetic diversity (Faith’s

PD), which measures the total branch length spanned by an
individual community (Faith, 1992), and beta-diversity (Bray-
Curtis dissimilarity), which analyzes differences in community
composition associated with the factors station, depth, and time
(cruise) using the R packages vegan and picante (Kembel et al,,
2010; Oksanen et al., 2017). Temporal variation was only assessed
at three stations (B175, B252, and B287) that were sampled during
both cruises in May (DP01) and August (DP02) 2015 to control
for potential spatial heterogeneity, but within-cruise variation
was assessed at all sampled stations in DP02. Diversity results
were checked for normal distribution and heteroskedasticity
before proceeding with parametric statistics. An analysis of
variance (ANOVA) was used to test for significant differences in
diversity and a Permuted multivariate ANOVA (PERMANOVA)
was used to assess the significance and effect size of station,
depth, and time on microbial community composition. A general
linear model (GLM) was used to test for the significant effects of
depth as a continuous factor on microbial community diversity
(Kembel et al., 2010; Simpson et al., 2016; Oksanen et al., 2017).
Analysis of environmental drivers of microbial community
composition was conducted using Canonical Correspondence
analysis (CCA) (Oksanen et al., 2017), which has previously been
used to investigate correlations among environmental variables
and Archaeal communities in the GoM (Tolar et al., 2013).
The tested environmental variables included depth, temperature,
salinity, chlorophyll a fluorescence (Chla), turbidity, CDOM,
oxygen, density, and nutrient data where available. The
ordiR2step forward selection model building function in vegan
(see Blanchet et al., 2008; Oksanen et al., 2017) was used to
determine the best combination of environmental variables to
explain microbial community composition. The output of this
function includes a list of selected variables plus the individual
and combined effect sizes (corrected explained variance) of each
variable. After each model was constructed, a variance inflation
test was performed using the vif.cca function in vegan. If variance
inflation was greater than 10 for any factor, redundant constraints
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were removed and the model building function was rerun. If
two variables were redundant by the vif.cca function, the variable
with the lower overall explained variance was removed. Due to
this process, all CCA models did not include all environmental
variables. The significance of model selected CCA axes was
tested using a permuted ANOVA (1000 permutations), and
the optimal set of environmental variables were determined
as the environmental factors that were both selected by the
model builder and displayed marginal axis significance. Turbidity
data was not collected for DP01, and due to an instrument
malfunction, Chla data was not collected for CTD09 in DP02.
Therefore, CTD09 was excluded from analysis that included Chla
effects.

RESULTS

A total of 164 samples were collected at 14 stations (SEAMAP
stations) during two cruises in May (1-8; DP01) and August
(8-21; DP02) of 2015 (Figure 1). DP0O1 in May 2015 was an
abbreviated cruise (8 days) and thus was only analyzed in the
context of temporal variation for stations sampled in both cruises.
From the raw set of 164 samples (29 from DP0Oland 135 from
DP02), 156 met quality control standards yielding 47,801 unique
operational taxonomic units (OTUs). Taxonomic classification
using the GreenGenes and SILVA databases revealed 52 phyla
and candidate phyla of Bacteria, Archaea, and photosynthetic
unicellular eukaryotes (detected via 16S rRNA sequences from
chloroplasts).

Microbial Plankton Dynamics in DP02

The pelagic environment in cruise DP02 (August 2015)
was characterized by a strong Loop Current that protruded
northward into the northern GoM during the cruise, and a
high outflow of the MS River (Figure 1 and Supplementary
Figure S1). These two features collided during the DP02 cruise
resulting in the transport of low salinity river water into the
oceanic pelagic environment (Supplementary Table S1 and
Supplementary Figure S1). The cruise track for DP02 was
designed to sample across these features and capture a diverse
set of environmental conditions. Thus, the dynamics of microbial
plankton communities are evaluated in the context of these
features, and the potentially unique environments that they
represent.

Community Diversity

Community diversity (OTU diversity) was strongly influenced
by pelagic depth zone, collection station, and the interaction
of these two factors (Table 1). Microbial plankton communities
on the surface had lower OTU diversity compared to other
depths. Phylogenetic diversity (PD) did not show a statistically
significant effect of pelagic depths zone. However, it did exhibit
a significant effect of collection station, and the interaction of
the two factors (Table 1). While pelagic depth zone significantly
affected microbial community diversity as a categorical factor,
absolute collection depth was only weakly correlated with
microbial community diversity (1/D; linear regression; df = 1,

131, F = 3.89, R? = 0.02, P = 0.05) and not significantly related
with phylogenetic diversity (PD; linear regression; df = 1,131,
F =1.44, R? = 0.01, P = 0.23; Supplementary Figure S2).

Community Composition

Across all samples in DP02, microbial plankton taxonomic
community composition (i.e., OTU beta diversity), exhibited
substantial variation across pelagic depth zones, stations, and the
interaction of these two factors (Table 1). We observed a similar
result when microbiome phylogenetics was also considered (i.e.,
Unifrac dissimilarity) with significant differences among stations,
pelagic depth zones, and the interaction of the two factors
(Table 1). The phylogenetic dissimilarity results indicate that
pelagic depth zone is strongly related to community composition
showing that individual depth zones are likely composed of
clusters of closely related taxa based on the mean nearest taxon
difference (MNTD). Taxonomic and phylogenetic dissimilarity
results both indicated distinct communities within each depth
zone (pairwise PERMANOVA; P = 0.001). Clear stratification by
depth zone was evident and accounted for most of the variation
among samples.

Across these depth zones, microbial plankton communities
exhibited major shifts in composition. SRF communities
contained a high proportion (relative abundance) of taxa
from groups such as (mean proportion £ standard error)
Prochlorococcus (1 OTU; 0.06 =+ 0.02), Synechococcus (2
OTUs; 0.06 £ 0.01), SAR86 (Gammaproteobacteria; 3 OTUs;
0.08 £ 0.01), Alphaproteobacteria (5 OTUs; 0.07 = 0.004),
and OCS155 (Actinobacteria; 2 OTUs; 0.05 =+ 0.003),

TABLE 1 | ANOVA and PERMANOVA results from DP0O2 microbial dynamics
statistical tests with independent variables shown.

Statistical F df R? P
test

Dataset/factors

DP02 microbial plankton dynamics

Community diversity 2-way

ANOVA
Pelagic depth zone 8.25 3 < 0.001
Station 5.39 10 < 0.001
Pelagic zone x station 2.85 19 < 0.001
Phylogenetic diversity 2-way

ANOVA
Pelagic depth zone 1.62 3 0.19
Station 337 10 < 0.001
Pelagic zone x station 2.87 19 < 0.001
Community composition PERMANOVA
Pelagic depth zone 101.66 3 0.55 0.001
Station 554 10 0.1 0.001
Pelagic zone x station 4.7 19 0.16 0.001
Phylogenetic composition PERMANOVA
Pelagic depth zone 459.43 3 0.85 0.001
Station 8.71 10 0.05 0.001
Pelagic zone x station 2.84 19 0.03 0.002

Variables included pelagic depth zone (Surface, Epipelagic, Mesopelagic, and
Bathypelagic) and station (collection station in DP02).
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Flavobacteriaceae (3 OTUs; 0.05 = 0.004), and Planctomycetes (1
OTU; 0.01 £ 0.002; Figure 2A and Supplementary Figure S3A).
DCM samples were composed of similar taxa in Prochlorococcus
(2 OTUs; 0.09 £ 0.01), Synechococcus (1 OTU; 0.05 + 0.01),
Gammaproteobacteria (2 OTUs; 0.04 £ 0.01), OCSI55
(Actinobacteria; 1 OTU; 0.03 =+ 0.003), Flavobacteriaceae
(1 OTU; 0.02 + 0.003), Cenarchaeaceae (1 OTU; 0.01 & 0.002),
and Acidimicrobiales (1 OTU; 0.01 % 0.002) groups, along with
eukaryotic phytoplankton (detected via chloroplast sequences)
in the groups Haptophyceae (1 OTU; 0.01 £ 0.002) and
Stramenopiles (Diatoms: 1 OTU; 0.01 £ 0.002; Supplementary
Figures S3A, S4A). MESO communities collected at the oxygen
minimum zone were highly divergent from shallower samples
and were dominated by Marine Group 1 Thaumarchaeota (6
OTUs; 0.18 £ 0.004), Marine Group 2 Euryarchaeota (1 OTUj;
0.01 £ 0.001), Gammaproteobacteria (2 OTUs; 0.05 £ 0.003),
7.A3409c-Actinobacteria (2 OTUs; 0.04 £ 0.003), and SAR324-
Deltaproteobacteria (1 OTU; 0.02 £ 0.002; Figure 2B and
Supplementary Figure S3B). BATHY communities were
distinct from all other depths and contained high percentages of
Gammaproteobacteria (4 OTUs; 0.08 £ 0.004), Marine Group 1
Thaumarchaeota (2 OTUs; 0.05 £ 0.004), Alphaproteobacteria
(3 OTUs; 0.04 £ 0.004), SAR324-Deltaproteobacteria (1 OTU;
0.03 £ 0.004), ZA3409c-Actinobacteria (1 OTU; 0.02 = 0.003),
Rhodothermaceae (1 OTU; 0.01 £ 0.01), Marine Group 2
Euryarchaeota (1 OTU; 0.01 £ 0.001), and Flavobacteriales (1
OTU; 0.01 £ 0.01; Supplementary Figures S3C, S4B).
Microbial plankton community similarity showed a weak
relationship with spatial distance (latitude and longitude; mantel
test: ¥ =0.12, P = 0.001) that was not significant when microbiome
phylogenetics were considered (mantel test: » = 0.01, P = 0.55).
Similar results were observed when depth effects were first
removed for both taxonomic and phylogenetic dissimilarity
(partial Mantel test; taxonomic dissimilarity: r = 0.18, P = 0.001;
phylogenetic dissimilarity: r 0.02, P 0.30). Overall,
community composition results indicated substantial shifts in
community composition across collection depths, while spatial
(among site) differences tended to be much weaker. These results
combined with the low variance explained by collection site

(PERMANOVA results) suggest that simple microbial plankton
dispersal is not a primary factor in community composition, as
spatially similar samples within the same depth zone can have
widely disparate compositions. For example, microbial plankton
on the seawater surface (SRF) at station B287 were more similar
to SRF samples at station SW-4 (~180 km away) than to those
collected at stations B252 and B003 (~50 km away; Figure 1 and
Supplementary Figure S1).

Several OTUs contributed to pairwise differences
between depth zones (SIMPER analysis, 999 permutations;
Supplementary File S1). Supplementary Figure S3 highlights
17 taxa that dominated samples in different depth bins and
explained a large portion of the compositional differences.
Major phylum-level variation among depths included shifts from
photoautotrophic taxa in the SRF and DCM (e.g., Cyanobacteria,
Eukaryotic phytoplankton, SAR116 Gammaproteobacteria)
to chemoautotrophic taxa in the MESO and BATHY (e.g.,
Marine Group I and II Thaumarchaeota and Euryarchaeota,
Deltaproteobacteria, Gammaproteobacteria; Figure 2 and
Supplementary Figure S5).

Environmental Effects on Community Composition
Canonical correspondence analysis (CCA) was used to
investigate environmental drivers of microbial plankton
dynamics, similar to previous GoM microbial plankton studies
(Tolar et al., 2013). CTD profiles for Temperature-Depth,
Density-Depth, Salinity-Depth, and Temperature-Salinity for
DPO02 are located in Supplementary Figure S6.

All CCA results are summarized in Table 2. The CCA model
that included all samples from DP02 explained approximately
23% of the sample variance, and temperature was the most
important environmental variable, explaining more than triple
the variance of the next term in the model (Figure 3A). Much
of the overall sample variance is not explained by the selected
variables, suggesting that either unmeasured parameters may
be driving microbial community variability and/or the effect of
individual environmental parameters was variable across depths.
To test the latter, scenario, we split the samples by depth
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TABLE 2 | Canonical correspondence analysis (CCA) results from DPO2.

CCA results Sig. variables Exp. variance

DPO02 microbial plankton dynamics

All samples All variables 0.23
Temperature 0.14
Oxygen 0.04
Turbidity 0.03
Salinity 0.02
Surface (SRF) All variables 0.35
Turbidity 0.2
Temperature 0.06
Oxygen 0.06
Salinity 0.03
Epipelagic (DCM) All variables 0.4
Chlorophyll a 0.16
CDOM 0.13
Salinity 0.07
Temperature 0.04
Mesopelagic (MESO) All variables 0.11
Depth 0.04
Turbidity 0.04
CDOM 0.02
Oxygen 0.02
MESO w/Nutrient All variables 0.34
Oxygen 0.13
Depth 0.08
Ammonium 0.05
Salinity 0.08
Bathypelagic (BATHY) All variables 0.29
SRP 0.08
Nitrite 0.07
Depth 0.05
Salinity 0.04
Oxygen 0.08
CDOM 0.02
DOC 0.01

Only significantly correlated environmental variables (Sig. variables) are shown
along with the effect size (Exp. Variance) of each individual variable and the total
effect size (all variables). Environmental variables included: depth, temperature,
salinity, chlorophyll a fluorescence, turbidity, CDOM, oxygen, density, nitrate, nitrite,
ammonium, soluble reactive phosphorus (SRP).

zone, which was previously shown as an important factor for
community composition.

For surface (SRF) microbial plankton communities, the CCA
model variables accounted for approximately 35% of the overall
sample variance. Turbidity was the most important variable, and
this variable alone accounted for more than half of all variance
explained by environmental and spatial variables (Figure 4A).
Across sampling stations, the highest turbidity was observed at
B175 and B080 while the lowest turbidity was observed at SW4
(Figures 1B, 5 and Supplementary Figure S1). CDOM and Chla
were removed from the model due to redundancy and depth
was not considered because it could not be determined to meter
precision at this depth due to ocean swell.

The epipelagic (DCM) samples, collected at the chlorophyll
maximum peak, showed a relatively strong correlation with
environmental variables, which explained approximately 40% of
the overall sample variance (Table 2 and Figure 4B).

Mesopelagic microbial plankton communities, which were
collected at the oxygen minimum zone, were only weakly
correlated with environmental and spatial variables (11% of
overall sample variance; Table 2). Of the environmental variables,
the depth of the oxygen minimum zone was the most important
(Figure 4C), and downwelling forces in anticyclonic features
such as the Loop Current can push features such as chlorophyll
maximums and oxygen minimums deeper in the water column
(Supplementary Figure S7). For 18 out of 37 MESO samples,
nutrient data were collected (Supplementary Table S1). These
samples were from CTD09-CTD17 (SW4 - B252), which
represented an onshore gradient and was hypothesized to span a
gradient from the Loop Current to residual GoM water (Figure 1
and Supplementary Figure S1). Substantially more variance was
explained in these limited samples (34% of sample variance; 34%
with Lat-Lon variables) compared to the larger MESO sample
dataset. Oxygen concentration was the most important variable,
and notably, the nutrient, ammonium was also observed to be
a significant environmental variable (Supplementary Figure S8
and Table 2).

Analysis of BATHY samples showed that the measured
environmental variables, which included nutrient data for
all stations, explained approximately 29% of the overall
sample variance. Soluble reactive phosphorus (SRP) and nitrite
concentration were the most important individual variables. The
most divergent samples were from CTD18 at station B175, which
occurs within the DeSoto Canyon benthic feature (Figure 4D).

Temporal Change: DP01 - DP02 at
Stations B175, B252, and B287

Microbial plankton diversity varied significantly among
collection stations, pelagic depth zones, between cruises, and
the interaction of each pair of variables (Table 3). These results
were mainly driven by low diversity in the surface (SRF)
samples from DP02 (Tukey’s HSD P < 0.05). While we observed
significant differences in diversity associated with pelagic
depth zone, absolute collection depth was not significantly
related to microbial community diversity (GLM, df = 1,56,
F = 0.001, R? = —0.02, P = 0.98). Phylogenetic diversity also
varied significantly among collection station, pelagic depth
zones, between cruises, for the interaction of station and
pelagic depth zone, and for the interaction of all three factors
(Table 3). Phylogenetic diversity did not vary significantly with
absolute collection depth (linear regression; df = 1, 56, F = 0.26,
RZ=-0.01,P=0.61).

We observed significant effects of cruise, collection station,
pelagic depth zone, the interaction of each pair of factors, and the
interaction of all three factors on microbial plankton community
composition (Table 3). Most of the variance among samples was
explained by pelagic depth zone or interactions with this factor
(~69%), while collection site and cruise only accounted for ~14%
of the total sample variance.
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Environmental Effects

The CCA model with environmental variables explained
approximately 25% of the overall sample variance, with
temperature representing the most important environmental
variable (Table 4 and Figure 3B). Temperature variation among
cruises was only apparent for the epipelagic zone, and this
variable appears to be most related to changes among cruises for
seasonally affected depths.

DISCUSSION

The pelagic ecosystem challenges in-depth, systematic studies
because of its sheer size, wide spatial and temporal dynamics,
and influences from complex combinations of oceanic (Lindo-
Atichati et al,, 2012; Djurhuus et al., 2017), terrestrial (Mason
et al, 2016), benthic (Rivers et al., 2013; Joye et al, 2014;
Rakowski et al., 2015), biological (Lam and Kuypers, 2011;
Lima-Mendez et al.,, 2015), and climatological forces (Sunagawa
et al., 2015). Our study builds on previous microbial plankton
biogeography research by combining elements that were often
separate to gain a broader view of microbial plankton dynamics in
this particular GoM region. We aimed to move beyond the simple
characterization of GoM microbial plankton, accomplished in
previous research (e.g., King et al, 2013; Mason et al., 2016),
and leverage our dataset to better understand microbial plankton
dynamics in the oceanic pelagic environment across depth,
time, and a host of environmental variables as well as in the
context of prominent features in the oceanic pelagic environment
during sample collection (Johnston et al., unpublished). Passively
distributed microbial plankton communities varied in diversity
and composition across depth zones but exhibited complex
spatial patterns of variation among collection stations. The
specific forces of environmental selection were depth-dependent,

and ranged from turbidity, salinity, and season (cruise) at the
surface to nutrient concentration and depth in the BATHY
samples. These depth-dependent forces may provide clues as to
the broader drivers (e.g., Mississippi River and Loop Current) of
community dynamics (Mason et al., 2016; Djurhuus et al., 2017).

Microbial biogeography remains a key area of interest
in earth and oceanographic studies, with recent expeditions
such as TARA Oceans making substantial contributions to
our understanding of how environmental forces and dispersal
drive biogeographic patterns of microbial plankton worldwide
(Armbrust and Palumbi, 2015; Sunagawa et al., 2015). Previous
research on pelagic microbial communities emphasized the
importance of depth, demonstrating that this complex factor is a
powerful driver of microbial plankton composition and function
due to changes in several physio-chemical parameters (King
et al., 2013; Tolar et al., 2013; Armbrust and Palumbi, 2015).
Sunagawa et al. (2015) showed that stratification of microbial
plankton communities was a global phenomenon, and observed
distinct communities at SRE, DCM, and MESO depths. Similarly,
the current study found vertical stratification patterns in
microbial plankton composition. Shallow communities (SRF and
DCM) were dominated by several photoautotrophic taxa (e.g.,
Prochlorococcus, Synechococcus, SAR86-Gammaproteobacteria,
SAR116-Alphaproteobacteria, eukaryotic phytoplankton), while
MESO and BATHY communities, while distinct from each
other, were dominated by potentially chemoautotrophic
taxa such as Marine Group 1 (MG1) Thaumarchaeota,
Deltaproteobacteria, and Gammaproteobacteria (Figure 2).
These shifts in composition suggest dramatic shifts in community
function, which has been explicitly measured in other studies
(Tolar et al.,, 2013; Lima-Mendez et al., 2015), as members of
these communities have adapted to a range of niches specific to
the environment in these vertical strata. The apparent absence of
the common SARI1 taxa in our dataset is likely due to a known
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primer bias against these taxa that also may underestimate
Thaumarchaeota abundance, though these latter taxa still
dominated samples from the oxygen minimum zone (Parada
et al., 2016). Parada and Fuhrman (2017) went on to characterize
the dynamics of Euryarchaea Marine Group II (MGII) from
the surface to 890 m depth and found dynamic assemblages of
MGI-Nitrospina assemblages as part of the 15 years 4+ San Pedro
Ocean Time-series (SPOT) off the coast of Los Angeles.
Geographic distance-decay similarity relationships are
observed at large (up to 5000 km) (Fuhrman, 2009; Tittensor
et al., 2010; Raes et al, 2011; Sunagawa et al, 2015) and
small scales (~1 km; Martiny et al, 2011). At intermediate
scales (~100 km), especially in the pelagic environment, these
relationships can be complicated by high dispersal rates and
a heterogenous environment driven by ocean currents. In the
current study, distance-decay relationships were weak even
when depth effects were first considered. Patterns of diversity
and composition across stations were complex and combined
with the weak relationship to spatial distance, may point to

active environmental selection by spatially heterogeneous forces
in GoM microbial plankton communities rather than simple
dispersal limitation. The different pelagic features sampled in
DP02 may present unique environmental selection pressures
on microbial plankton communities even when these features
interact (Supplementary Figure S1).

Many oceanographic studies, including the current study,
provide evidence for environmental structuring of microbial
plankton communities at specific depths (Bianchi et al., 2011;
Dubinsky et al., 2013; King et al., 2013; Ortmann and Ortell,
2014; Gillies et al., 2015; Sunagawa et al., 2015), sometimes tied to
specific habitat features (Hahnke et al., 2013; Mason et al., 2016).
In previous research, broad community gradients were often
absent, and shifts in community composition were attributed to
factors such as riverine inputs (Mason et al., 2016), hydrocarbon
inputs (Joye et al., 2014, 2016; Scott et al., 2014; Rakowski et al.,
2015), and distinct oceanic water masses (Hahnke et al., 2013;
Djurhuus et al., 2017). Discerning specific influences of features
can be difficult, especially at feature boundaries where different
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water masses mix. In the current study, we did not attempt to
determine the precise spatial extent of oceanic features, but rather
utilize some well-known markers of these features such as low
salinity (Mississippi River) and the presence of the subtropical
underwater current (Loop Current) to give broader context to our
results.

We observed depth-specific combinations of environmental
drivers of microbial plankton communities. In the SRF
communities in DP02, microbial plankton community
composition exhibited spatial heterogeneity largely related
to changes in turbidity. Stations where turbidity was higher
and salinity was lower (e.g., B175, B080) contained distinctly
different communities compared to those with lower turbidity,
and oceanic salinity (e.g., SW4, Figures 4A, 5). Taxonomic shifts
across these environmental gradients show variation in disparate
groups of closely related taxa such as two likely photoautotrophic
groups that included five Cyanobacteria (2 Prochlorococcus spp.
and 3 Synechococcus spp.) and six SAR86 Gammaproteobacteria
(Figure 5 and Supplementary Figure S7). Interestingly, we did
not observe overall decreases in these taxa groups across the
turbidity gradient, but rather shifts within closely related taxa
groups. One hypothesis is that taxa within these groups may
represent different ecotypes that have different preferred light
environments, but the current study cannot specifically ascribe
these shifts solely to changes in irradiance. Many previous ocean
microbial ecology studies have characterized and evaluated shifts
in microbial plankton at broad taxonomic levels (e.g., Phylum

and Class), and such coarse binning of taxa would not have
captured the spatial dynamics in the current study.

Previous studies in the GoM have suggested that the
Mississippi River has higher alpha diversity and may act as
a seed bank of microbial taxa for the pelagic environment
(Mason et al, 2016). In the current study, a clear signal of
the Mississippi River is present (i.e., low salinity, high turbidity
water), and distinct community composition was associated with
these environmental factors. However, we found no evidence
to support the “seed bank” hypothesis. Microbial plankton
samples that exhibited the lower salinity (CTD17, CTDIS,
CTD19; Supplementary Table S1), indicative of Mississippi
River intrusion (Hu et al, 2005) did not show significantly
higher diversity. Moreover, subsequent collections (12 h later) at
the same stations where salinity was more reflective of oceanic
water (CTD18-CTD19 at B175 and CTD20-CTD21 at B080)
showed no shifts in community diversity. The different results
in the current study could be partly due to sampling bias, as
Mason et al. (2016) only sampled a single station in the pelagic
environment, compared to five coastal stations. Alternatively,
and perhaps more critically, the seed bank claim does not
appear to have statistical support in Mason et al. (2016), and
the results of the current study suggest that this hypothesis is
unsubstantiated. Based on our results, the Mississippi River may
introduce unique taxa to the pelagic environment (Figure 4A,
stations B252, B175, and B080), which could be useful as tracers
of Mississippi River intrusion, but it does not appear to boost
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TABLE 3 | ANOVA and PERMANOVA results from DPO1-DP02 temporal microbial
dynamics statistical tests with independent variables shown.

Statistical F df R? p
test

Dataset/factors

DP01-DP02 temporal change

Community diversity 3-way

ANOVA
Pelagic depth zone 5.3 3 0.004
Station 5.99 2 0.005
Cruise 8.76 1 0.005
Pelagic zone x station 3.16 5 0.02
Station x cruise 4.81 1 0.03
Pelagic zone x cruise 6.37 3 0.001
Phylogenetic diversity 3-way

ANOVA
Pelagic depth zone 3.41 3 0.03
Station 13.18 2 < 0.001
Cruise 20.86 1 < 0.001
Pelagic zone x station 4.31 5 0.003
Pelagic zone x station x cruise 5.44 2 0.008
Community composition PERMANOVA
Pelagic depth zone 38.93 3 0.48 0.001
Station 6.85 2 0.06 0.001
Cruise 14.94 1 0.06 0.001
Pelagic zone x station 3.94 5 0.08 0.001
Station x cruise 4.16 1 0.02 0.004
Pelagic zone x cruise 8.1 3 0.1 0.001
Pelagic zone x station x cruise 4 2 0.03 0.001

Variables included pelagic depth zone (Surface, Epipelagic, Mesopelagic, and
Bathypelagic), station (collection station in DPO1 and DP02), and cruise (DPO1 or
DPO02).

TABLE 4 | Canonical correspondence analysis (CCA) results from DPO1-DP02
temporal analysis.

CCA results Sig. variables Exp. variance

DP01-DP02 temporal change

All variables 0.25
Temperature 0.13
Salinity 0.05
Oxygen 0.04
CDOM 0.02

Significantly correlated environmental variables (Sig. variables) are shown along
with the individual and total effect sizes (Exp. Variance). Environmental variables
included: depth, temperature, salinity, chlorophyll a fluorescence, oxygen, CDOM,
and density.

microbial plankton community diversity in the broader oceanic
environment.

Sampling of the DCM communities targeted the depth
of the maximum subsurface chlorophyll a concentration,
which is vertically positioned by a variety of forces including
light attenuation, nutrients, and ocean currents (Ortmann
and Ortell, 2014). DCM samples were collected within the
pycnocline (Supplementary Figure S5), at densities ranging
from 23.7 o1 to 25.6 o, and we observed the main drivers
of community composition at this depth to be phytoplankton

abundance (Chla), which was highest at stations B287 and B003,
CDOM, and temperature. Changes in these environmental
parameters were accompanied by shifts in taxa within groups
such as Cyanobacteria, Gammaproteobacteria, Flavobacteria,
Alphaproteobacteria, ~ Verrucomicrobia, and eukaryotic
phytoplankton. A close examination of the trends in these
samples reveals that the deepest DCM communities had the
lowest CDOM concentrations and were the warmest (SW4,
B079, and B287). Warm oligotrophic water is typical of the Loop
Current origin water in the GoM, and the down-welling force of
this anticyclonic feature could be responsible for the observed
trends in environmental parameters as the Loop Current was a
prominent feature during the DP02 cruise. The Loop Current can
affect the abundance of pelagic nektonic fauna at these depths
(Biggs, 1992; Biggs and Miiller-Karger, 1994; Lindo-Atichati
et al., 2012; Wells et al., 2017), and for microbial plankton, may
represent a powerful force for both environmental selection
and novel taxa dispersal. However, defining the boundaries
of mesoscale features such as the Loop Current is difficult, so
teasing apart the direct influences of this feature remain difficult.

MESO communities were sampled at the oxygen minimum
zone (OMZ), which in the GoM is generally well oxygenated
compared to other world ocean OMZs (Tyson and Pearson, 1991;
Lam et al., 2009; Lam and Kuypers, 2011), never reaching dysoxic
concentrations (<2.0 ml L™ (Tyson and Pearson, 1991; Lam
et al,, 2009; Lam and Kuypers, 2011). Thus, many anoxic and
suboxic metabolic processes may not occur in GoM microbial
plankton communities at this depth, under normal conditions.
The dominant taxa in this layer in the current study were Archaea
(mostly MG1 Thaumarchaeota; Figures 2, 5), similar to other
GoM studies (Tolar et al., 2013; Bristow et al., 2015), and previous
research in the GoM showed a high abundance of ammonia
oxidation genes associated with MG1 Thaumarchaeota presence
(Tolar et al., 2013; Swan et al., 2014). The less dramatic OMZ in
the GoM likely favors processes that consume oxygen, since it is
not a limiting resource (Lam et al., 2009). This may explain why
in the current study, the dominant taxa in the OMZ appear to
be ammonia oxidizers, and not taxa that would perform anoxic
processes as observed in more severe OMZs in the world oceans
(Lam et al., 2009; Lam and Kuypers, 2011; Hewson et al., 2014;
Ganesh et al., 2015). Shifts in taxa across sites in this zone were
only weakly correlated with measured variables, which generally
exhibited lower variability compared to shallow depths. Despite
this weak correlation, several Thaumarchaeota taxa were variable
across stations, which may support differential responses of MG1
ecotypes to environmental variables (Tolar et al., 2013) that were
not measured in the current study.

Oceanographic circulation in the GoM is typically considered
a two-level system (Hamilton, 1990, 2009; Sturges et al., 1993;
Welsh and Inoue, 2000; Cardona and Bracco, 2016), with
the surface to approximately 1200 m (which includes SRE
DCM, and MESO samples) comprising the upper level and
bathypelagic zone (BATHY samples) comprising the lower
level. This lower level of circulation is semi-isolated and only
indirectly linked to the dynamics at shallower depths, though
shallower water features such as the Loop Current help drive
circulation in the bathypelagic zone (DeHaan and Sturges, 2005;
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Rivas et al, 2005; Chang et al., 2011; Bracco et al, 2016).
Seawater in the bathypelagic zone has an estimated residence
time of 250 years, and only periodically exchanges through
the Yucatan peninsula back into the Caribbean (Rivas et al.,
2005). In the current study, BATHY communities were distinct
from all other communities, showing high phylogenetic diversity,
and a strong correlation with SRP concentration, which
represents crucial nutrient to marine microbial plankton (Karl,
2014). SRP concentration did not show a clear spatial pattern
among stations, although the highest SRP concentrations were
observed in two samples at station B175, located nearest the
northern coast, and within the De Soto Canyon, whose unique
structure and flow regime may play a role in re-suspending
sediment with elevated SRP (Posamentier, 2003). Environmental
selection in microbial plankton at this depth appears complex
and likely comprises a combination of circulation patterns,
heterogeneous distribution and composition of particles sinking
from shallower depths, benthic topography, and hydrocarbon
seepage that drive nutrient dynamics (Hewson et al, 2006;
Rivers et al., 2013). Further research is needed to tease apart
the specific forces that control and affect these deep-water
communities.

CONCLUSION

Our results add to the growing body of knowledge of GoM
microbial plankton and expand our understanding by more
extensively sampling the oceanic pelagic environment across
broad spatial, temporal and depth ranges (14 stations, 164
samples, depth range 2-1500 m). Environmental selection in
microbial plankton communities is evident, especially across
variable seawater depths, and evaluation of environmental
selection in the current study was best achieved in a depth-
dependent context. This depth-dependent context showed
complex selection that appears related to broader oceanic
features in the GoM including the Loop Current and Mississippi
River plume. Additionally, we observed several examples of
shifts in closely related taxa across environmental gradients
and stations, which may challenge common practices in
ocean microbial studies of evaluating microbial plankton
communities at coarse taxonomic levels if these closely related
taxa shifts are ecologically meaningful. Taken together, our
results add valuable insight into the forces that structure
oceanic-pelagic microbial plankton communities in the GoM
and provide a foundation for future studies investigating
topics such as the effects of microbe-microbe networks on
the structure microbial plankton communities, and the use of
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