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Most autonomous retrotransposons and retroviruses encode, apart from the reverse transcriptase
(RT), additional essential protein enzymatic domains including those of RNase H, protease and
integrase, as well as a non-enzymatic gag-like domain (Eickbush and Jamburuthugoda, 2008;
Arkhipova, 2017; Krupovic et al., 2018). Several types of accessory domains, the presence of
which in retrotransposon polyproteins is non-stringent, are also reported. Particularly, well-known
accessory domains in polyproteins of LTR-transposons include Chromodomain and DnaQ-like
3′-5′ exonuclease domain (Novikova et al., 2008; Rodriguez et al., 2017; Ustyantsev et al., 2017).

Previously we presented evidence for integration of the viral superfamily 1 RNA helicase
(SF1 HEL or SF1H) coding sequences into insect genomes through acquisition by the
retrotransposons containing no long terminal repeats (LTRs) (non-LTR-retrotransposons), namely,
Long interspersed nuclear element-like (LINE-like) TRAS (Telomeric Repeat-Associated Element)
of R1 clade in order Lepidoptera and LINEs of Jockey family in orders Hemiptera and Orthoptera.
Moreover, in orders Diptera and Hymenoptera, the SF1 HEL domains were found to be
translationally fused to proteins encoded by LTR retrotransposons (Lazareva et al., 2015; Morozov
et al., 2017). These data were further confirmed and extended for the chromosome-integrated HEL
sequences of plus-RNA viruses in orders Diptera, Lepidoptera, Hymenoptera, and Thysanoptera
(Kondo et al., 2017; Geisler, 2018). Transposon-encoded helicases were found to contain the full
set of conserved motifs essential for their enzymatic activities (Morozov et al., 2017) and exhibit
a weak, but detectable, ability to suppress RNA silencing in plant experimental system, as it was
previously demonstrated for RNA helicase domains of some replicative tobamovirus proteins
(Csorba et al., 2007; Wang et al., 2012; Lazareva et al., 2015). Importantly, it is well-known that
silencing suppressors of insect viruses are also active in plants (Maliogka et al., 2012). Moreover,
although helicase-coding sequences represent actively transcribed insect genome regions, RNA
helicase domains seem to perform no essential functions in retrotransposition and the transposon
transcription/translation, and their functions can be considered as only accessory (Morozov et al.,
2017).

We proposed hypothetic evolutionary scenarios explaining the natural selection-supported
preservation of the retrotransposon SF1H domains in insect genomes and considered two basic
alternatives to explain the long-term evolutionary fixation of SF1 HEL in retrotransposons,
namely, significance of this genetic element as advantageous for (i) transposons themselves or
(ii) their insect hosts (Morozov et al., 2017). In one scenario, we supposed that both siRNA- and
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piRNA-mediated pathways blocking expression and
transposition of retroelements (Ito, 2012; Lazareva et al.,
2015; Guida et al., 2016; Mondal et al., 2018) can be suppressed
by the encoded SF1H silencing suppressor activity. Also SF1H-
coding sequences acquired by retrotransposons might be adapted
for direct co-operative work with reverse-transcribing enzymes
to improve efficiency of cDNA synthesis and transposition of
these selfish genetic elements (Morozov et al., 2017). Another
scenario implied that genome-integrated RNA virus coding
sequences producing virus-related transcripts and proteins may
be a tool for anti-viral defense in plants, fungi, and animals
(Honda and Tomonaga, 2016; Morozov et al., 2017; Palatini
et al., 2017; Warner et al., 2018).

In recent years, a novel mechanism supporting the
involvement of Dicer-encoded RNA helicases in anti-viral
response in insects has been described in several pioneering
works (Goic et al., 2013, 2016; Poirier et al., 2018). The structural
basis for this activity is provided by the amino-terminal helicase
Dicer domain that forms a clamp-like structure possessing
several subdomains capable of binding both double-stranded
and single-stranded RNAs and, likely, wrapping around RNA
molecules. Moreover, Dicer can be stably bound to RNA without
exerting the RNase III-like endonuclease activity (Song and Rossi,
2017). It was found that Drosophila and mosquito cells infected
with ssRNA-containing viruses could produce cDNA fragments
of RNA virus genomes by an endogenous reverse transcriptase
activity, and that the resulting virus-specific DNA reinforced
the host RNAi response against viral infections. Particularly, in
Drosophila this mechanism was highly active in macrophage-
like haemocytes (Tassetto et al., 2017). Most surprisingly, the
virus-related cDNAs contained sequence junctions between
LTR-retrotransposon and virus sequences derived from different
genome parts (Goic et al., 2013). These studies provided a basis
for a conceptually novel model of anti-virus response based on
silencing, namely, production of secondary RNAi (Garcia-Ruiz
et al., 2010; Pooggin, 2017) not deriving directly from genomic
ssRNAs or their replicative forms (Goic et al., 2016; Tassetto
et al., 2017). In a later work, it was shown that virus-related
cDNAs produced during RNA-containing virus infection of
insects included both linear and circular forms (Poirier et al.,
2018). Circular DNA showed homology to both viral genomic
sequences and LTR-retrotransposon sequences and participated
in producing protective secondary siRNAs.

Considering the origin of DNA related to ssRNA viruses, it
is important to note that the helicase domain of Dicer (Dcr-2)
is crucial for biosynthesis of virus-specific DNA, and its activity
is independent from the dicing function. Since RNA helicase
domains of Dcr-2 (Poirier et al., 2018) or/and AGO (Tassetto
et al., 2017) potentially recognize both retrotransposon RNA
and viral dsRNA in the cytoplasm, it can be speculated that
reverse transcription of viral RNA occurs because of the physical
association of the RT complex and the dicing complex (Figure 1).
Moreover, there is an indication that mostly minus-strands
of viral RNA can serve as templates for reverse transcription
(Poirier et al., 2018). From the evolutionary point of view,
the described mechanism of integration of RNA virus-related
circular DNA forms into host genomes may relate to origination

of endogenous viral elements (EVEs) (Poirier et al., 2018),
which are commonly associated with the invertebrate genomes
(Holmes, 2011; Ballinger et al., 2012; Fort et al., 2012; Thézé
et al., 2014; Metegnier et al., 2015; Geisler and Jarvis, 2016;
Palatini et al., 2017; Suzuki et al., 2017) as well as with vertebrate
chromosomes (Shi et al., 2018; Zhang et al., 2018).

The above results shed a new light on the phenomenon
of viral SF1H domain acquisition by insect retrotransposon-
encoded polypeptides described in our previous papers (Lazareva
et al., 2015; Morozov et al., 2017). Indeed, enormous diversity
of RNA viruses among many insect groups co-existing with
their hosts for billions years of evolution (Dudas and Obbard,
2015; Li et al., 2015; Shi et al., 2016; Palatini et al., 2017; Bigot
et al., 2018) suggests a demand for strong control mechanisms
over infection processes. The abundant preservation of expressed
SF1H in insect genomes could contribute to antiviral defense
in some insect taxonomic groups. According to the hypothesis
presented above, association of viral RNA helicase domain
and reverse transcriptase domain in a single polyprotein or
protein complexes can provide an effective mechanism for
simultaneous reverse transcription of retrotransposon and viral
RNA sequences into common cDNA molecules (Figure 1).
Although initial experimental data have indicated the importance
of LTR-transposons in the formation of RNA virus-related
chimeric cDNA copies (Goic et al., 2013; Poirier et al., 2018),
one can presume that non-LTR-retrotransposons are also well-
suited for the process of chimeric cDNA synthesis from the RNA
virus genomes and production of secondary virus-specific RNAi.
Indeed, LINE transposons generate circular dsDNA products
(Han and Shao, 2012) and contain internal promoters initiating
synthesis of transcripts of both polarities from these products (Li
et al., 2014; Russo et al., 2016).

Based on these ideas, we propose a speculative illustrative
scheme for the evolutionary acquisition of SF1H domain
by polyprotein of TRAS family LINE retrotransposons in
Lepidoptera and its activity in anti-viral response (Figure 1).
It is likely that the ancestor species of Lepidoptera contained
abundant non-LTR retrotransposons of TRAS family that were
transcribed and actively retrotransposed into the (TTAGG)n
telomeric repeats to support the telomere length by repeat
elongation (Fujiwara et al., 2005; Osanai-Futahashi and Fujiwara,
2011; Monti et al., 2013). Under conditions of high virus load,
the RT complexes of these retrotransposons in association with
RNA helicase domains of the cell Dicer and/or AGO enzymes
(Goic et al., 2013; Poirier et al., 2018) can occasionally use the
genomes of the (+)ssRNA viruses, which might be evolutionary
close to Hubei-like viruses 1 and 2 (Shi et al., 2016;Morozov et al.,
2017), to synthesize chimeric circular DNAs and transpose them
into insect chromosomes. Those chimeric integrated transposon
copies that encoded complete virus SF1 RNA helicase domains
could be preserved in evolution because of their higher impact
in anti-viral defense (Figure 1). The present-day Lepidoptera
TRAS elements coding for SF1H domain obviously represent
functionally specialized TRAS copies since they cannot be found
in the vicinity of the (TTAGG)n telomeric repeats in contrast to
copies containing no SF1H (Kondo et al., 2017; Geisler, 2018).
Thus, Lepidoptera and many insect species belonging to other

Frontiers in Microbiology | www.frontiersin.org 2 January 2019 | Volume 9 | Article 3193

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Morozov et al. Retrotransposon Proteins in Antiviral Defense

FIGURE 1 | Schematic model of chimeric DNA synthesis and the interactions between DCR-HEL (RT-HEL), reverse-transcriptase (RT), retrotransposon DNA and viral

dsRNA. Uptake of viral genomic RNA and synthesis of double-stranded replicative form RNA in cell cytoplasm stimulates chimeric circular and linear DNA production

which allows increased de novo synthesis of virus-specific small RNAs and efficient antiviral RNAi response. Right part of the figure shows the hypothetical pathway

specific for Lepidoptera insect species. DCR-HEL is shown in green; RT-HEL is shown in gray. Retrotransposon-specific RNA, DNA, and RNAi are shown in red;

virus-specific RNA, DNA, and RNAi are shown in blue. DNA-specific steps are shown in pinkish areas; RNA-specific steps are shown in bluish areas.

orders seem to gain efficient mechanism protecting the organism
against a large variety of RNA-containing viruses.

Potential involvement of LINE retrotransposons encoding
RNA helicases in anti-viral defense suggests that other defense
genome elements can exist, possibly including different
transposon types and different nucleic acid modifying enzymes.
For example, for silencing-mediated pathogen protection,
multiple (quite different) defense and counter-defense
mechanisms were revealed (Pooggin, 2017). Indeed, it has

become clear that bacteria also use reverse-transcribing elements
for protection from DNA phages. These protective gene modules
include, particularly, some CRISPR-Cas systems (Zimmerly and
Wu, 2015; Koonin and Makarova, 2017). Strikingly, bacterial
anti-phage AbiA and AbiK systems represent modules encoding
a RT-like protein and a RecA-like SF1 DNA helicase (Scaltriti
et al., 2011; Wang et al., 2011; Zimmerly and Wu, 2015) which
is structurally related to viral SF1H (Gorbalenya et al., 1989).
Moreover, bacteria and archaea are found to encode several
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types of multi-gene resistance modules (systems), including
DNA helicase genes and some other genes (up to 4–5 cistrons).
These modules include BREX system, DISARM system and Pgl
system (Sumby and Smith, 2002; Barrangou and van der Oost,
2015; Goldfarb et al., 2015; Chaudhary, 2018; Ofir et al., 2018).
Broad involvement of helicases in bacterial anti-viral defense
systems suggests potential participation of additional enzymes
targeting RNA/DNA as evolutionary selected protective tools.
These enzymes could be involved in covalent modification of
nucleic acids. In this respect, it is important that DNA methylase
genes are the essential parts of the mentioned above anti-phage
defense gene modules. Different types of these modules encode
either an DNA N-6-adenine-methyltransferase (DAM) or C5
cytosine methyltransferase (DCM) (Barrangou and van der
Oost, 2015; Goldfarb et al., 2015; Chaudhary, 2018; Ofir et al.,
2018). The precise mechanisms of the anti-phage action of the
above-mentioned DNA methylases (as well as helicases) are
obscure. However, it is long known that some prokaryotic DNA
methylases possess anti-phage activity and different phages are
found to encode inhibitors of methylation (Krüger et al., 1989).
Moreover, some bacterial transposons possess DNA methylase
genes of the TnpB/Fanzor family (Bao and Jurka, 2013).

Strikingly, TnpB/Fanzor proteins were also encoded by several
types of eukaryotic DNA transposons (Bao and Jurka, 2013).
Moreover, DNA methylases are still encoded by eukaryotic
retrotransposons, particularly, DAM protein domains were
found as parts of polyproteins in DIRS elements (Goodwin and
Poulter, 2001, 2004; Poulter and Butler, 2015; Kojima, 2018), and
DCM-coding sequences were revealed in both Ty3/Gypsy and
DIRS clades (de Mendoza et al., 2018). We speculate that some
DNA methylases expressing as accessory protein domains from
transposons may be involved in defense against DNA-containing
viruses in eukaryotes like their specific prokaryotic counterparts
(see above). DAM- and DCM-encoding retrotransposons of
Ty3/Gypsy and DIRS clades were revealed in most Unikonts
and some Bikonts (Rogozin et al., 2009), particularly, in
Stramenopiles, Rhodophyta, green algae, and charophytes.
Nevertheless, transposons encoding DNA methylases are not
present in the genomes of land plants, such as tracheophytes
(Goodwin and Poulter, 2001, 2004; Bao and Jurka, 2013;
Szitenberg et al., 2014; de Mendoza et al., 2018). It is somewhat
surprising that transposon-encoded methylases, which are found

in many eukaryotes of Unikonta and Bikonta lineages (Rogozin
et al., 2009), disappeared from the genomes of tracheophytes
during land plant evolution. To our mind, disappearance of
transposon-encoded methylases is connected to a great decrease
in DNA virus abundance in land plants after evolving from
algae, where large DNA viruses dominate (Correa et al., 2013;
Middelboe and Brussaard, 2017; Weynberg et al., 2017; Schvarcz
and Steward, 2018). Indeed, after evolving the land plants, the
significance of DNA viruses for Viridiplanta became negligible
because of inability of such viruses to infect land plant bodies
(Dolja and Koonin, 2011), that made unnecessary the defense
mechanisms against DNA viruses and resulted in evolutionary
loss of transposon-encoded DNA methylases. However, anti-
viral activity of non-transposon DNA methylases connected
to transcriptional silencing still has a significant functional
role in higher plants. It was shown that geminiviral Rep and
C4 proteins were able to downregulate MET1 and CMT3
cell methyltransferases and prevent maintenance of de novo
methylation at CG and CHG sites (Rodríguez-Negrete et al.,
2013; Bräutigam and Cronk, 2018). Moreover, other gene
products of geminiviruses (e.g., AC2) may influence methyl
cycle of the host plant, particularly, affecting enzymes of the S-
adenosylmethionine pathway (Yang et al., 2011; Zhang et al.,
2011; Deuschle et al., 2016).

In conclusion, the presented hypothesis combines models for
the mechanism of evolutionary origin and the functional role
of retrotransposon-encoded nucleic acid-modifying domains,
positioning these structural modules in the row of potential
molecular tools for cell defense against viruses.
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