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Understanding the interactions between microbial communities and their environment
sufficiently to predict diversity on the basis of physicochemical parameters is a
fundamental pursuit of microbial ecology that still eludes us. However, modeling microbial
communities is problematic, because (i) communities are complex, (i) most descriptions
are qualitative, and (i) quantitative understanding of the way communities interact with
their surroundings remains incomplete. One approach to overcoming such complications
is the integration of partial qualitative and quantitative descriptions into more complex
networks. Here we outline the development of a probabilistic framework, based on Event
Transition Graph (ETG) theory, to predict microbial community structure across observed
chemical data. Using reverse engineering, we derive probabilities from the ETG that
accurately represent observations from experiments and predict putative constraints
on communities within dynamic environments. These predictions can feedback into
the future development of field experiments by emphasizing the most important
functional reactions, and associated microbial strains, required to characterize microbial
ecosystems.

Keywords: modeling, microbial ecology, ammonia oxidizing bacteria, probabilistic simulation, nitrogen

1. INTRODUCTION

Recent advances in molecular biology and computational biology have transformed approaches
to characterize microbial communities (Segata et al., 2013; Waldor et al., 2015), prompting
the emergence of microbial systems ecology. This field tackles complex ecological questions by
coupling observational (e.g., molecular and geochemical) data with new computational techniques
(Raes and Bork, 2008; Klitgord and Segre, 2011; Zelezniak et al., 2015). Advances in bioinformatics
and computational biology have allowed analysis of next-generation sequencing technologies to
qualitatively describe microbial communities by emphasizing “who is there and who is not” (Raes
et al, 2011). However, among the most significant challenges in microbial systems ecology is the
ability to quantitatively predict microbial community composition and function, by combining
molecular data and quantitative physicochemical data. Theoretically, this challenge necessitates the
consideration of both measurements (e.g., community composition or associated geochemistry)
alongside an uncertainty analysis associated with these measurements. However, such a coupling
is still elusive in predictive modeling (see Mouquet et al., 2015; Delahaye et al., 2017 for review, or
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Legay et al., 2010 for a similar question in the broad context
of Computer Sciences). Previous applications in ecology (e.g.,
Jabot and Chave, 2011; Marion et al.,, 2012), promote the use
of advanced computational approaches to integrate statistical
analysis into a mechanistic modeling framework, but both
concepts of determinism and randomness are still usually
considered as independent (Anand et al., 2010).

Among the techniques that integrate uncertainties, the
Bayesian network is a probabilistic graph model that represents
the biological compound interactions via a directed acyclic
graph (Friedman et al., 2000). However, the Bayesian network
is not able to take into account the feedback loops necessary
to represent the accumulation of quantities over time (e.g.,
the abundance of mico-organisms or concentrations), such as
is necessary to depict general biological dynamical behaviors.
For this purpose, it would be preferable to use an extension
of Bayesian networks: dynamical Bayesian networks. These
dynamic networks consist of the repetition of elementary
Bayesian networks, as previously defined, linked together
in order to abstract dynamical effects, including feedback
loops. Nevertheless, despite being of practical interest, such a
combination of networks drastically increases model complexity.
Such an extension is not always appropriate to model
mechanistic behaviors, such as trophic interactions. By proposing
Probabilistic Boolean Networks (PBN), Shmulevich et al. (2002)
propose a new probabilistic approach, that is not Bayesian, to
model mechanistic behaviors. PBNs combine the expressibility of
Boolean networks to describe dynamical deterministic behaviors
and uncertainty via the use of probability (see Li et al., 2007
for a more complete comparison between PBNs and dynamical
Bayesian networks in the context of gene regulatory circuit
modeling). Overall, PBN represents a general probabilistic
modeling framework that combines deterministic modeling
and uncertainties. PBN offers plenty of applications in the
context of biological networks, with a strong emphasis on
qualitative modelings. Nevertheless, PBN does not permit
quantitative modeling. For this purpose, Bourdon et al. (2011)
proposed a complementary approach of PBN modeling; still not
Bayesian, called Event Transition Graph (ETG). This approach
combines Boolean modeling and probabilistic approaches but
integrates descriptive mechanistic measurements alongside more
quantitative knowledge that is required to depict ecological
properties, usually attributable to continuous variables.

ETG was originally developed to model multi-scale systems
and Bourdon et al. (2011) used it to determine the impact
of E. coli gene regulatory networks on intracellular protein
concentrations under diverse growth conditions (Ropers et al.,
2006). Unlike traditional biological modeling techniques (e.g.,
ordinary differential equation approaches where all processes are
equivalent), ETG classifies the order of biological events, such as
gene transcription, and transitions from one state to another via
a set of probabilities such that the succession of states accurately
reproduces experimental observations. Such a classification of
biological events, being controlled only by probabilities, avoids
the need for kinetic parameterization, which is usually unknown
for microbial ecosystems, but rather advocates for the addition
of uncertainties to a deterministic schema. In other words,
required inputs for ETG modeling are (i) the chronological

and mechanistic descriptions of biological events (i.e., metabolic
reactions) and their potential connections (e.g., auxotrophy), and
(ii) a quantitative behavior to reproduce (e.g., the trajectory of
functional groups under fluctuating environmental conditions,
or time series of quantities as presented in Figurel). As a
result, ETG will learn parameters from quantity variations
while considering uncertainties. In this purpose, ETG weighs
the transitions between discrete events by probabilities which
reproduce, on average, the quantitative behaviors observed in
nature. As a result, ETG could mimic a dynamical quantitative
system by integrating, in a non-deterministic manner, several
mechanistic descriptions within a probabilistic framework. The
main insights gleaned from this approach can bring further
understanding and prediction of the temporal succession of
community assemblages (Fuhrman et al., 2006; Bouskill et al.,
2011). In particular, this approach could relate key microbial
functional guilds to changes in the metabolites consumed
or produced across gradients in co-occurring and interacting
environmental variables.

Herein, we briefly describe the ETG modeling approach
and the associated requirements for running the programs.
We will then demonstrate the application of ETG within the
context of microbial ecology for the first time. We focus
here on the nitrogen cycle. Beyond the intrinsic importance
of nitrogen for biological systems, its cycling results from
versatile redox chemical reactions. Combined together, these
reactions promote complex biogeochemical transformations and
structure microbial communities. From a modeling viewpoint,
the nitrogen cycle presents three features that make it a
promising candidate for new quantitative modelings. First, and
despite recent studies uncovering new reactions and pathways
(Kuypers et al., 2018), nitrogen metabolic pathways are well-
understood and therefore constitute a metabolic map that
provides a stable and mechanistic description of the biological
processes involved (Kanehisa and Goto, 2000). This map
represents a set of biological events that can be quantitatively
described. Second, because of recent technological advances,
especially in biogeochemistry and isotopic studies, the main
processes involved in nitrogen transformation (e.g., nitrogen
fixation, nitrification, denitrification) can also be depicted
through quantitative rate measurements, which provide an
overall ecosystem behavior. These rates are ETG goals to be
reproduced by the trained model. Finally, high-throughput
sequencing technologies provide greater insight into about the
ecology of the microbial functional guilds playing an important
role in the nitrogen cycle, in particular, the organisms responsible
for different redox reactions and their putative interactions (see
Jewell et al., 2016 for an illustration).

2. MATERIALS AND METHODS

2.1. Event Transition Graph Modeling: Data

and Biological Knowledge Formatting

ETG requires expert biological knowledge be formalized as a
graph. Experimental knowledge will be then incorporated into
the model via a learning procedure that weights the edges of this
graph.
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FIGURE 1 | Network of the nitrogen cycle and its probabilistic simulation. (A) represents the nitrogen cycle where nodes are reactions as described in KEGG, and
edges putative transitions between reactions when a product of a reaction is a substrate of another. (B) depicts in the simplistic metabolic effect asociated to each
reaction involved in (A). (C) depicts 11 time point nutrient concentrations (red dots) as described in Bouskill et al. (2011) station CB100 in Chesapeake Bay, as well as
nine probabilistic simulations of the ETG model trained on ammonia and nitrite concentrations between 2001 and 2004. Corresponding probabilities are depicted in
Figure 2. Bold lines depict averages of quantities over 10 simulations, whereas gray areas show the corresponding standard deviations.

2.1.1. Network or Graph of Interactions

The first input into ETG modeling is a list of biological events
as well as the consequences of these events. For the sake of
illustration, when representing the nitrogen cycle, the events
are reactions (e.g., nitrification, denitrification, etc.) and their
consequences are the respective production and consumption of
metabolites (e.g., NHs T NO3 ™). This knowledge is a mechanistic
description of an event and is necessary to estimate the
“cost,” or effect when one event occurs over another. Here
we derive a nitrogen network composed of a hypothetical
series of reactions (i.e., fixation, nitrification, denitrification
and anammox), as laid out in the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database map00919 (Kanehisa and
Goto, 2000), without assigning taxonomy to the microorganisms
that mediate these reactions. For reducing the complexity of
the nitrogen cycle, for each reaction, we considered major
metabolites and neglected co-factors. Reversible reactions were
decomposed into two opposite irreversible reactions. We then
removed reactions that propose similar metabolic mechanistic
transformations. After removing duplicated reactions, this set
of reactions, called sequential biological events, consists of 14

reactions (see Supplementary Material for technical details and
required format).

Concomitantly, as an additional modeling input, interactions
between events take the form of a graph that links reactions (i.e.,
nodes of the graph) when the product of one reaction becomes
the substrate for another reaction (directed edge). Thus, the
above 14 reactions result in a graph of 14 nodes and 32 edges (see
Supplementary Material for a technical graph description) and
illustrated in Figure 1A. The combination of the graph of events
and the effect of each event represents a mechanistic description
of the modeled biological system. The effect of each event is
additive to simulate an effect of stoichiometry, but, as proposed
in Bourdon et al. (2011), a multiplicative effect could also be used
to represent exponential behaviors. Notice herein, for closing the
system (i.e., no transition must point out), the hypothetical model
considers a central reaction. It depicts an artificial reaction that
points toward reactions linked to the nitrogen cycle but involved
in other metabolic pathways, such as carbon or phosphate, as
mentioned in the KEGG database. For consistency with other
reaction descriptions, its mechanistic description considers only
major nitrogen metabolites.
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2.1.2. Initial Costs

In addition to the overall definition of an event (i.e., reactions and
product/substrate definition) and description of the interactions
within events (through the construction of a graph), the cost
of considering one event over another must also be defined. As
a mechanistic description, each event consumes and produces
compounds, which will point to the cost of using events. For
instance, each reaction within the nitrogen cycle can be described
by its stoichiometry (i.e., -1 for a metabolite consumption and + 1
for a metabolite production). However, when randomly crossed,
the graph could promote an artificial increase or decrease of a
given compound, solely due to the graph topology and chemical
stoichiometry. Such a result would not represent a correct output
of the modeling approach, but rather a prospective flaw. To
avoid this, one must compute the cost (denoted initial cost)
for all compounds for each event, that is not the stoichiometry
per se. This cost is necessary to maintain every compound
at a stationary amount when every transition is equiprobable
(i.e., steady states). For each compound, this initial cost will
be assigned to events that do not mention them explicitly.
For instance, for all reactions that do not consider ammonia,
nitrite or nitrate as metabolites, one must compute a cost for
these metabolites. Thus, following a computational procedure
described in Supplementary Material, -1.5, -1.00, and -0.25 are
the costs related to these metabolites (resp. ammonia, nitrite, or
nitrate) when not explicitly mentioned in their stoichiometry.
The costs are not necessary constrained by units and costs of
different units could be considered simultaneously. Biologically,
the negative cost could be interpreted by a putative dispersal
of metabolites when not explicitly produced or consumed by a
metabolic reaction.

2.1.3. Formating the Quantitative Data as Training
Dataset

ETG modeling estimates probabilities associated with
interactions between events (herein reactions) such that the
succession of events reproduce quantitative experimental data.
For illustration, we use chemical variables from Bouskill et al.
(2011), which describes a time series of ammonia, nitrite,
and nitrate (see Table1). In order to fit such quantitative
experimental data with ETG, one must transform quantitative
variations as rates, which necessitates the assignment of a
time-step. For instance, when considering a time-step of two
hours, a variation from 8.4 to 4.2 uM of ammonia between
April and August 2001 requires 1,476 time-steps (123 days x 12),
representing an overall variation rate of:

42 -84

A —0.0028455 (1)
1476

rateNy; =

Experimental variation in rates for each season (from April to
August, from August to October, and from October to April)
for the years 2001, 2002, 2003, and 2004, and for each nutrient
was thus estimated from Table 1. These rates are the training
data and represent the quantitative variations that must be
reproduced by the probabilistic modeling once parameterized.
As detailed below, ETG will learn probabilities to reproduce

TABLE 1 | Dissolved inorganic nitrogen concentrations (1.M) over the time-course
of dataset from sampling station CB100 surface as presented in Bouskill et al.
(2011).

Time course samples Ammonia (xM) Nitrite (M) Nitrate (M)
April 2001 8.4 0.8 88.7
August 2001 4.2 0.4 19.9
October 2001 9.3 7.9 24.2
April 2002 8.1 0.1 59.1
August 2002 6.2 0.4 ihl
October 2002 2.2 5.7 19.3
April 2003 6.3 0.5 76.8
October 2003 1.8 1.1 101.9
April 2004 3.4 0.6 94.7
August 2004 9.7 2 86.2
October 2004 5.8 1.1 63.7

these quantitative rates. They imply to consider predefined time-
steps, but also allow to not constraints the cost units or even
considering the costs of distinct units simultaneously.

2.2. Probability Estimation and

Probabilistic Simulations

Once the ETG model considers (i) a set of events and
their putative interactions (section 2.1.1); (ii) a cost for
each event (section, one (iii) a quantitative rate that depicts
an experimentally observed quantitative variation impacted
by at least one event (section 2.1.3), one seeks then to
learn probabilities to prioritize interactions between events
in order to reproduce the above computed rates as they
resume the environmental conditions to reproduce. The overall
parameterized model will herein reproduce variations of
ammonia, nitrite, and nitrate by weighting the succession of
metabolic reactions (e.g., the cost of consuming or producing a
given compound resuming a reaction). An optimization process
(see technical details in Bourdon et al., 2011) will compute sets of
probabilities for all transitions between each sample within a time
series. ETG applied on the toy model of the nitrogen cycle will
thus compute nine distinct sets of probabilities that reproduce the
rate of variation of ammonia, nitrite and nitrate over four years
(i.e., number of columns in Figure 2). It is important to notice
herein that searching for optimal probability values is performed
by a local search method. Local search methods are sensitive to
sub-optimal solutions. Despite the use of a metaheuristic (i.e.,
Tabu search; Glover, 1986) that memorizes visited solutions,
finding the best solution is complex (NP-hard), which could be
prejudicial for larger complex models. However, from a practical
viewpoint, models with 15 nodes and 30 edges remain realistic on
a personal computer.

Along with probability estimates for transitions between each
event, a sensitivity score (S), expressed in percentage, was also
computed. The S score associated with a transition expresses the
fact that the Euclidean distance between the expected rates (goals
from section2.1.3) and their predictions is modified by S % when
its probability value is changed by 1%. Such a sensitivity score
permits ranking the transitions according to their respective
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FIGURE 2 | Summary of the ETG model Probabilities and Sensitivities trained on ammonia and nitrite concentrations. Panel (A) shows the log ratio of computed

probabilities over probabilities of each transition under the equiprobability assumption. Transitions illustrated in light gray show probabilities in the equiprobability
assumption. The dark gray color represents transitions with probabilities lower than those computed under the equiprobability assumption, whereas lighter colors are
transitions with higher probabilities. Transitions colored in blue depict either transition pointing toward or coming from R00148; reaction catalyzed by the product of
amo gene. Panel (B) gives sensitivity values for each transition. Cyan transitions are not sensitive, whereas purple transitions are the most sensitive, i.e., the probability
values cannot change without altering the overall predictive accuracy.

sensitivities (i.e., a high sensitivity transition implies higher
constraints on its corresponding probability value). In practice,
sensitivities between two-time points depict in Figure 2B are the
mean sensitivities of 100 optimal probability estimations that
reproduce ammonia and nitrate experimental variations.

Following the training protocol, a Markov Chain simulation
algorithm allows to simulate the variation of quantities over
time. As input, the simulation considers (i) initial quantities (i.e.,
red dots in Figure 1C or Figure 3) and cost (i.e., production
and consumption of metabolites when a reaction occurs) and
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FIGURE 3 | Summary of the random ETG model Probabilities and Sensitivities trained on ammonia and nitrites concentrations.

(ii) above learned probabilities that describe respectively in
the stochastic paradigm: (i) the reaction constants and (ii) the
random number generator. Altogether, these features describe
a stochastic system for which a Monte Carlo step determines
the reaction that occurs at each time interval. At a given
time, the probability of choosing a given reaction is, therefore,
the compromise between the costs, that describe how the
molecules evolve for a given event, and the duration of an
event (time-step) that one fixed in our study to 2 h. In

the context of this study, for each time point (i.e., transition
between two successive red dots), the simulation protocol will
perform 10 independent stochastic simulations. Figure 1C and
Figure 3 represents average of simulated quantities over time
(i.e., bold line) as well as associated standard deviations (i.e.,
gray areas). Notice that such stochastic simulations of ETG
are closely related to simulations performed by the Gillespie
algorithm in its asymptotic regime as shown in Picard et al.
(2015).
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However, there is no notion of atoms in the ETG simulation.
Indeed, our simulation process differs from the Gillespie
algorithms in the sense that the probabilities of reaching an event
are supposed to be constant. In the Gillespie algorithm, there is
a significant compromise between the number of molecules of a
particular species and the volume of the cell. In our simulation
method, the compromise is between the costs, that describe how
the molecules evolve for a given event, and the duration of an
event (time-step) that one fixed in our study to 2 h.

2.3. POGG: A Software for Event Transition

Graph Modeling

The Event Transition Graph (ETG) modeling was performed via
a Python package called POGG. This package is the first python
implementation of the ETG modeling, as proposed in Bourdon
et al. (2011). POGG package can be downloaded here, including
a docker container. See Supplementary Material for technical
details and a complementary script that replicates all enclosed
results, including visualization.

3. RESULTS

3.1. Probability Estimate for Simulating the
Nitrogen Cycle

Ammonia oxidizing organisms (AOO) mediate the rate-limiting
step of nitrification (i.e., NH3 — NO;), a rate-limiting step
in the Nitrogen cycle (Ward et al., 2007; Bouskill et al., 2011,
2012). Analyzing the dynamic of the nitrogen cycle in a given
ecosystem and, in particular, the impact of this reaction allows
to evaluate the putative role of these organisms in the same
ecosystem. Herein, we describe a schematic nitrogen cycle within
a unique ETG of quantitative chemical variables and simulate
the corresponding metabolic network to assert the role of the
typical reaction of AOO. Following an automatic extraction from
KEGG database (Kanehisa and Goto, 2000), ETG that covers
the whole set of reactions associated to the nitrogen pathways
represents 41 nodes and 67 edges. In the present case, for
the sake of clarity, the graph is pruned to 14 nodes and 32
edges (Figure 1A). The ETG graph describes transitions across
biochemical pathways with each individual reaction, or event for
sake of generalization, having an effect on downstream processes
(e.g., each event may produce or consume a compound according
to a stoichiometrically balanced reaction equation). In the present
case, one substrate can be consumed by several other reactions,
which results in multiple edges per node. The ETG modeling
considers the graph that resumes stoichiometry constraints but
also computes a complimentary cost for each event for the sake
of dynamic behavior. The cost of each event is thus parameterized
in order to maintain stable concentrations for each product
when transitions of the network are equiprobable (i.e., the null
assumption).

To estimate probabilities between reactions and train the
ETG, we used an existing environmental dataset representing
variations in Chesapeake Bay ammonia, nitrite, and nitrate
concentrations (uM) between 2001 and 2004 (Bouskill et al.,
2011). The optimization process emphasized a set of probabilities

that reproduce observed variations in ammonia and nitrate
despite the use of a simple graph that strongly reduce the
nitrogen cycle. To test our model, we simulated variations in
chemical factors using a Markov Chain simulation algorithm
parameterized with computed probabilities, and compared the
predictions with the available time series data (see Figure 1B).
The model accurately replicates ammonia and nitrite chemical
variables over the period between 2002 and 2004, but fails to
reproduce the observed nitrate dynamics. This point indicates
the limit of the simple mechanistic description of the nitrogen
cycle without considering external physical forcing or the need
for further modeling extensions that could integrate recently
discovered new reactions or pathways (Kuypers et al., 2018),
especially to integrate nitrate concentration variations. Please
notice also that no set of probabilities were able to replicate
properly variations of concentration between April 2003 and
October 2003, indicating the sensitivity of our probabilistic
modeling to either the time-step or natural perturbations.
Indeed, this inability to simulate this particular time slot
could be related to the hurricane Isabel, strongest hurricane
in the Atlantic in 2003, that hit the Chesapeake Bay just
before sampling. Such a strong perturbation modified the AOO
assemblage (Bouskill et al., 2011) which could affect, as well,
the succession of metabolic reactions compared to regular
conditions.

Beyond the probabilistic simulations, the analysis of
probabilities between reactions (i.e. likelihoods of transitions
between two reactions) are of interest. Figure 2A shows the
log ratio of computed probabilities over probabilities under
the equiprobability assumption, for each transition over the
time period. Over the four years, some transitions between
reactions show probability values that are similar, or close, to
the values corresponding to the equiprobability assumption
(i.e., light gray in Figure2A). Herein, the graph topology
remains the main factor to explain the use of these transitions.
However, other reaction transitions show probability values
very divergent than those obtained under the equiprobability
assumption. Transitions depicted in white are underused,
whereas those colored in darker gray are overused compared
to an equiprobable use of transitions. Among the overused
reaction transitions, some transitions show strong variabilities
of probability values over the 4 years, whereas others are more
constantly overused. In particular, the transition between
ammonia-monooxygenase (R00148) and the hydroxylamine
oxidoreductase reaction (R00143) is of great interest. This
transition is necessary and continuously over-used over the
four years, which implies a reversible transformation between
ammonia and hydroxylamine. This relationship could be
explain by their complementing functions that are necessary
together for full oxidation of ammonium to regenerate
electrons.

Concomitantly, the transition between R00148 and R00143
indicates a small efficiency of transforming ammonia into nitrite.
Combined, both results emphasized the need to constrain fluxes
between ammonia to hydroxylamine and back to replicate the
variation of quantities; fluxes in which, among others, AOO could
be involved by carrying the amo gene.
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Figure 2B shows the sensitivity analysis of the model by
emphasizing the most constrained transitions; i.e., transitions for
which the probability values cannot change without altering the
training efficiency. These transitions are the most constrained
when the system must replicate the quantitative variations
used during the training process. Logically, identification
of the most sensitive transitions extracts the transition
from R00148 and R00785, as these events are necessary to
mediate NH3; and NO, transformations that are required to
reproduce training conditions in Figure 1B. From a biological
viewpoint, this result confirms the interest in studying ammonia-
oxidizing bacteria and nitrite-oxidizing bacteria, drivers of
these transitions, in the Chesapeake ecosystem. However, it
also emphasizes the need to foster this theoretical insight
in the broader study of the global metabolic profiles of
the Bay ecosystem for a comprehensive understanding of
the whole biological processes carried out by the microbial
communities.

Additionally, the model shows interactions of these reactions
with others that are also of interest. Dissolved inorganic nitrogen
concentration variations (see Figure 1B and Table 1) temporally
influence the sensitivity of the reactions involved in nitrification,
ammonification, and denitrification. The pressure to reproduce
given dissolved inorganic nitrogen variations constraints as well
the amount of other substrates and their use via reactions that
do not use ammonia or nitrite per se. This interdependency
explains patterns of sensitivities that one can not discern in
Figure 2A. Interestingly, despite the heterogeneous nature of
the chemical measurements, the sensitivity analysis emphasizes
antagonistic patterns of two sets of reactions. On one side, a set
of transitions between R00790 to central, R00793 to R00790,
R00148 to R00793, and R00148 to R00143 depict approximately
the ammonification and ammonia oxidation subsystem. On the
other side, R00785 to R00783, R00785 to R02492, and R00783
to R00785 describe the denitrification subsystem. Overall, the
sensitivity analysis emphasizes both subsystems as antagonistic
over time. It is worth noting that sensitive transitions and
corresponding subsystems may indicate potential constraints
(or biochemical trade-offs) on organisms mediating the targeted
reactions, which might be related to selective pressures at an
environmental level. These pressures occur antagonistically
on both denitrification and ammonification/ammonia
oxidation subsystems and are the results of arbitrary rules
within the ETG model that represent interactions between
reactions.

3.2. Learning on a Random Network

The general criticism about probabilistic models concerns their
use as a statistical protocol that reproduces observed data with no
biological specificity. Contrary to other probabilistic modelings,
ETG considers a mechanistic interpretation of the systems via the
use of a graph of events. The use of a description of events allows
specifying the model to perform a given (biological) behavior and
to test it regarding experimental data. For an illustration of the
interest of ETG specificity, we propose to build a counterexample
by randomizing the model and training it on the same
dataset.

The randomized model consists of building a graph similar to
the nitrogen cycle graph for which all edges have been shuffled by
permutation. The randomized model is then similar to the ETG
nitrogen cycle model regarding the numbers of nodes and edges.
We then applied a similar modeling and training procedure to
that described above. As pictured in Figure 3, the randomized
model , that is mis-specified, is unable to predict the variabilities
in ammonia or nitrite. Indeed, no simulations permitted accurate
depiction of the ammonia and nitrites experimental data.
Furthermore, nitrate quantities remain constant over time, which
means that the trained model could not predict changes in nitrate
which highlights the need for further details (i.e., specifications)
about nitrates.

4. DISCUSSION

The goal of this study is to demonstrate the interest of the ETG
modeling framework. In this purpose, one uses a reduction of
the nitrogen metabolic network. From the biological viewpoint,
despite partial promising outcomes, several modeling results do
not reproduce the experiments. First, the probabilistic model
does not accurately simulate the variation of nitrate, while
reproducing ammonia and nitrite quantity variations. Second,
and not presented in this study, the model is not able to
simulate ammonia and nitrite quantities as taken from anaerobic
samples (Bouskill et al., 2011), which indicates either the
need to consider further details regarding oxygen , additional
constraints about nitrate, or the general drawback of reducing
the nitrogen cycle to its sole major metabolites. However, we
consider that emphasizing these inconsistencies is of interest for
further modelings that would better specify missing biological
events.

Unlike other probabilistic modelings, ETG modeling is less
plastic. The modeling requires a qualitative description of
biological events that take place to reproduce quantitative
biological data. The qualitative specification constrains the
model by describing all putative biological behaviors (i.e., the
succession of events and their effects). Among them, once
learned, probabilities allow considering a few to reproduce
a given quantitative behavior. Compared to general Bayesian
modelings, this combination of qualitative and quantitative
knowledge makes our probabilistic modeling sensitive to
mechanistic descriptions that take the form of scrupulous
accumulations or consumptions of quantities over time (Picard
et al., 2017). However, this characteristic drastically increases
its computational complexity compared to other state-of-the-art
probabilistic modelings that are less biologically specified.

This ETG framework is ideal for investigating the dynamic
and transient nature of microbial ecosystems when few
quantitative knowledge is available. ETG does not begin with
an assumption of a community at steady state, unlike Flux
Balance Analysis techniques to model metabolic networks (see
Perez-Garcia et al., 2016 for review, for metabolic modeling
of microbial ecosystems see Zomorrodi and Maranas, 2012;
Budinich et al, 2017). However, ETG modeling assume that
observed quantitative variation are the result of an asymptotic
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behavior of the probabilistic model. Studying transient behaviors
is advantageous to model the effect of microbial communities
because, (i) in situ measurements are unlikely to be made at
equilibrium, and (ii) most studies focus on community changes,
which is itself a transient behavior. Modeling such transient
behaviors is the aim of state-of-the-art continuous modelings.
However, contrary to these techniques, ETG promotes the
use of simple mechanistic descriptions that do not consider
kinetic parameters and initial conditions per se to simulate
quantity variations over time, but respectively the probabilistic
combination of simple additive laws and quantitative rates to
reproduce.

Applied to the metabolic network modeling, ETG emphasizes
the biochemical constraints (i.e., the transition between
reactions) necessary to satisfy for reproducing variations of
quantities emerging from the biological system. One advocates
that these constraints could impact as well the microbial
communities that are providing the constrained metabolic
reactions. To validate this assumption, one must consider
further biological knowledge such as a systematic description
of the microbial ecosystem over time. For instance via 16S
rRNA sequencing, one could associate the patterns of microbial
diversity with the metabolic constraints as highlighted by
the ETG (i.e., sensitivities) and further compared them to
co-occurrence patterns (Cram et al., 2015).

Similarly, the same dynamical property should be a benefit
to decipher subsets of metabolites that are of interest in a
given ecosystem. In this purpose, one must associate this
result with genomic descriptions of prokaryotic organisms,
for instance via metatranscriptomic or metagenomic
studies. Such association between modeling outcomes
and meta-omics knowledge could drive future definitions
of the keystone species (i.e., who is carrying the essential
metabolism) or the analysis of exchanges of interest between
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