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Trypanosoma cruzi (Tc) infection causes Chagas disease (ChD) presented by dilated
cardiomyopathy and heart failure. During infection, oxidative and nitrosative stresses are
elicited by the immune cells for control the pathogen; however, excess nitric oxide and
superoxide production can result in cysteine S-nitrosylation (SNO) of host proteins that
affects cellular homeostasis and may contribute to disease development. To identify the
proteins with changes in SNO modification levels as a hallmark of ChD, we obtained
peripheral blood mononuclear cells (PBMC) from seronegative, normal healthy (NH, n
= 30) subjects, and from seropositive clinically asymptomatic (ChD CA, n = 25) or
clinically symptomatic (ChD CS, n = 28) ChD patients. All samples were treated (Asc+)
or not-treated (Asc™) with ascorbate (reduces nitrosylated thiols), labeled with the thiol-
labeling BODIPY FL-maleimide dye, resolved by two-dimensional electrophoresis (total
166 gels), and the protein spots that yielded significant differences in abundance or
SNO level at p-value of < 0.05;_test/welch/gH Were identified by MALDI-TOF/TOF MS
or OrbiTrap LC-MS/MS. Targeted analysis of a new cohort of PBMC samples (n = 10—
14/group) was conducted to verify the differential abundance/SNO levels of two of the
proteins in ChD (vs. NH) subjects. The multivariate adaptive regression splines (MARS)
modeling, comparing differences in relative SNO level (Asc™/Asc+ ratio) of the protein
spots between any two groups yielded SNO biomarkers that exhibited >90% prediction
success in classifying ChD CA (582-KRT1 and 884-TPM3) and ChD CS (426-PNP, 582-
KRT1, 486-ALB, 662-ACTB) patients from NH controls. Ingenuity Pathway Analysis (IPA)
of the SNO proteome dataset normalized to changes in protein abundance suggested
the proteins belonging to the signaling networks of cell death and the recruitment and
migration of immune cells were most affected in ChD CA and ChD CS (vs. NH) subjects.
We propose that SNO modification of the select panel of proteins identified in this study
have the potential to identify ChD severity in seropositive individuals exposed to Tc
infection.

Keywords: infectious disease, Chagas cardiomyopathy, Trypanosoma cruzi, S-nitrosylation, peripheral blood
mononuclear cells, 2DE, mass spectrometry
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INTRODUCTION

Chagas disease (ChD), a neglected parasitic disease recognized
as one of the top public health concern in the world, is
endemic in Latin America and Mexico (Bonney, 2014). World
Health Organization estimates suggest that ~6-7 million people
worldwide are infected with Trypanosoma cruzi (T. cruzi or
Tc) (World Health Organization, 2010). With an increase in
migratory movements, additional millions of people are at risk
of infection not only in Latin America, Mexico, and southern
regions of the United States, but also in many countries of Europe
where three million of migrants from American endemic areas
are living (Bern et al., 2011; Tanowitz et al., 2016a; Monge-Maillo
and Lopez-Velez, 2017). The presentation of high parasitemia
and general febrile illness during acute phase can result in
myocarditis related death in ~5% of the infected individuals. An
asymptomatic phase occurs indeterminately, although ~30% of
the infected people could develop chronic Chagas disease (ChD)
that results in cardiomyopathy and heart failure (Machado et al.,
2012; Bonney et al., 2019). Some patients also exhibit megacolon
and digestive disorders that affect the quality of life. Currently, T.
cruzi infection is treated with benznidazole or nifurtimox. These
drugs are effective in children presenting the acute infection
phase (Perez-Molina and Molina, 2018), but exhibit limited
efficacy and high toxicity in infected adults that are at risk of
developing heart failure (Viotti et al., 2014). The current methods
of detecting infection is by microscopic examination of blood
smears, serology, or PCR (Ribeiro et al., 2012), but no methods
currently exist to track or predict ChD progression (Balouz et al.,
2017).

T. cruzi activates the production of oxidants (e.g., superoxide,
nitric oxide) from enzymatic and mitochondrial sources in
immune and non-immune cells (Lopez et al., 2018). While the
immune activation of reactive oxygen species (ROS) and nitric
oxide are important for controlling T. cruzi, non-resolution of
these responses can damage the host (Tanowitz et al., 2016b;
Lopez et al., 2018). Indeed, we have reported the markers of
chronic oxidative and nitrosative stress were increased in both,
the heart and peripheral blood, tissues of the T. cruzi-infected
rodents and humans during the development and progression
of ChD (Wen et al., 2006; Wan et al., 2016). Nevertheless, the
host proteins that are susceptible to oxidative/nitrosative stress-
mediated changes in structure, function, or stability during ChD
progression are not known.

The protein S-nitrosylation (SNO) is an ubiquitous, redox
reversible, post-translational modification of cysteine residues
that occurs in presence of excessive oxidative and nitrosative
stress (Htet Hlaing and Clement, 2014). This modification is
shown to influence the translocation, localization, and stability
of proteins, and thus can drive the gain as well as loss of function
in biological and disease conditions (Moldogazieva et al., 2018).

We previously reported that peripheral blood mononuclear
cells (PBMC) carry differential protein abundance signatures
of ChD (Garg et al., 2016) and idiopathic heart failure (Koo
et al,, 2016). Protein profiling of ChD patients’s PBMC suggested
that proteins related to immune cell migration and free radical
synthesis and catabolism were differentially abundant by disease

state (Garg et al., 2016). Further, a select number of differentially
abundant proteins had the predictive value in distinguishing ChD
patients vs. normal healthy contols. Such protein signatures of
easily accessible cells may have potential to serve as biomarkers
of ChD severity and the patients’ response to treatment, to be
verified in future studies.

In this study, we report the cysteine SNO fingerprint
associated with Chagas disease development. For this, enrolled
volunteers were evaluated by cardiologists and grouped
according to the severity of their cardiac anomalies following
the modified Kuschnir classification criteria based on physical
exam, electrocardiography, and transthoracic echocardiography
(Sanchez-Montalva et al., 2016). The PBMC samples of ChD
patients and normal healthy volunteers were treated (or
not treated) with ascorbate, and labeled with thiol-labeling
BODIPY® FL N- (2-aminoethyl) maleimide (BD) dye. BD labels
all proteins containing one or more cysteine residues, and it is
capable of detecting >92% of the human proteins (Tyagarajan
et al., 2003; Wiktorowicz et al., 2017). The advantage of this
approach is the quantitative labeling of protein cysteine residues
in a stable and specific fashion to analyze them through two-
dimension gel electrophoresis (2D-GE) and mass spectrometry
(Wiktorowicz et al., 2017). Our predictive modeling of the
proteome datasets suggest that proteins belonging to the
signaling networks of (a) cell death and (b) proliferation and
recruitment/migration of immune and fibroblast cells were most
affected by S-nitrosylation in ChD CA and ChD CS (vs. NH)
subjects. We discuss the potential significance of differential
SNO protein profile in identifying the severity of ChD in infected
patients.

MATERIALS AND METHODS
Study Population and Statement of Ethics

The institutional review board at the University of Texas Medical
Branch at Galveston (IRB 04-257), the ethics committee of the
School of Health Sciences at Universidad Nacional de Salta,
and the institutional review board of Health Ministry of Salta,
Argentina reviewed the study protocol, and all studies were
carried out after approval of the human subjects study protocol
by the three entities. A written informed consent was obtained
from the individuals invited to participate before collection of
blood samples. The study enrolled volunteers that came to seek
medical assistance at the public hospitals in Salta city, Salta,
Argentina. All samples were coded and de-identified before being
provided for research purposes.

Human Samples

Sera samples from all enrolled volunteers were analyzed for anti-
T. cruzi antibodies by two tests. Chagatest-ELISA recombinante
v.4.0 assay detects antibodies to six recombinant proteins
expressed in a variety of T. cruzi isolates. Chagatest-HAI assay
detects sera antibody based heamaglutination of red blood cells
sensitized with cytoplasmic and membrane antigens of T. cruzi.
Both assays were carried out following protocols provided by the
manufacturer (Wiener, Rosario, Argentina). Samples qualified
as positive by both tests were identified as seropositive, and

Frontiers in Microbiology | www.frontiersin.org

January 2019 | Volume 9 | Article 3320


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles

Zago et al.

SNO Proteomic Signature of Chagas Disease

these individulas were grouped as ChD subjects. Later, chest X-
ray, electrocardiography (ECG, 12-lead at rest, and 3-lead with
exercise) and transthoracic echocardiography were performed to
assess the heart pathology and function to categorize enrolled
individuals according to the Kuschnir classification (Sanchez-
Montalva et al., 2016). Briefly, seropositive individuals with
minor to no ECG abnormalities, no changes in ventricular walls,
and normal ejection fraction (range: 55-70%) were grouped
as ChD clinically asymptomatic (CA) subjects. Seropositive
individuals with a degree of ECG abnormalities, cardiomegaly,
systolic dysfunction (ejection fraction: <55%), left ventricular
dilatation (diastolic diameter >57 mm), and/or potential signs
of heart failure were categorized as ChD clinically symptomatic
(CS) patients. Seronegative subjects with no history or clinical
symptoms of heart disease were enrolled as normal healthy (NH)
controls (Garg et al., 2016).

Purification of PBMC, Labeling With
BODIPY, and Protein Resolution by
Two-Dimensional Gel Electrophoresis
(2D-GE)

We enrolled ChD CA (n = 25, 46% males, age: 49.8 & 9 years) and
ChD CS (n = 28, 53% males, age: 53 &+ 10.6) patients and NH (n
= 30, 50% males, age: 39 £ 16 years) subjects in the study. Blood
samples (10-15 ml) were collected from all enrolled patients in
the heparinized, BD Vacutainer CPT Cell Preparation Tubes.
The tubes were centrifuged in a swing bucket rotor at 400 x g,
4°C for 10 min. After removing the upper plasma layer, packed
blood cells were diluted with ice-cold phosphate buffered saline
(PBS), layered on to The FICOLL Hypaque™ density gradient,
and centrifuged at 4°C at 400 x g for 40 min. The PBMC layer at
the plasma-Ficoll interface was transferred to a new tube, washed
with ice-cold Hank’s balanced salt solution, and stored at —80°C
until used (Garg et al., 2016; Koo et al., 2016).

The PBMC pellets were lysed in urea buffer (50 mM Tris pH
7.5 containing 7M urea, 2M thiourea, and 2% CHAPS), and
all PBMC lysates were analyzed by Lowry method to evaluate
the protein concentrations, and by L8800 amino acid analyzer
(Hitachi High Technologies, Pleasanton, CA) to determine the
cysteine (cysteic acid) levels (Koo et al., 2016). The samples were
briefly centrifuged to remove cellular debris, and then split into
two aliquots. Aliquot A was treated with 6 mM ascorbate (Asc+)
for 1h to reduce SNO, and aliquot B was treated with 100-
WM neocuproine for 1 h to preserve SNO (Asc™). Both aliquots
of each sample were separately dialyzed in dialysis tubes (3.5
kDa MWCO) against urea buffer. The dialyzed samples were
labeled for 2 h with BODIPY® FL N- (2-aminoethyl) maleimide
(BD, Life Technologies, Grand Island, NY) that was added
at saturating concentration (BD: cysteine concentration, 60: 1
ratio). All incubations were carried out at room temperature
while protecting the samples from light, and the reaction was
stopped with {3-mercaptoethanol added in 10: 1 molar excess to
the BD dye (Pretzer and Wiktorowicz, 2008; Wiktorowicz et al.,
2011, 2017).

The BD-labeled, Asc+ and Asc™ PBMC lysates (100-
pg each) were separated by 2D-GE, employing an IPGphor

multiple sample isoelectric focusing (IEF) device (GE Healthcare,
Chicago, IL) in Ist dimension, and the Criterion Dodeca
cell (Bio-Rad, Hercules, CA) in 2nd dimension, following the
protocol previously described by us (Garg et al., 2016).

Gel Fixing, BD Imaging, and Image

Processing

All gels were fixed in 20% methanol/7% acetic acid/10%
acetonitrile for 1h, washed with 20% ethanol / 10% acetonitrile
overnight, washed with dH,O, and BD-labeled proteins were
imaged at 100 wm resolution (Ex4ggnm/Emszonm) by using the
Typhoon Trio Variable Mode Imager (GE Healthcare). The
voltage was set to result in 85-99% of the saturation level for
the most abundant protein on the gel. Gel images taken under
the BD-specific filters were used to obtain the spot-specific data
(Wiktorowicz et al., 2017).

A reference gel from the set of Asc+ gels was selected
by Totallabs Ltd SameSpots software (Newcastle, UK). The
reference gel was stained overnight with Sypro Ruby Stain (Life
Technologies), and imaged at Exsgsnm/EmseoLpnm, The reference
gel image (100 LM resolution) was used to ensure the detection
of all protein spots irrespective of presence or absence of cysteine
residues and to define the spot boundaries. The matching spot
volumes from BD-stained Asc+ and Asc™ gels were used to
obtain the quantitative spot data (Wiktorowicz et al., 2017).

Quantification of SNO Levels

In total, 166 BODIPY-stained 2DE gels [two gels with either
Asc™ or Asc™ protein lysates for each sample from the NH (n
= 30), ChD CA (n = 25), and ChD CS (n = 28) subjects]
were scanned and analyzed using the Totallabs Progenesis
SameSpots™ software. The spot volumes were subjected to
statistical analysis by using built-in tools of Totallab SameSpots
software. The data were found to be normally distributed, and the
differential protein abundance and/or SNO levels for all protein
spots between any two groups was subjected to statistical analysis
by Student’s ¢-tests with Welch's correction for unequal variances.
Also, to account for the false discovery rate, Benjamini-Hochberg
(B-H) multiple hypotheses testing correction was applied and
significance was accepted at p-value < 0.05 (Koo et al., 2016;
Wiktorowicz et al., 2017).

The SNO modification levels per protein spot from each
cohort (NH, ChD CA, ChD CS) were quantified by calculation
of the ratio of fluorescence units from Asc™ and Asc™ signal
for each spot (SNO signal/total protein signal = Asc™/Asc™)
(Wiktorowicz et al., 2011). Because SNO modification prevents
Cys from being labeled by the BD fluor; a Asc™/Asc™ ratio of <1
or a negative value (after log transformation) indirectly reflects
the “percentage” of SNO modified protein in the spot.

The final calculation of the SNO modification per unit of
protein was carried out according to the following formula, called
Ratio of ratios (RoR):

Exp Ctrl
BD BD A[Cys — NO
Ratio of ratios = [ g;;_/ é:cl_] = i[ys = ]]
T
[BDAsc+/BDAsc+] protein
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By adjusting for abundance changes, the RoR is used to establish
true SNO-specific changes in experimental sample with respect
to controls. Moreover, it is important to note that since SNO
modification prevents the Cys-BODIPY labeling, a negative value
indicates an increase in SNO level (and vice versa) in the sample
(Wiktorowicz et al., 2017).

Matrix Assisted Laser Desorption
lonization-Time of Flight
(MALDI-TOF)/Mass Spectrometry (MS) for

Protein Identification
The protein spots that were identified to be differentially
abundant and/or differentially SNO-modified (p < 0.05)
between any two groups were subjected for mass spectrometry
identification as we have previously described (Dhiman et al.,
2012; Wen et al,, 2012). Briefly, protein spots (1 mm) on the 2D
gels were picked robotically (ProPick II, Digilab, Ann Arbor, MI).
Proteins were in-gel digested with 1% trypsin/25 mM NH4HCO3
at 37°C for 6h. Peptide mixtures (1 pl) were directly spotted
onto the MALDI TOF MS/MS target plate with 1 pl of alpha-
cyano-4-hydroxycinnamic acid matrix solution (5 mg/ml in 50%
acetonitrile) and analyzed by using an AB Sciex, TOF/TOF 5800
Proteomic Analyzer (Foster City, CA). The MS and MS/MS
spectral data were acquired and analyzed by Applied Biosystems
software package that included 4000 Series Explorer (v.3.6
RC1) with Oracle Database Schema (v.3.19.0) and Data Version
(3.80.0) (Foster City, CA). The instrument was operated in a
positive ion reflectron mode (focus mass: 1,700 Da, mass range:
850-3,000 Da), and 1,000-2,000 laser shots were acquired and
averaged from each protein spot. A peptide mixture with the
reference masses 904.468, 1296.685, 1570.677, and 2465.199 was
utilized for automatic external calibration. Following MALDI
MS, MALDI MS/MS was performed on 5-10 abundant ions from
each protein spot. A 1 kV positive ion MS/MS method was used
to acquire data under post-source decay (PSD) conditions. The
instrument precursor selection window was 43 Da. Automatic
external calibration was performed by using reference fragment
masses 175.120, 480.257, 684.347, 1056.475, and 1441.635 (from
precursor mass 1570.700) (Dhiman et al., 2012; Wen et al., 2012).
The MS and MS/MS spectral data were searched against the
UniProt human protein database (35,208,664 residues; 87,656
sequences; last accessed: July 12, 2016) by using AB Sciex GPS
Explorer (v.3.6) software in conjunction with MASCOT (v.2.2.07,
Matrix Science, London, UK) (Garg et al, 2016; Koo et al,
2016). The parameters used for MS peak filtering included a
mass range of 800-3,000 Da, minimum S$/N filter = 10, mass
exclusion list tolerance = 0.5 Da, and exclusion of trypsin and
keratin-containing compounds with masses of 842.51, 870.45,
1045.56, 1179.60, 1277.71, 1475.79, and 2211.1 daltons. The
parameters for MS/MS peak filtering included a minimum S/N
filter = 10, maximum missed cleavages = 1, fixed modification
of carbamidomethyl (C), variable modifications due to oxidation
(M), precursor tolerance = 0.2 Da, MS/MS fragment tolerance
= 0.3 Da, mass = monoisotopic, and peptide charges = +1. The
significance of a protein match, based on the MS and the MS/MS
data from several precursor ions, was presented as a Protein Score

with a confidence cutoff of > 62. Some of the protein spots (|Fold
change|> 1.5) identified with low confidence by MS/MS were
subjected to LTQ OrbiTrap Fusion LC-MS analysis (Thermo
Fisher Scientific, Waltham, MA) for protein identification (Garg
et al., 2016; Koo et al., 2016).

Enzyme-Linked Immunosorbent Assay

(ELISA) and Biotin Switch Assay

A new set of PBMC samples from NH, ChD CA, and ChD CS
subjects (n = 10-14 per group) were lysed by agitation for 30 min
at 4°C in S-nitrosylation block buffer (Cayman Chemicals, Ann
Arbor MI), and protein concentrations were determined by the
Bradford method (Bio-Rad). The samples were divided into two
aliquots; aliquot A was used to quantify the abundance of the
target protein and aliquot B was processed to measure its SNO
level.

Sandwich ELISA kits were used to quantify the changes in
abundance of actin gamma (Reddot Biotech, Kelowna, Canada;
detection range: 0.015-10ng/mL) and filamin A (LifeSpan
Biosciences, Seattle WA; detection range: 1.88-120ng/mL)
polypeptides by following manufacturer’s instructions. In brief,
aliquot A of PBMC lysates (2 jug in 100 pLL/well) were loaded onto
96-well plates pre-coated with target-specific antibody. After
2h incubation at 4°C, plates were aspirated and sequentially
incubated with biotin-conjugated anti-target 2nd antibody (1:
100 dilution), avidin-conjugated horseradish peroxidase (HRP)
(1: 100 dilution). The plates were washed between each
reagent addition, color was developed with TMB substrate,
and the change in absorbance was recorded at 450nm by
using a spectrophotometer (Spectramax 190, Molecular Devices,
Sunnyvale, CA). A standard curve was prepared by using
recombinant proteins and target protein concentration was
plotted as pg per pg total protein (Koo et al., 2016).

The SNO modification levels of actin gamma and filamin A
were assessed in aliquot B of each sample by the biotin switch
assay. Briefly, free SH (thiol) groups in each sample were blocked
with methyl methanethiosulfonate (MMTS), and then protein
SNO bonds present in the sample were converted to thiols via
transnitrosation with ascorbate. The newly formed SH groups
were then labeled by S-biotinylation with biotin-HPDP by using
a biotin switch-based, S-Nitrosylated Protein Detection Assay Kit
(Cayman Chemicals) following the instructions provided by the
manufacturer. Then, 96-well plates pre-coated with antibodies
against actin gamma or filamin A were incubated for 2h with
biotin-derivatized protein lysates (2 g in 100 wL/well). Plates
were washed to remove the unbound proteins and then incubated
for 10 min at room temperature with the avidin-conjugated HRP
(1:3,000 dilution, BioLegend, San Diego, CA). The TMB substrate
was added, and the change in absorbance reflecting the levels
of biotin-bound SNO-modified actin gamma or filamin A was
measured by spectrophotometry (Koo et al., 2016).

Multivariate Adaptive Regression Splines
(MARS) Analysis of the Proteome Datasets

MARS is a non-parametric regression procedure that
automatically models non-linearities and interactions between
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variables (Friedman and Roosen, 1995; Austin, 2007). The input
data were the Asc™/Asc+ (i.e., DSNO) values for the protein
spots derived from each of the Asc™ and ASC+ gels of the NH (n
= 30), ChD CA (n = 25), and ChD CS (n = 28) PBMC lysates.
By using the R (R Foundation, Vienna, Austria) and SPSS (v.20,
IBM Corporation, Armonk, NY) software, datasets were log2
transformed, screened by Student’s t-test with Welch’s correction
(for non-equal variances amongst the groups), and Benjamini-
Hochberg multiple hypothesis testing corrections were ran for
the adjusted p-values. The significantly different protein spots
between any two groups with p-value of < 0.05;_(est/welch/BH
were used as input for MARS to model the predictive value of the
selected variables in identifying ChD (vs.NH) patients. To avoid
overfitting of the data, we employed two approaches: (1) 10-fold
cross-validation (CV), allowing the same number of maximum
basis functions as were the differentially SNO-modified spots
at p-value of < 0.05 (with 1 max interaction term) (Liu et al.,
2017); and (2) training/testing approach in which randomly
selected proteome datasets from 80% of the individuals in each
group were utilized to create the model and the datasets from
the remaining 20% of the subjects in each group were used
to assess the fit of the model (Dobbin and Simon, 2011). The
receiver operator characteristics (ROC) curves were developed
to examine the sensitivity and specificity of the identified models.

Ingenuity Pathway Analysis (IPA)

To assess the biological meaning of the proteome datasets,
we used the IPA web-based application (Ingenuity Systems,
Redwood city, CA) (Thomas and Bonchev, 2010). Briefly, the
RoR values for SNO-modified proteins in ChD and control
PBMCs were uploaded in the IPA to retrieve biological
information, such as gene name, subcellular location, tissue
specificity, function, and association with disease, etc. from
the literature. Then the datasets were integrated to define
networks and signaling pathways allowing us to understand the
significance of data or candidate biomarkers in the context of a
larger biological system (Garg et al., 2016; Koo et al., 2016).

RESULTS

2DE/MS Identification of Changes in PBMC

SNO Proteome in Human Chagas Disease

A scheme of the steps involved in SNO proteomic analysis
is presented in Figure 1. Each PBMC lysate was divided into
two aliquots; aliquot A being reduced with ascorbate (Asc+,
makes all cysteine residues available for BD labeling) and
aliquot B (Asc™) was treated with neocuproine to preserve
the SNO-modified cysteines. Labeling of the PBMC lysates
with BD at saturating concentrations resulted in a no non-
specific labeling. Further, BD had no effect on the isoelectric
point and mobilities of the proteins/peptides, and it offered
a highly sensitive method (detection limit: 5 fmol) to detect
and quantitate the protein spots over a linear dynamic range
of four orders of magnitude. The BD-labeled Asc™ and Asc™
PBMC lysates of NH controls (n = 30), and of ChD, clinically
asymptomatic (CA, n = 25) and ChD, clinically symptomatic
(CS, n = 28) patients were resolved on a total of 166 2D

Human PBMC
NH (n=30)
ChD CA (n=25)
ChD CS (n =28)

4/\>

Reduce SNO Stabilize SNO
cysteines (Asc*) (Asc™)
! T

) v
Image gefs for BD at Label with BODIPY maleimide
- EX488nmlEMs20mm Resolve by 2D-GE (n=166 gels)
T [
Normalize Spot intensities to Asc* Sypro Ruby
stained reference gel
v v v

Asc* CAorcs S R VS Rt Asc—
A Protein S Asc N RoR = Asc CAorGS | Asct N DSNO = S
: v o v .
Significance p < 0.05 ‘ IPA Network | MARS ‘
Protein ID by MALDI MS | analysis modeling 1
s |
Biotin Switch
Assay

FIGURE 1 | Schematic of work flow. Human PBMCs were obtained from
volunteers categorized as seropositive, Chagas disease (ChD), clinically
asymptomatic (ChD CA, n = 25) patients, seropositive, ChD clinically
symptomatic (ChD CS, n = 28) patients, and seronegative, normal healthy
(NH, n = 30) controls. Each sample was divided into two aliquots, and SNO
cysteines were reduced with ascorbate (Asc+) in one aliquot, and stabilized
with neocuproine in the 2nd aliquot (Asc ~). All sample aliquots were labeled
with BODIPY FL N- (2-aminoethyl) maleimide (labels reduced cysteine) and
resolved by 2-dimensional gel electrophoresis. Gel images were obtained with
BD specific filter. A reference gel stained with Sypro Ruby was used to mark
the spot boundaries, and the spot boundaries on all the BD labeled gels were
normalized to Sypro Ruby stained reference gel. Ratiometric calculation of
differential protein abundance from BODIPY-fluorescence units in Asc+
aliquots (CA or CS vs. NH) was performed for all protein spots. The relative
percentage of each protein spot that was S-NO modified was quantitated by
calculation of the ratio of fluorescence units from Asc—/Asc+ aliquots for each
experimental condition (DSNO = Asc™/Asc+). The ratio of ratios (RoR) was
calculated to obtain the change in S-NO levels in ChD patients (vs. NH
controls) after normalizing for the changes in protein abundance. Protein spots
that changed in abundance or S-NO modification at p < 0.05 were submitted
to mass spectrometry analysis for protein identification. Log2 transformed
DSNO datasets were used for MARS modeling and RoR datasets were
analyzed by Ingeunity pathway analysis (IPA). Selected proteins were
confirmed for differential abundance and S-NO modification levels by ELISA/
Biotin switch assay.

gels. Representative Asc™ and Asc™ gel images from each
group are shown in Figures 2A-F. A reference gel stained
with Sypro Ruby detected 635 protein spots within the relative
molecular sizes of 10 to 250 kDa. The protein spot intensities
on BD-labeled Asc+ and Asc™ NH, ChD CA, and ChD CS
gels were normalized against the reference gel, and the data
were analyzed in pair-wise manner. The protein spots that
were changed in abundance and/or in SNO modification levels
at p < 0.05;_iestywelch/BH between any of the two groups
were submitted to MALDI-TOF/TOF MS analysis for protein
identification.

Of the 312 protein spots submitted to mass spectrometry,
249 protein/peptide spots were correctly identified (Table 1). Of
these 12, 6 and 8 protein spots exhibited a change in Asc™/Asc+
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FIGURE 2 | Representative two-dimensional gel images of protein spots in PBMC of Chagas disease subjects. BD-labeled PBMC lysates were separated in 1st
dimension by isoelectric focusing on 11 cm non-linear pH 3-11 immobilized pH gradient strips, and in 2nd dimension by sodium dodecy! sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) on an 8-16% gradient gel. Gel images were obtained at 100 wm resolution to quantify BD-labeled proteins (Ex4ggnm/EMs20+15nm)-
Shown are the representative gel images of Asc+ (A-C) and Asc™ (D-F) PBMC lysates from NH (A,D) controls, and ChD CA (B,E), and ChD CS (C,F) patients.
Approximate size of the proteins in kDa (vertical) and pl ranges (horizontal) are noted.
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ratio (i.e., DSNO value) that indirectly reflects the “percentage”
of SNO modified protein in the spot (fold change: >1.5 at p-
value of < 0.05;_cst/welch/BH) in the NH, ChD CA, and ChD
CS subjects (Table 1). The RoR values for all protein spots were
calculated to normalize the changes in SNO levels with respect
to changes in abundance. The RoR values indicated that 30 (20
increased, —ve RoR/10 decreased, +ve RoR) and 28 (22 increased,
-ve RoR/6 decreased, +ve RoR) protein spots were differentially
SNO-modified (normalized to change in abundance) in ChD
CA and ChD CS subjects, respectively, in comparison to NH
controls (fold change: |>1.5], p < 0.05;_(est/welch/BH> Figure 3A).
The changes in Cys-SNO modification frequency (RoR values)
of the protein spots ranged from 1.79- to —1.99-fold and
2.20- to —2.11-fold in ChD CA and ChD CS patients (vs. NH
subjects), respectively (Figure 3A). Venn diagram showed that
11 protein spots changed in RoR values in both ChD CA and
ChD CS patients (vs. NH controls), and 19 and 17 protein spots
exhibited changes in RoR values uniquely associated with the

ChD CA and ChD CS patients, respectively (Figure 3B). The
top molecules that were significantly changed in RoR values in
ChD CA and ChD CS subjects (vs. NH controls) are shown
in Figures 3C,D. The top molecules that distinguished the RoR
and abundance profiles of ChD CS patients with respect to
ChD CA patients are presented in Figures 3E,F. Note that
proteomic profile identified some of the protein spots (e.g.,
PSMB3, SH3BGRL2, ACTB, THBSI1) that were significantly
changed in RoR values in both ChD CA and ChD CS patient
groups; and other proteins (e.g., ACTG, ALB, HNRNPAI,
PTH2R, KRT83, MPO, FGB, and ACTB) exhibited significant
differences in RoR values between ChD CA and ChD CS subjects
(Figure 3E). Importantly, proteomic profiling identified FLNA
and ACTG were uniquely changed in RoR values in ChD CA and
ChD CS subjects, respectively (Figures 3C,D), and SNO ACTG
(spot# 563) was also differentially expressed between CA and
CS patients (Figure 3E), and appears to be a hallmark of ChD
severity.
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Biotin Switch Assay for Verification of

SNO-Modified Proteins in ChD

We utilized a new set of PBMC from NH, CA, and CS cohorts
(n = 10-14 per group), and employed ELISA and biotin-switch
assays to verify the changes in abundance and SNO levels of
two proteins in Chagas disease. We chose filamin A and actin
gamma for these studies because spot#102 and spot#563 for these
proteins were found to have most changes at RoR level in ChD
CA and ChD CS subjects, respectively (Figures 3C,D, 4A).

We first examined the changes in abundance of ACTG and
FLNA in ChD patients and NH controls by an ELISA. In ChD
CA patients (vs. NH controls), we observed 79% (p < 0.001) and
49.6% (p < 0.05) decline in the ACTG and FLNA protein levels,
respectively (Figures 4A,B). In ChD CS patients, ACTG and
FLNA protein levels were decreased by 59.6 and 48%, respectively
(vs. NH controls, p < 0.05, Figures 4A,B). The finding of a
decline in FLNA in ChD CA and ChD CS patients and of
ACTG in ChD CS patients by ELISA was in alignment with the
finding of a decline in the abundance of these proteins in the
proteomic study (AscT"P/AsctNH, Figure 4A). The finding of
an overall decline in ACTG level in ChD CA patients by ELISA
did not corroborate the proteomic finding (compare Figure 4B
and Figure 4A).

For the detection of SNO modification levels of proteins in
PBMC lysates, the reduced thiol groups were blocked, and then
SNO-modified proteins were reduced to make these available
for binding with biotin, and detection by avidin-conjugated
horseradish peroxidase method. These data showed >80%
changes in SNO levels of ACTG in PBMC from ChD CA and
ChD CS patients (vs. NH subjects, Figure 4D). No significant
changes in the SNO levels of FLNA were detected between PBMC
of the three groups (Figure 4E).

The differences in the observations between ELISA/Biotin
Switch Assay and BD-fluor/2D-GE based proteomic study can at
least partially be explanined by the fact that 2D-GE/proteomic
approach identifies the full length protein as well as derived
peptides as individual spots that may change in concentration
depending on their stability and/or degradation, while ELISA did
not discriminate between the full length and smaller peptides of
these proteins; the level of detection will depend on the epitopes
that the coated antibody recognizes. Secondly, Biotin switch assay
simply detects the SNO-modified proportion of a protein but
does not take into consideration the changes in its abundance,
while RoR approach normalizes SNO level against the protein
concentration in experimental sample and then also derives the
values in comparison to control data. At present no other reliable
and easy to use assays exist that can detect the SNO modification
level per unit protein. Despite the discrepancies between the two
approaches, our results in Figure 4 suggest that use of the coating
antibodies against specific ACTG and FLNA peptides that are
SNO-modified will offer a more reliable diagnostic approach in
distinguishing the disease state in Chagas patients.

MARS Predictive Modeling of
SNO-Modified Proteins in Chagas Disease

For this analysis, we log2 transformed the protein spot intensities
to ensure that biologically relevant proportional changes are

captured between the different groups (Feng et al., 2013). The
log2 transformed protein spot intensities on each of the Asc™
and Asc+ gels of PBMC lysates from NH (n = 30), ChD CA
(n = 25), and ChD CS (n = 28) subjects were used to calculate
the Asc™/Asc+ ratios for each spot, and the protein spots that
exhibited significant changes in the Asc™/Asc+ ratio (indicates
relative proportion of the SNO-modified protein in the spot)
at p < 0.05;_test/welch/BH between any of the two groups were
subjected to MARS analysis to develop the classification model.

Comparing Asc™/Asc+ values of ChD CA vs. NH groups,
we identified nine protein spots that exhibited differential SNO
modification level (p < 0.05;_test/welch/H> Figure 5A). These
nine spots were used as input to MARS modeling with 10-fold
CV and 80/20 approaches. The CV MARS model ranked the nine
spots with high to low priority and allocated predictive values
to top ranked molecules (spot#582-KRT1 and spot#884-TPM3).
The CV training (AUC/ROC = 1.0) and testing [(AUC/ROC =
1.0) models exhibited high confidence in correctly identifying
the ChD CA patients (vs. NH controls] with 100% prediction
success and no mistakes (Figure 5B). The 80/20 approach built
the predictive model based on top ranked molecule (spot#884-
TPM3). The training of this model by using datasets from
randomly selected 80% of the samples from NH and ChD
CA groups (AUC/ROC = 1.0) and testing of this model by
using datasets from remaining 20% of the samples from the
same groups (AUC/ROC = 1.0) also yielded high confidence in
correctly identifying the NH and ChD CA subjects with 100%
prediction success (Figure 5B).

Comparing Asc™/Asc+ values of ChD CS vs. NH groups, we
identified 11 protein spots that exhibited significant differences
in SNO modification level (p < 0.05;_test/welch/BH> Figure 6A).
These eleven spots were used as input to MARS modeling with
10-fold CV and 80/20 approaches. The CV MARS model ranked
the eleven spots with high to low priority and allocated predictive
values to top ranked molecules (spot#426-PNP, spot#904-HBB,
and spot#662-ACTB). The CV training model correctly identified
90% and 92.86% of the NH and ChD CS subjects, respectively,
with overall prediction success of 91.38% (AUC/ROC = 0.95,
Figure 6B). However, the CV model performed poorly in testing
phase, and correctly identified only 73.3 and 64.3% of the NH and
ChD CS subjects, respectively (AUC/ROC = 0.79, Figure 6B).
The 80/20 approach chose four top-ranked molecules (spot#426-
PNP, spot#582-KRT1, spot#486-ALB, and spot#662-ACTB), and
this model performed better than the CV model in predicting
the ChD CS vs. NH subjects. The training of this model by
using datasets from 80% of the NH and ChD CS subjects yielded
high confidence (AUC/ROC = 0.99, Figure 6C) with an overall
prediction success of 82.61% and correctly identified 100% of
ChD CS subjects. The testing of this model with datasets from
20% of the NH and ChD CS subjects also yielded good confidence
(AUC/ROC = 0.89, Figure 6C) with an overall prediction success
of 83.33%.

Together, the results presented in Figures 5, 6 suggest that a)
SNO modification of KRT1 and TPM3 peptides will have high
predictive value in diagnosing the ChD CA status of infected
patients; and b) SNO modification of PNP HBB, KRT1, ACTB,
and ALB peptides will have high predictive value in identifying
the ChD CS status of infected patients. Further, the predictive
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FIGURE 4 | Biotin switch assay for verification of abundance and SNO levels of ACTG and FLNA in Chagas disease. (A) SNO proteome dataset for ACTG and FLNA
are presented. (B-E) PBMC protein lysates (2 ng) from normal healthy (NH) controls and seropositive, Chagas Disease clinically asymptomatic (ChD CA) and Chagas
disease clinically symptomatic (ChD CS) patients (n = 10-14 per group) were evaluated for abundance (B,C) and SNO (D,E) levels of ACTG (B,D) and FLNA (C,E) by
using an ELISA-based method. For the analysis of SNO-modified proteins, PBMC lysates were subjected to biotin switch procedure prior to a modified ELISA
protocol as described in section Materials and Methods. ANOVATyey test was performed to evaluate the significance (‘p < 0.05, *p < 0.01, and **p < 0.001).

modeling worked more robustly in identifying the ChD CA
subjects than in recognizing the ChD CS status. Furthermore, the
protein spots predicted by this analysis were in accordance with
significative RoR levels showed in Figures 3C,D (vs. Figure 5 and
Figure 6, respectively). The MARS did not yield high degree of
success in distinguishing the ChD CA vs. ChD CS groups (data
not shown).

Ingenuity Pathway Analysis of Chagas
Disease Associated SNO Proteome

Signature

We employed Ingenuity Pathway Analysis software to determine
molecular and biological functions, as well as the important
pathways and networks involved in Chagas disease development.
Input to IPA were the RoR values (p < 0.05;_cst/Welch/BH>
Table 1) and we established a cut-off of [fold change|: > 1.2 to

ensure sufficient molecules are available to build the disease-
related networks. IPA analysis showed that several molecules that
are predicted to be associated with cell death were significantly
changed in their RoR values in ChD CA (vs. NH) subjects
(14 molecules, p = 1.89E-02, Figure 7A). Likewise cell death
associated 15 molecules exhibited significant changes in RoR
values in ChD CS (vs. NH) subjects (p = 9.6E-03, Figure 7B).
The cell death network was predicted to be more responsive
to SNO modification level of proteins (ANXAI, FGA, FLNA,
GSTP1, HBB, MTPN, PRDX6, THBS1, VCL, YY1) in clinically
symptomatic patients as compared to the clinically asymptomatic
ChD subjects (p = 8.71E-03, Figure 7C).

IPA analysis of RoR proteome datasets also predicted
a putative differential SNO profile of proteins involved in
recruitment of immune cells, i.e., leukocytes, neutrophils, and
phagocytes, and overall development of inflammatory response
in ChD CA patients (13 molecules, p: 1.84E-02 to 3.26E-04,

Frontiers in Microbiology | www.frontiersin.org

16

January 2019 | Volume 9 | Article 3320


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles

Zago et al.

SNO Proteomic Signature of Chagas Disease

A ASC—/ASC+ (ChD CA v NH)

BH p-value Spot # Spot ID
0.008 262 TUFM
0.045 395 KRT2
0.045 582 KRT1
0.047 261 POTE
0.047 486 ALB
0.047 884 TPM3
0.047 662 ACTB
0.048 148 KRT9
0.048 426 PNP
B MARS CV
1
o 582-KRT1, score: 100
o7 884-TPMS3, score: 49.6
AUC training = 1.0
AUC testing = 1.0
Q .
-
©
S .
[
'Z 0.1
=
) o0 o1 oz o3 o4 o0s o o7 o0s  os 10
o
(=X
0C MARS 80/20
2
|_

0 884-TPM3, score: 100
AUC training = 1.0
AUC testing = 1.0

00 01 02 03 04 05 08 07 08 08 10

False positive rate

FIGURE 5 | MARS modeling of SNO-modified proteins for classification of
clinically asymptomatic ChD patients. For this, log2 transformed protein spot
intensities on each of the Asc+ and Asc™ gels of PBMC lysates from ChD
clinically asymptomatic (ChD CA, n = 25) and normal healthy (NH, n = 30)
controls were used to calculate Asc™/Asc+ ratio (indicates relative proportion
of the protein spot that is SNO modified). (A) List of protein spots showing
significant changes in Asc™/Asc+ ratio in ChD CA patients vs. NH controls at
p-value of <0.05¢_test/welch/BH- The 9 molecules listed in (A) were used as
input for MARS analysis. We employed (B) 10-fold cross-validation (CV) and
(C) 80% testing / 20% training approaches to assess the fit of the model for
training and testing dataset. The ROC curves show the prediction success of
the CV (B) and 80/20 (C) models is high for both training (blue curve) and
testing (red curve) data.

z score range: 0.9-1.954, Figure 8A) and ChD CS patients (9
molecules, p: 2.37 E-03 to 4.52E-03, z score range: 0.8-1.387,
Figure 8B) when compared to the NH controls. The extent of
SNO modification of proteins predicted to contribute to the
proliferation of HEMATOPOIETIC cells (ACTB, CDK4, GRB2,
GSTP1, VCL, YY1, ANXA1, ANXA2, FLNA, THBS1, HBB, and
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FIGURE 6 | MARS modeling of SNO-modified proteins for classification of
clinically symptomatic ChD patients. As in Figure 4, log2 transformed protein
spot intensities on each of the Asc+ and Asc™ gels of PBMC lysates from
ChD clinically symptomatic (ChD CS, n = 28) patients and normal healthy (NH,
n = 30) subjects were used to calculate Asc™/Asc+ ratios for each protein
spot (A) List of protein spots showing significant changes in Asc™/Asc+ ratio
in ChD CS patients (vs. NH controls at p-value of <0.05¢_test/welch/BH- The
11 molecules listed in (A) were used as input for MARS analysis. (B) The ROC
curves show the prediction success of the 10-fold cross validation model is
high for the training data but not for the testing data. (C) The ROC curves for
80/20 model show good prediction success for the training and testing data.
Blue curve: training data, red curve: testing data.

TCF4) was more pronounced in ChD CS (vs. ChD CA) patients
(p: 5.12E-03, z score: 1.0, Figure 8C). However, a —ve z score
values indicated that S-nitrosyation of proteins in ChD CS (vs.
ChD CA) patients may be used to control the acute phase like
signaling (FGA, GRB2, RALB, VCL, z score: —2.449, p = 5.28E-
07), cell proliferation of fibroblasts and migration of cells (z
scores: —1.471 and —1.659, respectively, p: 3.37E-02). Together
the results presented in Figures 6, 7 suggest that changes in SNO
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FIGURE 7 | SNO profile of cell death network in Chagas disease (ChD).
PBMC SNO proteome of ChD clinically asymptomatic (ChD CA, n = 25) and
ChD clinically symptomatic (ChD CS, n = 28) patients and of normal healthy
controls (NH, n = 30) was developed as described in section Materials and
Methods. The RoR values for protein spots that were differentially
SNO-modified (normalized to change in protein abundance) at p-value of
<0.05 were uploaded in the ingenuity Pathway Analysis (IPA) software, and
proteins that changed in RoR at fold change: |> 1.2| were included in
biological modeling by IPA. Shown are molecules that are predicted to be
associated with cell death and that were significantly changed in RoR values in
(A) ChD CA patients vs. NH controls, (B) ChD CS patients vs. NH controls,
and (C) ChD CS vs. ChD CA patients. In the networks, the intensity of red and
green colors show the extent of decrease and increase in protein SNO
modification, respectively. Brownish orange node/lines and blue node/lines
show predicted activation and inhibition, respectively, of a pathway. Gray and
yellow lines are used when the putative effect is not completely understood.

modification levels might serve as an important mechanism in
regulating cell death, cell proliferation, and the development of
inflammatory and fibrotic responses with progression of heart
disease in Chagas disease patients.

DISCUSSION

In this discovery proteomic study, we have focused on identifying
the S-nitrosylation profile of PBMC from seropositive ChD
patients with or without clinical disease in comparison with
seronegative healthy subjects (n = 25-30 per group). We ran 166
2D gels to resolve the protein samples and utilized BODIPY®
FL N- (2-aminoethyl) maleimide labeling to detect changes
in SNO modification in PBMC samples. Of the 635 protein
spots that were detected by 2D-GE, 312 protein spots exhibited
significant differences in abundance and/or SNO-modification
levels (p < 0.05) between any of the two groups, and 249
of these protein spots were successfully identified with high
confidence (Table1). Further, 30 and 28 protein spots were
differentially SNO-modified (RoR fold change > 1.5|, p <
0.05) in ChD CA and ChD CS patients, respectively (Table 1
and Figure 3). Eight of these molecules (732-THBS1, 697-
BEST3, 808-PPBP, 866-S100A6, 424-TPM4, 704-SH3BGRL2,
582-KRT1, and 723-YY1) were significantly increased in SNO
modification levels (indicated by negative RoR values) in ChD
CA as well as ChD CS patients. We postulate that increase
in SNO modification of these molecules in a ChD CA patient
would serve as a warning for the development of Chagas
cardiomyopathy, and absence of SNO of these eight molecules
would indicate the seropositive subject is not at risk of heart
disease development. This hypothesis will need to be tested in
future studies.

We noted increased SNO modification (-ve RoR value)
of three proteins (THBS1, S100A6, abd SH3BGRL2) in ChD
patients in this study, as well in congestive heart failure (CHF)
patients of idiopathic etiology in a previous study (Koo et al,
2016). Conversely, BEST3, PPBP, and YY1 exhibited opposing
pattern, with a decreased s-nitrosylation in CHF patients (Koo
etal,, 2016) and an increase in SNO modification in ChD patients
(Table 1). These findings indicate the common and distinct
features of s-nitrosylation in the development of HF of diverse
etiologies. Also interesting is the presence of PSMB3 as part of
SNO-proteome signature of ChD subjects but not found in our
previous CHF study. This is suggestive of a post-translational
modification induced by the presence of the parasite. Further
studies should be performed in the future in order to validate this
hypothesis.

We performed MARS analysis of the datasets to understand
the diagnostic potential of the SNO proteome datasets in
identifying the disease status in Chagas patients (Figures 5, 6).
MARS creates models based on piecewise linear regressions. It
searches through all predictors to find those most useful for
predicting outcomes and then creates an optimal model by a
series of regression splines called basis functions (Sun et al,
2007; Benedet et al.,, 2018). For this, MARS uses a two-stage
process; the first half of the process involves creating an overly
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FIGURE 8 | SNO profile of inflammation and immune responses network in
Chagas disease. As in Figure 6, PBMC SNO proteome of ChD clinically
asymptomatic (ChD CA, n = 25) and ChD clinically symptomatic (ChD CS, n =
28) patients and of normal healthy controls (NH, n = 30) was developed as
described in section Materials and Methods. The RoR values for protein spots
that were differentially SNO-modified (normalized to change in protein
abundance) at p-value of <0.05 were uploaded in the ingenuity Pathway
Analysis (IPA) software, and proteins that changed in RoR at fold change: |>
1.2| were included in biological modeling by IPA. Shown are molecules that are
predicted to be associated with proliferation and recruitment of immune cells
and fibroblasts and that were significantly changed in RoR values in (A) ChD
CA patients vs. NH controls, (B) ChD CS patients vs. NH controls, and (C)
ChD CS vs. ChD CA patients. In the networks, the intensity of red and green
colors show the extent of decrease and increase in protein SNO modification,
respectively. Brownish orange node/lines and blue node/lines show predicted
activation and inhibition, respectively, of a pathway. Gray and yellow lines are
used when the putative effect is not completely understood.

large model by adding basis functions that represent either single
variable transformations or multivariate interaction terms. In the
second stage, MARS successively deletes basis functions, starting
with the lowest contributor in order of least contribution to the
model until the optimum model is reached. The end result is
a classification model based on single variables and interaction
terms that will optimally determine class identity (Sun et al., 2007;
Benedet et al.,, 2018). The MARS analysis with two approaches
to avoid overfitting of the datasets showed high-to-moderate
confidence in predictive value of differential SNO modification
of select proteins in identifying ChD CA (KRT1 and TPM3) and
ChD CS (PNP, KRT1, ALB, HBB, ACTB) patients (Figures 4,
5). One limitation of these observations is that MARS models
were built on the Asc™/Asc+ ratios of the protein spots, and
did not consider the changes in abundance of the respective
proteins. As yet, our data provide the framework for designing
the multiplex diagnostic assays targeting change in abundance
and SNO modification levels of the host proteins in diagnosing
the exposure to parasite, disease state, and cure post-treatment.
Indeed, in recent years, key s-nitrosylation targets important
in cardiovascular pathophysiology of diverse etiologies were
identified (reviewed in Maron et al., 2013). For example, SNO of
several proteins of RyR2 and L-type Ca*2 channels was found
to be associated with modulation of myocardial contractility,
electromechanical function, and ventricular fibrillation in
congestive heart failure (Burger et al, 2009), while others
have shown the s-nitrosylation of mitochondrial proteins was
protective against ischemia and reperfusion injury (Sun et al,
2007; Murray et al., 2011). Other investigators showed potential
value of nitroyslation/denitrosylation status in identifying the
clinical outcomes after septic shock in experimental models,
though specific target proteins were not identified (Benedet et al.,
2018). Some researchers have employed proteomic approach
and found the s-nitrosylation of proteins important for synapse
function, metabolism, and Alzheimer’s disease pathology in
the brain tissue during early stages of neurodegeneration
(Seneviratne et al., 2016). We propose that the future longitudinal
studies with larger patient cohorts will justly assess and confirm
the potential value of the SNO-modified protein spots identified
in this study in diagnosing the progression of cardiac disease in
Chagas patients.

Ingenuity Pathway Analysis of the proteome datasets (RoR
values, fold change |>1.2|, p < 0.05) pointed to the importance of
SNO modification of several molecules involved in proliferation,
recruitment and migration of immune cells and fibroblasts, and
in cell death pathway during the development and progression
of Chagas disease (Figures 7, 8). A change in SNO modification
of proteins involved in cellular disassembly and disorganization
associated with disruption of filaments that is central to
remodeling of the cytoskeleton and modulation of cell shape for
migration was observed in PBMC of all ChD patients (Figure 8).
Whether s-nitrosylation of proteins involved in immune cell
proliferation, migration and cell death play a cardioprotective or
cardiotoxic role in Chagas disease remains to be seen in future
studies. However, we specifically discuss the proteome profile of
two proteins. Our data showed the SNO as well as abundance
profiles of beta and gamma isoforms of actins (ACTB, ACTG)
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that are the highly conserved proteins of the cytoskeleton and
coexist in most cell types, that are responsible for maintaining
the cell integrity, and also are mediators of internal cell
motility (Chang and Goldman, 2004) were altered in PBMC of
ChD patients (Table 1, Figure 8, Garg et al., 2016). Likewise,
several isoforms of filamin A (FLNA), an actin binding protein
that links actin filaments to membrane glycoproteins, that
interacts with several molecules (e.g., integrins, transmembrane
receptor complexes, and second messengers) (Nakamura et al.,
2011), and that is shown to have effects on cell shape and
cell migration, were also altered by s-nitrosylation in PBMC
of ChD patients (Table1). A recent study has also shown
that filamin A, through its interaction with Drpl (modulator
of mitochondrial dynamics), attenuates the mitochondrial
hyperfission and cardiomyocytes’ senescence in an animal model
of myocardial infarction (Nishimura et al., 2018). We have shown
the mitochondrial dysfunction of electron transport chain, and
mitochondrial production of reactive oxygen species (ROS) was
exacerbated in Chagas disease (Wen and Garg, 2008, 2010;
Lopez et al, 2018), and mtROS provided signal to NFkB-
dependent activation of proinflammatory response in immune
and non-immune cells (Ba et al., 2010; Gupta et al., 2011). These
observations allow us to propose that (a) SNO modification
of a select panel of proteins, specifically actins and filamins,
determines the activation, migration and survival of immune
cells in the circulatory system of Chagas patients, and (b)
proinflammatory activation and/or senescence/death of immune
cells by the ROS produced by mitochondria in the cardiac
environment determines the clinical outcomes in the infected
individuals with the progression of Chagas disease.

In summary, we have presented unbiased SNO proteomic
analysis of PBMC of Chagas disease patients in this study. We
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