',\' frontiers
in Microbiology

REVIEW
published: 23 January 2019
doi: 10.3389/fmicb.2019.00022

OPEN ACCESS

Edited by:
Tonya Michelle Colpitts,
Boston University, United States

Reviewed by:

Saravanan Thangamani,

The University of Texas Medical
Branch at Galveston, United States
Stephen Wikel,

Quinnipiac University, United States

*Correspondence:
Dana L. Vanlandingham
dlvanlan@vet.ksu.edu

Specialty section:

This article was submitted to
Virology,

a section of the journal
Frontiers in Microbiology

Received: 31 October 2018
Accepted: 09 January 2019
Published: 23 January 2019

Citation:

Huang Y-JS, Higgs S and
Vanlandingham DL (2019)
Arbovirus-Mosquito Vector-Host
Interactions and the Impact on
Transmission and Disease
Pathogenesis of Arboviruses.
Front. Microbiol. 10:22.

doi: 10.3389/fmicb.2019.00022

Check for
updates

Arbovirus-Mosquito Vector-Host
Interactions and the Impact on
Transmission and Disease
Pathogenesis of Arboviruses

Yan-Jang S. Huang'?, Stephen Higgs'? and Dana L. Vanlandingham?2*

! Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS,
United States, ? Biosecurity Research Institute, Kansas State University, Manhattan, KS, United States

Hundreds of viruses, designated as arboviruses, are transmitted by arthropod vectors
in complex transmission cycles between the virus, vertebrate host, and the vector.
With millions of human and animal infections per year, it is critical to improve our
understanding of the interactions between the biological and environmental factors that
play a critical role in pathogenesis, disease outcomes, and transmission of arboviruses.
This review focuses on mosquito-borne arboviruses and discusses current knowledge
of the factors and underlying mechanisms that influence infection and transmission of
arboviruses and discusses critical factors and pathways that can potentially become
targets for intervention and therapeutics.
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ARBOVIRUSES, TRANSMISSION, AND HUMAN DISEASES

The first revelation that mosquitoes can vector human pathogens was the discovery of mosquito
transmission of filarial worms by Sir Patrick Manson (Manson, 1878). In 1881, Carlos Finlay
hypothesized that the etiologic agent responsible for yellow fever might be carried by mosquitoes,
and this theory was proven to be true by Major Walter Reed who, in 1900 made the first observation
that a human virus, yellow fever virus (YFV), can be transmitted by mosquitoes. The concept
and term of “arthropod-borne” virus transmission was first introduced to the field of virology
in 1942 (Hammon and Reeves, 1945), and as pioneering discoveries are published, the term
arthropod-borne virus, or arbovirus, continues to evolve. In the publication, “Arthropod-borne
and rodent-borne viral diseases”, by the World Health Organization, members of its scientific
group defined arboviruses as “viruses that share the characteristic of being naturally maintained
through biological transmission between susceptible vertebrate hosts by hematophagous arthropods
or transovarial transmission from infected female arthropods to her progeny” (WHO, 1985). Whilst
mosquitoes are responsible for the transmission of many medically important arboviruses, other
arthropod taxa play an important role in vectoring human viruses as well. For example, ticks,
especially hard ticks under the Ixodidate family, are vectors for several tick-borne flaviviruses such
as tick-borne encephalitis virus (TBEV), Powassan virus (POWYV), and Omsk hemorrhagic fever
virus, and bunyaviruses such as Crimean-Congo hemorrhagic fever virus.

Although human-to-human transmission through the exchange of infectious body fluids has
been reported for several arboviruses, the majority of arthropod-borne transmission associated
with human diseases is achieved by infected arthropods feeding on people. Often, as for example
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in the case of West Nile virus (WNYV), the virus is transmitted
by mosquitoes to reservoir and amplifying hosts that develop
a viremia that is sufficient to infect mosquitoes, and humans,
as dead-end hosts, become infected with potentially severe
and potentially fatal disease. Under certain circumstances, for
example when vectors and naive hosts are abundant, an enzootic
cycle limited to a specific region or period may become epizootic
with large numbers of cases. Because of the requirement for the
virus to replicate in both the arthropod and vertebrate host, it is
immediately apparent that the process of biological transmission
creates multiple opportunities for interactions among vertebrate
hosts, vectors, and viruses. These interactions can occur on
multiple levels that can ultimately impact transmission patterns
and disease pathogenesis. At the ecological level, transmission
patterns of arboviruses can be influenced by the specific species
of vector or vertebrate hosts involved in the transmission
cycle. This is particularly true as the geographic distribution of
vector species and arboviruses is often expanded through the
movements of humans and cargo. This dispersal can lead to
a change in the transmission patterns of arboviruses as they
are introduced into new regions. A particularly good example
is the spread of Aedes aegypti from Africa to the New World
several hundred years ago. Ae. aegypti subsequently became
responsible for the urban transmission of YFV in the Americas
and continues to be a medically important species following
the emergence of dengue virus (DENV), chikungunya virus
(CHIKYV), and Zika virus in the New World (Tabachnick, 1991;
Gould et al., 2003). Culex quinquefasciatus was also introduced
to the New World, presumably near the same time as Ae.
aegypti, and has become an important vector species for WNV.
The ongoing invasion of Ae. albopictus into various locations
since the late 20th century has further created significant
ecological and health threats because of its competence for
various arboviruses (Vanlandingham et al., 2016). Although
the introduction of competent vector species and pathogenic
arboviruses into new geographic regions, where immunologically
naive hosts are present, can profoundly change the epidemiology
of arboviruses, the change in epidemiology and overall disease
burden often has little impact on disease pathogenesis in
humans. In this review, we focus on the discoveries of
interactions between arboviruses, vectors, and vertebrate hosts
at the cellular and molecular levels, which ultimately changed
transmission patterns and disease pathogenesis. Such discoveries
have potential applications as targets for antiviral therapies,
vaccines, or preventive interventions for arboviral diseases.

Of obvious relevance to geographic distribution is the effect
of the environment on both the biology of the vectors but also
the relationships between the vectors and the viruses. Climate,
and particularly temperature and rainfall, have a significant effect
on the distribution and abundance of different mosquito species.
At higher temperatures, the mosquito life cycle is shorter than
at lower temperatures, and typically there is a species-specific
lower temperature threshold at which the species cannot survive.
This in essence determines the geographic distribution of the
species. For instance, Ae. aegypti, one of major vectors for
arboviruses, is more sensitive to low temperature in nature than
Ae. albopictus, limiting its geographic distribution to tropical

and subtropical areas (Chang et al., 2007). Temperature also
influences the kinetics of replication and dissemination of
viruses in the mosquito and becomes a determinant for vector
competence. Under laboratory conditions, extrinsic incubation
period of arboviruses at higher temperatures is often shorter
than at lower temperatures (Liu et al, 2017). In nature, the
fluctuation of temperature has also been found to alter vector
competence of disease vectors (Carrington et al., 2013a,b). As a
consequence of environmental influence on the vector, outbreaks
of arboviruses, for example dengue viruses, can be correlated
with season, specifically those that promote high mosquito
population densities (Campbell et al., 2013). As with the vector,
the environment can influence distribution, abundance, and
even susceptibility of vertebrate hosts. Effects could include
migration patterns and reproductive status, and availability of
young naive hosts. One of the most aggressive dispersal of
CHIKYV in human history was attributed to an abrupt increase
of Ae. aegypti population followed by emergence of the East-
Central-South-African genotype of CHIKV in the coastal region
of Kenya (Chretien et al, 2007). As a consequence of the
outbreaks, millions of individuals were infected in the archipelago
along the Indian Ocean between 2005 and 2006. Numerous
attempts have been made to produce predictive models that
relate environment/climate to disease outbreaks, perhaps the
most successful being for Rift Valley fever virus (Linthicum et al.,
1999). Environmental influences on arboviral infections and
vectors has been reviewed by Mellor (Mellor, 2004). Although it
is logical to suggest that if temperatures increase in specific areas,
then one could anticipate some redistribution of, for example,
tropical mosquitoes into traditionally temperate zones, and as
a consequence, perhaps a geographic change in the distribution
of associated arboviruses, but to date there seems to be no
compulsive proof that this has happened (Gould and Higgs,
2009).

Regardless of the arbovirus or the vector species, a significant
number of arboviral infections in humans are asymptomatic
or cause only a mild transient fever. Arboviruses can also
cause other non-specific symptoms which are observed in most
viral infections, such as rash and myalgia. Specific clinical
manifestations can be generally classified into distinct categories
of clinical outcomes: hemorrhagic fever, encephalitis or central
nervous system involvement, or arthritis (Barrett and Higgs,
2007; Higgs, 2008; Higgs and Vanlandingham, 2016). The
possibility of further development of severe disease is dependent
on the arbovirus and the physiological and immunological
condition of the patient. Several groups of arboviruses can cause
viral hemorrhagic fever including mosquito-borne flaviviruses
under the YFV and DENV serocomplexes, tick-borne flaviviruses
such as Omsk hemorrhagic fever virus and Kyasanur Forest
disease virus, mosquito-borne bunyaviruses in the genus
Phlebovirus such as Rift Valley fever virus, and tick-borne
bunyaviruses in the genus Nairovirus such as Crimean-Congo
hemorrhagic fever virus. The hemorrhagic form of the disease is
likely to have the highest public health significance based on the
case numbers. This is largely due to the increased disease burden
created by DENV, which is the etiological agent for dengue
hemorrhagic fever (Gubler, 1998).
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Another important re-emerging mosquito transmitted
pathogen is YFV, which has caused significant mortality in
Africa since 2015 due to a shortage of the global stockpile of
the 17D vaccine (The Lancet, 2016). The movement of viremic
YF-infected people from Africa to China has caused concern
that a yellow fever outbreak could occur in the immunologically
naive populations in Asia where the urban vector, Ae. aegypti,
is present in large numbers (Calisher and Woodall, 2016).
The other important form of severe disease in humans is
encephalitis and related central nervous system diseases caused
by several arboviruses from different virus families (Higgs and
Vanlandingham, 2016). For example, members of flaviviruses
within the Japanese encephalitis virus and TBEV complexes
are known to cause encephalitic diseases in humans (Higgs
and Vanlandingham, 2016). Similarly, infection of New World
alphaviruses such as Venezuelan equine encephalitis virus and
Eastern equine encephalitis virus also cause encephalitis in
humans. Orthobunyaviruses, in the California serogroup, such as
La Crosse virus, are etiological agents for pediatric encephalitis,
especially in North America (Vasconcelos and Calisher, 2016).
Distinct from the viral hemorrhagic fever diseases caused
by systematic infection, lethal encephalitis is normally the
consequence of infection taking place in an incidental host,
which normally does not develop viremia high enough to
sustain the transmission cycle but which often succumbs to
disease (Weaver and Barrett, 2004). The third form of human
disease caused by arbovirus infection is arthritis, which is mainly
associated with the Old World alphaviruses, for example CHIKV
(Suhrbier et al., 2012; Higgs et al., 2018). Although the disease
is rarely lethal, it often leads to a significant disease burden in
the population and substantial economic loss in endemic regions
(Higgs et al., 2018).

VIRUS-VECTOR INTERACTIONS

Infection of an arthropod vector is typically required to
sustain the transmission cycle of arboviruses. This process
can have a direct impact on the pathological outcome of
arboviruses in humans or other vertebrate hosts and virus-
vector interactions can often determine the epidemic potential
of arboviruses (Schneider and Higgs, 2008). Approaches
used to better understand virus-vector interactions can be
multidisciplinary examining vector biology, molecular genetics,
and arbovirology. Infection with a virus, for example WNYV,
can influence transcription of mosquito genes and subsequent
protein abundance, for example in salivary glands, and can
potentially influence virus infection and disease development
in the vertebrate host (Girard et al., 2010). Effects of saliva
on the vertebrate and its influence on virus infection of the
vertebrate is discussed in more detail below. Recently, it has
also become evident that the presence of the vector microbiome
(symbiotic bacteria) persistently infecting mosquitoes can also
alter virus-vector interactions and affect the infection process
of arboviruses (van den Hurk et al., 2012; Dennison et al.,
2014). Knowledge of virus-vector interactions is often helpful in
identifying critical factors that assist in the development of new

life-saving technologies, including vaccine candidates and novel
control strategies.

Cellular Factors Controlling Arbovirus
Infections in Arthropods

Identification of intrinsic factors, for example immune-related
genes that control the infection process of arboviruses in
arthropods, has long been an important topic for arbovirus
research (Sim et al., 2014). As demonstrated with vectors
collected from different geographic regions, genetic variations
in vector species and populations can often lead to differences
in the functionality of protein products that can subsequently
determine susceptibility and vector competence (Gubler et al.,
1979; Tabachnick et al, 1985). Without access to genome
sequences of all medically important species, studies in the past
have relied on various genetic tools such as electrophoretic
methods and quantitative trait loci mapping to determine the
link between vector genetics and vector competence (Gomez-
Machorro et al., 2004; Bennett et al., 2005). These pioneering
studies and the information obtained from model organisms
generated fundamental knowledge needed to discover genes and
pathways that control the process and outcomes of arbovirus
infections. The development of different molecular biological
techniques in the late 20th century provided tools, for example
RNA interference (RNAi), to examine individual factors as
determinants of the outcome of arbovirus infection in vivo.
Despite these advances and the availability of sequence data for
several important species of mosquito, we still do not understand
the basis of species specific susceptibility to virus infection and
vector competence.

Genetic Approach to Study Vector Competence and
Vector-Virus Interactions

The effort to determine the role of vector genetics on
arbovirus susceptibility originally focused on the study of vector
competence of various mosquito populations for arboviruses and
the impact of selection during mosquito colonization on vector
competence. By targeting the variable genetic loci encoding
several metabolic enzymes, the impact on Ae. aegypti genetics
during the process of colonization was first shown to be
linked with their susceptibility to YFV (Lorenz et al., 1984).
This observation was subsequently examined using comparative
studies on the susceptibility of two subspecies of Ae. aegypti, Ae.
aegypti aegypti, and Ae. aegypti formosus, to other flaviviruses,
dengue virus, and yellow fever virus (Tabachnick et al., 1985;
Vazeille-Falcoz et al., 1999). Using a quantitative genetics
approach Ae. aegypti formosus, which is restricted to sylvan and
rural areas of West Africa, was shown to have significantly lower
susceptibility to human arboviruses due to genetic differences
from its related competent vector species, Ae. aegypti aegypti
(Bosio et al., 1998). Although this topic continues to be actively
investigated in other studies involving vector competence of
different vector populations for urban and sylvatic strains of
DENYV and YFV (Dickson et al., 2014), a substantial challenge has
emerged as some Ae. aegypti formosus have become domesticated
(Brown et al., 2011). For example, in an outbreak caused by
DENV-3 in Cape Verde, an archipelago of 10 islands off the
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Atlantic coast of West Africa, Ae. aegypti formosus was reported
to be a competent vector that is highly susceptible to YFV and
CHIKYV, which are both regarded as re-emerging arboviruses
with high public health significance (Vazeille et al, 2013).
Despite much effort, and availability of some mosquito genomes,
the genetic basis of species and population-specific mosquito
susceptibility/refractoriness to infection, genetic determinants of
dissemination and of transmission are still poorly understood.

Innate Immunity of Arthropod Vectors and Arbovirus
Infection

With evidence indicating that mosquito genetics can influence
susceptibility and competence for arboviruses, the next critical
step was to identify pathways and specific genes that act as
determinants for the infection process. The early search for
determinants of vector competence focused on factors acting as
immune components in mosquitoes and largely benefitted from
the pioneering studies conducted on Drosophila melanogaster,
a model organism used for studies on innate immunity and
pattern recognition receptors (Hoffmann, 2003). One of the
well-characterized pathways discovered was the antiviral RNAi
response that was originally discovered and characterized in fruit
flies (Galiana-Arnoux et al., 2006). Both fruit flies and mosquitoes
share this conserved mechanism which detects the presence of
RNA viruses by detecting double-stranded RNA which triggers
the RNAi response. The presence of double-stranded RNA
indicates viral replication in infected cells (Westaway et al., 1997;
Li et al., 2002). The development of an in vivo RNAi mediated
knockdown system utilizing the Sindbis virus expression system,
in Ae. aegypti mosquitoes, was initially used to knockdown a
variety of endogenous mosquito genes and viral genes in vivo.
This system effectively reduced DENV-2 and YFV transmission
in Ae. aegypti (Olson et al., 1996; Higgs et al., 1998), reduced
luciferase expression in transgenic Ae. aegypti (Johnson et al.,
1999), and knockdown of a GATA factor which functions as a
repressor gene in blood feeding Ae. aegypti mosquitoes (Attardo
et al,, 2003). Utilizing a similar alphavirus based o’nyong-nyong
virus expression system, the importance of RNAi in limiting the
replication of a medically important arbovirus in mosquitoes was
demonstrated in Anopheles gambiae infected with o’nyong-nyong
virus (Keene et al., 2004). Additional supportive evidence for the
importance of RNAi in limiting arbovirus infections was obtained
through additional experiments using DENV and Sindbis virus
in Ae. aegypti (Campbell et al., 2008; Sanchez-Vargas et al,
2009; Khoo et al, 2010). Interestingly, the antiviral RNAi
response in mosquitoes is also modulated by environmental
conditions, especially extrinsic temperature. Cooler temperatures
may increase the susceptibility of mosquitoes to arboviruses by
impairing the RNAi response (Adelman et al., 2013).

As more data suggests that RNAi can mediate potent antiviral
responses in mosquitoes, strategies utilized by arboviruses
to escape the immune response have also been discovered.
Through the expression of subgenomic RNA molecules, several
arboviruses have developed an efficient strategy to ensure the
ability to replicate by sequestering the antiviral RNAi machinery
(Moon et al., 2015). In contrast to the significant advancements
made in mosquitoes, the importance of RNAi-mediated antiviral

responses is less well understood in ticks. Evidence from in vitro
studies have shown that replication of Langat virus also triggers
the RNAi response in Ixodes scapularis ticks, most likely through
similar mechanisms as are found in mosquitoes (Schnettler
et al, 2014). Despite observations that indicate RNAi plays
an important role in arthropod antiviral immunity and the
initial success in using RNAi to develop control strategies for
arboviruses (Franz et al., 2014), the use of RNAi as a control
measure remains limited. For example, a genetically engineered
RNAI response targeting DENV failed to consistently maintain
resistance in transgenic mosquitoes (Franz et al., 2009, 2014).
The future of exploiting the RNAi response to produce pathogen-
resistant arthropods remains unclear. However, the results thus
far with RNAi are similar to other findings that mosquitoes
rely on multiple mechanisms to defend against infection by
arboviruses. For example, o’nyong-nyong virus replication is
impeded by the heat shock protein 70B in Anopheles gambiae
(Sim et al., 2007). The Toll, IMD, and Jak-STAT pathways have
been shown to be activated in response to Sindbis virus and
DENV in Ae. aegypti and WNV in Culex pipiens (Xi et al,
2008; Luplertlop et al., 2011; Zink et al., 2015). Interestingly,
while arthropod vectors develop immune responses to limit viral
infection, arboviruses have also developed what may be regarded
as immune-escape strategies. This becomes evident by further
characterization performed with CHIKV and Semliki Forest virus
that showed infection of alphaviruses results in the suppression
of signaling pathways (Fragkoudis et al., 2008; McFarlane et al.,
2014).

Genomic and Transcriptomic Tools to Characterize
the Vector-Virus Interactions

In addition to studies focused on immune responses, the broader
picture of how arthropod vectors interact with arboviruses
was further clarified once tools became available to study
genomes and transcriptomes. Progress was particularly evident
for studies on medically important mosquito species with
available genomic sequences. Through the characterization of
transcriptome responses, it became clear that the infection
process of arboviruses involves complex responses related to
detoxification, metabolism, immunity, DNA replication, protein
translation, and apoptosis (Sanders et al., 2005; Girard et al.,
2010; Tchankouo-Nguetcheu et al., 2010; Colpitts et al., 2011).
Several genes identified in these transcriptome studies have been
further characterized to determine the importance of arbovirus
infections in arthropod vectors. Because of its importance in
limiting virus infections in vertebrate hosts, apoptosis signaling
pathways were evaluated in a number of studies; however, the
role of apoptosis in arbovirus infection in arthropod vectors
remains contradictory (Wang et al., 2008, 2012; O’Neill et al,,
2015; Engetal., 2016). This may be due to the fact that approaches
used to knockdown individual caspases and inhibitors failed
to consider the hierarchical organization and complexity of
apoptotic pathways.

In addition to the concern that the experimental approach
of manipulating individual genes may not produce conclusive
and biologically relevant results, there is evidence indicating
that different components of a physiological response such
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as digestion, nutritional status, and reproductive status may
be involved in both the defense mechanisms of arthropod
vectors and also play a critical role in the arboviral life cycle
(Wikel et al., 2017). Such complexity is well exemplified by
studies showing the ubiquitin proteasome pathway is involved
in the arthropod immune response and release of infectious
viruses. By monitoring and manipulating the expression of
a mosquito ubiquitin protein, Ub3881 in various tissues, its
antiviral function was demonstrated by labeling the DENV
envelope protein for degradation as an immune response to
limit viral infection (Troupin et al, 2016). In addition to its
role in innate immunity, the ubiquitin proteasome pathway is
also critical for the release of DENV particles from an infected
midgut of Ae. aegypti (Choy et al, 2015). Although these
studies have identified several cellular factors contributing to the
susceptibility and refractoriness of specific arthropod vectors to
arboviruses, it has become clear that vector competence is likely
to be determined by multiple pathways in arthropods. While
manipulation of individual genetic products remains the only
feasible approach to characterizing vector-virus interactions, the
broad view on how different pathways and their interactions
can influence vector competence for arboviruses is still needed
for improved mechanistic understanding of the infection,
dissemination, and transmission processes of arboviruses in
arthropod vectors.

Viral Genetics and Arbovirus Infections
in Arthropod Vectors

Whilst the manipulation of individual genes in arthropod
vectors is helpful for identifying genes and pathways that
are involved in the arboviral infection process, the other
aspect of vector-virus interactions is the virus. Virus mutants
with distinct phenotypes have been used to infect arthropods
in order to identify the relationship between viral sequence
and phenotype (McElroy et al,, 2005; Anderson and Rico-
Hesse, 2006; Kenney et al., 2012). This approach has led to
substantial advancements in the field of arbovirology due to
the low fidelity during the replication of the RNA genome
among medically important arboviruses in the families of
Flaviviridae, Togaviridae, and Bunyaviridae leading to rapid
viral genetic changes (Xia et al., 2016). In nature, the
evolution of arboviruses has repeatedly resulted in changes in
epidemic potential and transmission patterns (Davis et al., 2005;
Schuffenecker et al., 2006; Schuh et al., 2014). Several of these
examples were found to be associated with increased infectivity
or transmission efficiency in arthropods which becomes the
mechanism for the emergence and re-emergence of arboviruses
(Moudy et al, 2007; Dubrulle et al., 2009). Characterization
of viral mutants, either isolated from nature or derived from
laboratory experiments, can aid in the characterization of
arboviral genotypes that can alter the phenotype of arboviruses
in arthropod vectors.

Yellow Fever Virus as a Model to Study Viral Genetics
and Its Impact on Vector-Flavivirus Interactions

Although the techniques of determining genetic sequences
of arboviruses did not become available until the 1980s,

observations indicating that mutations result in different
phenotypes and consequences of infection were reported prior
to the genomic era. The earliest example in the literature may
be the effects caused by the serial passage of YFV in chicken
embryos originally used to generate the attenuated 17D strain.
Although the genetic composition was unknown, the attenuated
17D strain was shown to be deficient in disseminating from
the midgut of infected mosquitoes (Whitman, 1939; Miller
and Adkins, 1988; McElroy et al, 2008). This phenotype
was later demonstrated to be caused by differences in the
genetic composition between the attenuated and virulent strains
(McElroy et al., 2005, 2006a,b). The distinct phenotypes between
virulent and attenuated strains of YFV in mosquitoes provide
a unique model to characterize vector-virus interactions. The
identification of individual determinants in the viral genome
which control the outcome of infection in mosquitoes has not
yet been achieved. However, knowledge derived from these
earlier studies has led to several discoveries indicating that
domain III of the flavivirus envelope protein of YFV, and of
other flaviviruses, is a critical region for the determination of
infectivity in arthropod vectors (Erb et al., 2010; Huang et al.,
2014).

Emergence of West Nile Virus Genotypes and Its
Public Health Significance in North America

Since the introduction of WNV into the United States in
1999, the study of viral genetics and its influence on virus-
vector interaction in nature has been extensively carried out
by genotypic and phenotypic analyses (Mann et al., 2013). The
first significant increase in its clinical incidence and public
health significance was attributed to the emergence of the North
America/WN 2002 genotype. This genotype efficiently displaced
the New York 1999 genotype with two major surges in the
numbers of human infections with neurological diseases in 2002
2003 and 2012. Its selective advantage was later determined to
be the reduced extrinsic incubation period in C. pipiens and
C. tarsalis but not the dosage required for the establishment
of infection in mosquitoes (Ebel et al., 2004; Moudy et al,
2007; Vanlandingham et al., 2008). While phylogenetic analyses
suggest the change of phenotype is linked to the single V159A
substitution in the envelope protein (Davis et al., 2005), direct
experimental evidence, using a reverse genetics approach to
characterize the substitution, is still missing to test the hypothesis
that the gain of selective advantage in mosquitoes is due to
the single mutation. In the last 20 years, primarily because of
the availability and use of molecular methods, especially those
based on Polymerase Chain Reactions (PCR), it has become
possible to detect viruses in mosquitoes that were not revealed
using traditional methods because they killed neither cell cultures
nor suckling mice. A comprehensive review of these arthropod-
specific viruses that do not infect vertebrates and are maintained
by transovarial transmission was recently published (Calisher
and Higgs, 2018). A question that has been asked is whether
or not these viruses may influence vector infection with other
closely related viruses. Potential interference with WNV was
evaluated by Goenaga et al. (2015) and Hall-Mendelin et al.
(2016).
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The Relationship Between Chikungunya Virus
Mutation and Vector Competence

Another example that viral genetics contributes to the epidemic
potential of an arbovirus was reported in the re-emergence of
CHIKV in the Indian Ocean in 2005 (Huang et al, 2018).
Historically, CHIKV is known to be transmitted by Ae. aegypti
in its endemic regions, especially Africa and Southeast Asia.
The change of its primary vector species to Ae. albopictus
was reported in an outbreak on several islands in the Indian
Ocean (Reiter et al., 2006). With its rapid dispersal in the
late 20th century, the species was also subsequently shown
to trigger local transmission of CHIKV in Italy and France
(Angelini et al., 2007; Gould et al.,, 2010). Although mutations
subsequently detected in other regions of its genome may
contribute to this process, the adaptation of CHIKV to Ae.
albopictus was primarily driven by the acquisition of the A226V
mutation in its E1 protein (Tsetsarkin et al., 2007; Tsetsarkin and
Weaver, 2011). Surprisingly, despite the fact that the selective
advantage in transmission created by the E1-A226V mutation
in the East-Central-South-African genotype is maintained in
several epidemics recorded in different geographic regions (de
Lamballerie et al., 2008), the introduction of CHIKV into the New
World in 2014 was caused by the dispersal of its Asian genotype,
which lacks the A226V mutation. As the introduction and
autochthonous transmission of the East-Central-South-African
genotype was detected in Brazil in 2015 (Nunes et al., 2015), it
is unclear if the A226V mutation will be selected through the
transmission by Ae. albopictus in the New World.

Genetic Reassortment of Bunyaviruses and
Vector-Virus Interactions

In contrast to genetic drift created by accumulation of individual
mutations in viruses containing single-stranded RNA genomes,
genetic shift is attributed to the reassortment of segmented
genomes (Briese et al., 2013). Segment reassortment can
potentially cause a large number of genetic changes in an
arbovirus. Among the medically important arboviruses, the
process of genetic reassortment is unique to viruses in the family
Bunyaviridae (Briese et al,, 2013). Segment reassortment can
occur if either the vertebrate host or the arthropod vector is
simultaneously infected with two or more related viruses. In
nature, reassortant bunyaviruses have been previously isolated
from both vertebrate hosts and arthropod vectors (Klimas et al.,
1981; Reese et al., 2008). This process has been reported to
contribute to the emergence of new and more virulent viruses.
A reassortment event in 1997 and 1998, between Bunyamwera
virus and Batai virus (BATV) resulted in the emergence of Ngari
virus (NRIV), a reassortant orthobunyavirus, which caused a
large viral hemorrhagic fever outbreak in several East African
countries, including Kenya and Somalia (Gerrard et al., 2004;
Briese et al., 2006). NRIV contains the S and L segments of
Bunyamwera virus and the M segment of BATV. Because the
M segment encodes the structural genes of BATYV, the virion
of NRIV is likely to share similar structure and biochemical
properties of BATV. NRIV was found to infect Anopheles species
mosquitoes which are also the likely vector species for BATV
(Huhtamo et al.,, 2013; Ochieng et al., 2013; Liu et al., 2014;

Odhiambo et al., 2014). The finding demonstrates that the
structure genes encoded in the M segment are likely to contain
the determinants for vector range, infectivity, and efficiency of
developing the disseminated form of infection in arthropods, as
previously reported over 30 years ago (Beaty et al., 1981, 1982;
Sundin et al., 1987).

The mechanisms controlling virus genetic reassortment are
not completely understood. Characterization of the dynamics
of reassortment has been investigated using mosquitoes fed
two La Crosse virus strains in order to induce homotypic
reassortment (Beaty et al., 1985). Interestingly, the incidence
of dual infection and presumably the subsequent genetic
reassortment significantly increases if two viruses are ingested
simultaneously or separately with an interval less than 48 h
(Beaty et al., 1985). Although the conclusion from the
La Crosse virus dual infection studies are different from
another superinfection model based on dual infections of
the alphavirus, CHIKYV, and the flavivirus, DENV (Nuckols
et al., 2015), these studies demonstrate that superinfection of
multiple arboviruses is likely to occur through the ingestion of
viremic blood meals. Although the dynamics of superinfection
has been previously studied, another important question that
remains unaddressed is the packaging mechanisms of the three
genomic segments to generate reassortant viruses. It is generally
believed that the packaging of the three genomic segments
is not a random process and requires complex interactions
between viral RNA and nucleoproteins in order to generate
a reassortant bunyavirus (Pringle et al., 1984; Hornak et al,
2016).

Infection With Symbiotic Bacteria and

Vector-Virus Interactions

The role of symbiotic bacteria in persistently infected mosquitoes
has become increasingly studied and understood in vector-
virus interactions (Wikel, 1996; Higgs, 2004). There have been
several species of symbiotic bacteria that have been found to
interfere with the infection of arboviruses in arthropod vectors.
A particularly good example is the infection of Wolbachia in
mosquitoes that can lead to a decrease in vector competence
for arboviruses (van den Hurk et al., 2012). Persistent infection
of Wolbachia has been reported in all arthropod species except
for Ae. aegypti. Species of Wolbachia have been evaluated
for their potential to suppress the vector population due to
the discovery that artificially infected Ae. aegypti can lead
to cytoplasmic incompatibility and embryonic lethality when
mated with uninfected Ae. aegypti in nature (Hoffmann et al.,
2011). Wolbachia-based vector control strategies have been
shown to suppress the replication of WNV in its vector,
C. quinquefasciatus (Glaser and Meola, 2010). Other studies
have also demonstrated its interference in the replication and
transmission of DENV, CHIKV, and Zika virus in Ae. aegypti
(Walker et al., 2011; van den Hurk et al,, 2012; Aliota et al,,
2016); however, the bacteria did not show any significant
reduction of vector competence of Ae. aegypti for YEV and
C. tarsalis for WNV (van den Hurk et al., 2012; Dodson et al.,
2014).
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Several mechanisms have been proposed to explain the
resistance to arboviruses induced by Wolbachia infection. The
majority of available evidence suggests Wolbachia infection
leads to the activation of immune responses and limits
viral replication (Terradas and McGraw, 2017). However,
mechanistic evidence regarding the pathways and effector
genes is still needed (Bian et al., 2010; Pan et al, 2012
Rances et al, 2012, 2013). With its success in limiting
arbovirus replication in Ae. aegypti, it is no surprise that
this approach was further evaluated as a control strategy for
Ae. albopictus (Moretti et al., 2018), a highly invasive vector
species competent for various arboviruses. Although initial
evidence suggested that Ae. albopictus, artificially infected by
an Wolbachia strain derived from Drosophila under laboratory
conditions, can interfere with infection of CHIKV and DENV
(Blagrove et al., 2012, 2013), infection of Wolbachia among
Ae. albopictus in nature did not lead to any significant
impairment of infection and dissemination of CHIKV (Ahmad
et al., 2017). As Wolbachia infection triggers a different set of
physiological responses in Ae. albopictus, particularly immune
responses, further evaluation is needed before a comprehensive
understanding of what impact Wolbachia infection has on
infection of arboviruses in Ae. albopictus (Molloy and Sinkins,
2015).

In contrast to the impact of the artificial introduction of
Wolbachia into medically important mosquito species, another
approach focuses on characterizing the interactions among
arthropod vectors, arboviruses, and symbiotic bacteria. This type
of interaction has been shown to be particularly important to
the susceptibility of mosquitoes to arboviruses. For example, the
colonization of microbiota in the midgut of Ae. aegypti triggers
basal immune responses that suppress the infection of DENV
(Ramirez et al, 2012). Although the majority of the bacterial
population in a mosquito midgut and their interactions remains
to be investigated, it has already become clear that specific species
may have an inhibitory effect, not only to arboviruses, but also to
other pathogenic microorganisms (Ramirez et al., 2014).

VECTOR-HOST INTERACTIONS AND
THEIR IMPACT ON TRANSMISSION AND
DISEASE PATHOGENESIS OF
ARBOVIRUSES

Arbovirus infections are established through the feeding
of arthropod vectors on vertebrate hosts, a much more
complex process than the simple inoculation of arboviruses
using, for example, needle inoculation. This natural feeding
process creates complicated interactions between arthropod
vectors and vertebrate hosts as arboviruses are injected
through the saliva, which quickly elicits responses to the
feeding process from the vertebrate hosts. Depending on the
duration of feeding and quantities of arboviruses delivered,
non-viremic transmission of arboviruses among co-feeding
arthropod vectors can also be created in at least two
types of medically important arthropods, namely ticks and

mosquitoes. Therefore, such interactions have become important
factors in determining the transmission patterns and disease
pathogenesis of arboviruses. This is discussed in more detail
below.

Roles of Arthropod Saliva in Disease

Pathogenesis

A recent review by Higgs et al. (2017), describes mosquito
modulation of arbovirus-host interaction, whilst Higgs and
Vanlandingham (2016) compare and contrast ticks and
mosquitoes with an emphasis on tick-borne transmission.
Although many of the proteins present in mosquito saliva have
unknown functions, there are others that are known to alter
normal physiological functions of the host which facilitates
the acquisition of blood meals. The experimental transmission
of arboviruses in animal models has shown that saliva leads
to more severe disease than virus inoculation without saliva
(Schneider and Higgs, 2008). Functional characterization
has demonstrated multiple roles of saliva in vasodilation,
pain suppression, anti-inflammation, anti-coagulation, and
anti-hemostasis. Pathogen transmission with saliva has also
been found to alter host immune responses. These functions
often are associated with the increase of viral replication and
dissemination in vertebrate hosts and the augmentation of
pathological outcomes mainly by compromising the host
immune mechanisms.

In several in vitro experimental systems, the growth of
arboviruses can be promoted by the addition of salivary
components or their extracts, which suppress the production
of antiviral cytokines (Fuchsberger et al., 1995; Hajnicka et al.,
1998; Limesand et al., 2003). Although the cell lines chosen in
these studies may not necessarily reflect the tissue tropisms of
arboviruses, it has become evident that the immunomodulation
caused by arthropod saliva is critical for disease pathogenesis
of different arboviruses. In spite of the differences in the
feeding processes between ticks and mosquitoes, the presence of
salivary gland components from both species has been shown
to cause enhancement in disease severity of several arboviruses
belonging to different virus families in different animal models
(Dessens and Nuttall, 1998; Edwards et al., 1998; Limesand
et al., 2000; Schneider et al., 2006; Hermance and Thangamani,
2015). While the species of vertebrate hosts are different in
various studies, the immunomodulation properties of saliva from
mosquitoes generally promote the T2 immune response and
prevents the clearance of arboviruses and other intracellular
pathogens transmitted by arthropods, which is mainly driven
by the Tyl immune response (Kovar et al, 2002; Schneider
et al., 2004; Skallova et al., 2008; Thangamani et al., 2010; Cox
et al., 2012). However, the induction of the Ty2 response is
less apparent in the feeding of I. scapularis ticks infected by
POWY, indicating the fundamental difference in the saliva-
mediated immunomodulation between mosquitoes and ticks
(Hermance and Thangamani, 2014). Using WNV as a model,
the immunomodulation by mosquito saliva can also be shown
by the change in the recruitment process of T lymphocytes
to the site of infection and ultimately modulate the antigen
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presentation cell signaling critical for the dissemination of
arboviruses (Schneider et al., 2010). The increased recruitment
of neutrophils and monocytes and antigen presentation cell
migration to draining lymph nodes can also be induced when
mosquito salivary gland extracts and DENV were delivered
through needle inoculation (Schmid et al., 2016). In addition
to the change in the local tissues and lymph nodes, the
effect induced by the salivary gland components was also
demonstrated to be systemic. When challenge with Rift Valley
fever virus was performed in the presence of salivary gland
extract, significant increase in viral load of blood, liver, and
brain was observed (Le Coupanec et al., 2013). Whilst the
feeding process of mosquitoes and ticks are remarkably different,
there has been a significant level of similarity reported in the
immunomodulation caused by tick and mosquito saliva. The
stimulation in the cell recruitment process by tick saliva has also
been found to be important for disease pathogenesis of tick-
borne arboviruses. During the prolonged feeding period of ticks,
phagocytes and neutrophils were reported to be the primary
cell types recruited to the feeding sites in the very early stage
of feeding from POWV-infected ticks. Interestingly, the same
study also indicated that macrophages and fibroblasts are likely
to be the primary cell types infected by POWV during the
early stage, although the establishment of infection coincided
with the activation of pro-inflammatory cytokines (Hermance
et al, 2016). Interestingly, in spite of the similarity in the
stimulation of cell recruitment process by mosquito and tick
saliva, changes in the cytokine expression profile induced by
tick saliva did not reveal the preferential change toward the
Ty2 response. The production of pro-inflammatory cytokines
was triggered in mice exposed to ticks infected by POWV
(Hermance and Thangamani, 2014). The observation may be
a reflection of the fundamental difference in the cellular and
molecular interactions triggered by saliva between mosquito
and tick feeding. Such knowledge may be critical for our
understanding of the establishment of infection and disease
pathogenesis of mosquito-borne and tick-borne arboviruses in
vertebrate hosts.

With the increased understanding of the dynamics of
immunomodulation caused by arthropod saliva, several studies
have been designed to determine the specific functions of
individual salivary components. Targeting the innate and
adaptive immune responses, there have been several known
mechanisms that cause the enhancement of arbovirus infection
in the presence of arthropod saliva. Type-I interferon (IFN) and
its downstream signaling pathways, one of the most important
mechanisms in innate antiviral immunity, can be impaired at
different levels by salivary proteins. Several molecules in the
saliva of Ae. aegypti have been shown to suppress the type-
I IFN signaling pathway in vitro by suppressing the mRNA
expression of type-I IFN, IFN-responsive element, and effector
genes (Surasombatpattana et al., 2014). Similar suppression
of type-I IFN was also observed with the treatment of tick
salivary gland extract with detailed mechanisms to be determined
(Hajnicka et al., 1998). In contrast to the shutdown of innate
immune signaling that mediates broad-spectrum antimicrobial
immunity, adaptive immune responses can also be compromised

by salivary protein components of arthropods. For example, the
significant increase of DENV viremic titers is associated with the
reduced level of cytokines related to adaptive immune responses
caused by aegyptin, an Ae. aegypti salivary protein (McCracken
etal., 2014). In addition to the impairment of immune responses,
other novel pathways have also been suggested. Through the
secretion of a serine protease molecule, mosquito saliva has
been shown to promote the infection of DENV by increasing
binding affinity to cellular receptors such as proteoglycan
molecules and the induction of cell migration, which can
potentially facilitate the dissemination of virus (Conway et al.,
2014).

With our increased understanding of the importance of
salivary proteins in the enhancement of arbovirus infection,
it has become apparent that the salivary components of
arthropods are critical for the pathogenesis of arboviruses.
Such knowledge may later become helpful in the development
of animal models for disease research and strategies for
intervention and prevention of severe diseases. However,
our readers must keep in mind that the results must
be interpreted with caution as the modulation of immune
responses and enhancement of infection are often observed
in laboratory animals that are not natural hosts for most
arboviruses.

Vector-Host Interactions and Arbovirus

Transmission

In addition to the enhancement of arbovirus infection,
interactions between arthropod vectors and vertebrate hosts
can also be deciding factors for transmission (Higgs and
Vanlandingham, 2016; Higgs et al, 2017). As the vectors
inject infectious viruses into vertebrate hosts, the process
transiently creates a unique environment that contains
high concentrations of arboviruses and can promote an
alternative but important mode of transmission called
non-viremic transmission. Such a process occurs when
feeding of infected and susceptible arthropod vectors takes
place simultaneously in close proximity to each other on
a vertebrate host. The term non-viremic transmission was
initially used to describe this mode of transmission because
of the lack of detectable viremia in a vertebrate host, and
can also be referred to as non-replicative transmission. The
process promotes the transmission of some arboviruses as
it may not necessarily require a viremic vertebrate host.
Through the creation of a local environment that contains
a high viral load, this mode of transmission can happen in
vertebrate hosts that are resistant or not permissive for viral
replication to develop a viremia of a magnitude that exceeds the
threshold titer that is generally assumed necessary to facilitate
transmission.

Non-viremic transmission was described in Thogoto virus,
an orthomyxovirus transmitted by the African brown ear tick
Rhipicephalus appendiculatus in a guinea pig model (Jones et al.,
1987). Whilst guinea pigs normally do not develop high viremic
titers to sustain Thogoto virus transmission, transmission was
found to occur through co-feeding of infected adults with

Frontiers in Microbiology | www.frontiersin.org

January 2019 | Volume 10 | Article 22


https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Huang et al.

Arbovirus-Vector-Host Interactions

uninfected adults or nymphs on the same guinea pig without
detectable viremic titers. As ticks often feed for a prolonged
period on vertebrate hosts, it is no surprise that this type
of transmission can significantly increase during a longer co-
feeding process which enables longer exposure to infectious
viruses (Jones and Nuttall, 1989). R. appendiculatus has been
shown to be more efficient than Amblyomma variegatum as
donor ticks in mediating non-viremic transmission. This finding
indicates that non-viremic transmission may take place during
co-feeding of certain tick species at higher incidence (Jones
et al., 1990). The characterization of non-viremic transmission
was quickly expanded to the characterization of transmission
and maintenance mechanisms for TBEV, a zoonotic flavivirus
that is maintained in wild animals, especially rodent species
(Labuda et al, 1993a,b). Interestingly, in addition to non-
viremic transmission taking place in vertebrate hosts resistant
to TBEV infection, non-viremic transmission can also have
significant influence on the dynamics of TBEV transmission
and evolution in susceptible vertebrate hosts. Non-viremic
transmission through co-feeding I ricinus has a significantly
higher incidence in vertebrate hosts that are susceptible to
TBEV (Labuda et al., 1993c). More importantly, this mode of
transmission can also occur in vertebrate hosts which have
immunity against TBEV (Labuda et al, 1997). The finding
suggests non-viremic transmission can take place for a longer
period of time and be independent of viremia. It has several
important impacts on the evolution and spread of tick-borne
arboviruses. This process can result in the selection of avirulent
strains with delayed onset of viremic phase and low mortality in
vertebrate hosts. Non-viremic transmission is also advantageous
for viral transmission because it allows ticks to complete the
engorgement process. This hypothesis is also supported by
the finding that genetic elements of the European subtype
of TBEV promote non-viremic transmission by showing a
higher incidence of non-viremic transmission in I ricinus than
the Siberian subtype (Khasnatinov et al., 2016). However, a
significant gap of knowledge is the undetermined virulence
of both subtypes in vertebrate hosts as natural reservoirs. An
overview of non-viremic and salivary-activated transmission of
tick-borne viruses is provided by Higgs and Vanlandingham
(2016).

Whilst non-replicative or non-viremic transmission was
mainly observed through the prolonged co-feeding of ticks,
it was later demonstrated that non-viremic transmission can
also take place in mosquito-borne arboviruses (Huang et al,
2017). Secretion of WNV at sufficiently high concentration
by infected donor mosquitoes was shown to result in non-
viremic transmission to uninfected recipient mosquitoes (Higgs
et al., 2005). This process relies on a transient non-propagative
environment with high viral load at the sites where co-feeding
of multiple arthropods takes place (Reisen et al., 2007). Because
the increased temporal and spatial separation in the feeding
of donor and recipient arthropods is likely to reduce the
availability of infectious viruses, the efficiency of non-viremic

transmission is likely to be higher when arthropod vectors
are co-feeding simultaneously in close proximity. However,
transmission of WNV can also be achieved with temporal and
spatial segregation (McGee et al., 2007). The finding further
confirms the importance of this mode of transmission for
the transmission of mosquito-borne viruses as it allows the
transmission to occur in the sequential feeding of donor and
recipient mosquitoes.

CONCLUSION

Although our understanding of the interactions among
arboviruses, arthropod vectors, and vertebrate hosts continues
to improve, it is apparent that arthropod vectors do not merely
serve as “mobile syringes” to deliver arboviruses to susceptible
vertebrate hosts. Arthropods vectors, which actively mount
immune and anti-viral responses to limit arbovirus infections,
can provide a unique intracellular environment to select and
promote the transmission of specific viral populations which
can ultimately change the transmission patterns of arboviruses.
Genetic engineering to enhance vector immune or anti-viral
responses, or manipulation of the vector microbiome to reduce
vector competence or suppress vector populations are all being
considered as options to reduce the incidence of vector-borne
viruses. Genetic approaches to modulate viral determinants
of infection, dissemination, and transmission may help in the
rationale design of safe and eflicacious vaccine candidates that
cannot be transmitted by arthropods. When feeding on vertebrate
hosts, vector-host interactions have been proven to play a critical
role in disease pathogenesis and further create alternative routes
of transmission. Understanding these interactions have been
shown to provide unique strategies for the development of
animal models for disease pathogenesis. We can certainly expect
that as our understanding continues to grow, new technologies
will be developed. Combined with other findings in the field,
a better understanding of these unique interactions will likely
contribute to the formulation of more novel control strategies
in the future. Applications of the relatively recently developed
CRISPR technology, for example, not only offers a new method
for genetic manipulation, but furthermore may be used as a
gene drive to establish desirable traits such as resistance to
infection in vector populations (National Academies of Sciences,
2016).
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