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Editorial on the Research Topic

The Responses of Marine Microorganisms, Communities, and Ecofunctions to Environmental

Gradients

From estuaries tomarginal seas and open oceans, from tropical warm pools to subtropical gyres and
polar cryospheres, from sunlit surface water to twilight zone and pitch-black abyssopelagic water,
from water columns to sediments and deep subseafloor biospheres, marine ecosystems experience
diverse environmental gradients (Karl, 2007; Dang and Jiao, 2014). In addition to these large-scale
gradients, small-scale, and micro-scale gradients of various physicochemical factors are common
in the ocean; in particular, in marginal seas and coastal environments (Kappler et al., 2005; Stocker,
2012). The diverse gradients of physicochemical parameters, nutrients, and chemicals serving
as electron donors and acceptors contribute to the creation of habitat heterogeneity and novel
locales along a gradient may create unique niches for any given microorganism. Whether at the
surface of a marine snow particle or alga, at the edges of an oxygen minimum zone (OMZ), in
marginal sea methane-seep sediments, or on a chimney wall of a deep-sea hydrothermal vent, these
interfaces provide hotspot habitats with sharp physicochemical gradients that may host diverse
yet unknown microorganisms that facilitate yet unknown biogeochemical processes (Hügler and
Sievert, 2011; Wright et al., 2012; Dang and Lovell, 2016). With the progress of marine molecular
microbial ecology and “omics” techniques, certain environmental keystone microorganisms have
been discovered at some of these interfaces: such as the anaerobic methane-oxidizing (ANME)
archaea in methane-rich sediments (Valentine and Reeburgh, 2000), cable bacteria that facilitate
electrogenic sedimentary sulfide oxidation (Nielsen and Risgaard-Petersen, 2015), neutrophilic
zetaproteobacterial iron-oxidizing bacteria (FeOB) in deep-sea hydrothermal microbial mats and
at abyssal basaltic glass-seawater and coastal metal-seawater interfaces (Emerson et al., 2010;
Dang et al., 2011; Henri et al., 2016), anaerobic ammonium-oxidizing (anammox) bacteria and
SUP05 sulfur-oxidizing bacteria (SOXB) in coastal and oceanic OMZs (Dick et al., 2013; Oshiki
et al., 2016), and sulfur-oxidizing and/or hydrogen-oxidizing Campylobacteria in the proposed
new phylum Campylobacterota (formerly known as Epsilonproteobacteria; Waite et al., 2018)
at seawater, hydrothermal vent, and subseafloor redox interfaces (Campbell et al., 2006; Grote
et al., 2012; Dick et al., 2013; Han and Perner, 2015; McNichol et al., 2018). Even the ubiquitous
marine ammonia-oxidizing Thaumarchaeota, discovered only a decade ago (Könneke et al., 2005),
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can now be divided into two distinct ecological groups according
to the vertical physicochemical profile of marine water, the
“shallow clade” and the “deep clade” (Hatzenpichler, 2012).
The ongoing discovery of unique ecophysiological functions of
marine Bacteria and Archaea will contribute to a conceptual
rewriting of biogeochemical pathways in the marine C, N, S, and
Fe cycles.

The characterization of how the abundance and spatial
distribution of marine microorganisms, the structure of
microbial communities and their provided ecosystem functions
respond to the diverse environmental gradients is of fundamental
importance to our understanding of the microbial ecology and
biogeochemistry of the oceans. This rationale defines the aim and
scope of this Research Topic. The contributions of environmental
gradients to the diversity of marine microorganisms and their
metabolic potentials may play important roles in maintaining
the stability and functions of the estuarine, coastal and marginal
sea ecosystems, which have been experiencing a multitude of
anthropogenic perturbations (Dang and Jiao, 2014; Damashek
and Francis, 2018). The responses of the affected microbial
communities to human-induced environmental impacts are
currently still difficult to predict and the understanding of
microbial processes and mechanisms at the community level is
the key for predictivemodeling, which also requires the collection
of large empirical data sets (Haruta et al., 2013; Hanemaaijer
et al., 2015; Burd et al., 2016). Greater understanding of microbial
responses to natural and anthropogenic environmental gradients
may also help us understand the responses of marine ecosystems
to global climate change and other large-scale environmental
perturbations such as ocean acidification and spatial and
temporal ocean deoxygenation.

The authors of this Research Topic contributed a total of 21
publications covering a wide variety of subjects spanning from
microbial metabolic dynamics to biogeochemical cycling of C,
N, S, and Fe in micro-, small-, and geographic-scale marine
gradients. This Editorial aims to highlight some of the main
findings reported in these publications and we would like to take
this opportunity to thank all participating editors and reviewers
for making this Research Topic a success. In order to cover
the broad subjects of the articles published in this Research
Topic, we organize our introductions to these publications in
the following sequence: (1) microbial ecoenergetic strategies
and dynamics in response to energy sources and dynamics; (2)
microbial community structure variations and their impacts on
marine C, N, S, and Fe cycling in response to natural and
anthropogenic gradients; and (3) microbial regulatory processes
and mechanisms in response to environmental gradients and
variations. We closed this Editorial by referring to the need
for ongoing experimental advancement in future studies of
marine microorganisms, their communities and ecofunctions, in
response to marine environmental changes.

MICROBIAL ECOENERGETIC RESPONSES

TO ENERGY SOURCES AND DYNAMICS

Sunlight is the major energy source that supports most of
the primary production in surface oceans and in sediments

under shallow water; hence, light availability controls the
vertical distribution of photosynthetic communities in the ocean.
However, the photochemical energy conversion efficiency of the
phytoplankton communities was recently found to be relatively
low and further limited by nutrient scarcity in vast regions of
the ocean (Lin et al., 2016; Falkowski et al., 2017). Lichtenberg
et al. investigated radiative energy budgets and energy conversion
efficiency of benthic phototrophic microbial communities in
coral reef sediments and a cyanobacterial biofilm. They found
that local photosynthetic efficiencies change as function of
physical structure of microbial communities and gradients of
diffuse or collimated light further change the pattern of radiative
energy conversion. In addition to light energy, energy stored
in chemical bonds is also explored by microorganisms for
carrying out dark inorganic carbon fixation (Hügler and Sievert,
2011), which may play an important role in marine carbon
cycling and climate modulation. For example, in a very recent
investigation in the South China Sea, the integrated water
column dark carbon fixation rate was estimated to be nearly 4-
fold of euphotic zone primary production (Zhou et al., 2017).
The review article by Dang and Chen further discussed the
eco-energetic strategies of key marine chemolithoautotrophic
nitrogen-cyclingmicroorganisms and their tentative responses to
marine environmental changes such as those caused by global
warming, ocean acidification, deoxygenation, eutrophication,
and heavy metal pollutions.

MICROBIAL COMMUNITY RESPONSES TO

NATURAL AND ANTHROPOGENIC

GRADIENTS AND THEIR IMPACTS ON

MARINE C, N, S AND FE CYCLING

Cyanobacteria are key primary producers in the ocean. Mackey
et al. revealed variations in the oligotypes of Synechococcus
strains and thus their microdiversity, relative abundances
and niche differentiation in response to changes in season,
and salinity in a salt marsh estuary by employing a novel
molecular approach called oligotyping. Similarly, Xia et al.
verified niche partitioning among Synechococcus in the Pearl
River estuary, a salt wedge estuary of the South China Sea. Chen
et al. showed that the biogeography of dominant planktonic
and benthic microeukaryotic communities (possibly including
autotrophs, heterotrophs, and mixotrophs) may be influenced
mainly by environmental and spatial factors, while that of
the rare subcommunities may be influenced by more complex
mechanisms in the coastal environment of Xiamen, China.

Marine Roseobacter clade (MRC) bacteria are abundant as
free-living and particle-associated microorganisms; particularly,
in coastal waters, and some of them can carry out aerobic
anoxygenic photosynthesis (Dang and Lovell, 2002, 2016; Buchan
et al., 2014). He et al. investigated the seasonal and spatial
distribution of the bacterioplankton communities in highly
anthropogenically impacted Qinhuangdao coastal waters and
reported that the bacterial abundance had significant positive
correlation with seawater total phosphorus content, potentially
serving as a key monitoring parameter for anthropogenic
impact in the studied aquatic area. These authors also
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observed an inverse correlation between the dominant Family
II Cyanobacteria and Alphaproteobacteria (mainly affiliated with
the MRC). It will be worthwhile to further investigate what
the ecological mechanism or controlling environmental factors
are, if any, that determine the distinct spatial distribution of
Cyanobacteria and MRC bacteria.

Shallow-water coral reefs are among the most productive
and most diverse symbiotic ecosystems in the oceans (Cunning
and Baker, 2014; Blackall et al., 2015; Peixoto et al., 2017). The
response of coral microbiomes to environmental disturbance is
highly complex (McDevitt-Irwin et al., 2017). Long-term surveys
are critical to our ability to differentiate changes in response to
anthropogenic disturbances from natural dynamics of the coral
microbiomes. The work by Yang et al. highlights the importance
of long-term surveys for coral microbial communities in
revealing compositional shifts and environmental correlations
and reported that the dominant bacterial groups in coral
Stylophora pistillata showed differential geographical preference,
whereas the composition of the minor bacterial members in S.
pistillata fluctuated over time.

Although Archaea have been recognized as an important
and diverse group of microorganisms in the ocean, knowledge
gaps concerning the ecological and biogeochemical roles of
many archaeal lineages remain (Offre et al., 2013; Spang
et al., 2017). Ling et al. investigated chemolithoautotrophic
ammonia-oxidizing Thaumarchaeota communities, along with
communities of ammonia-oxidizing Betaproteobacteria, that
were associated with the seagrass Thalassia hemprichii in
several coral reef ecosystems of the South China Sea. Liu
et al. reported much more abundant heterotrophic MG-
II Euryarchaeota than chemolithoautotrophic Thaumarchaeota
throughout the water column of the northeastern South China
Sea and strong water mixing was inferred to be the cause
of this unusual distribution pattern of the marine archaea.
Furthermore, Wang et al. found that MG-II Euryarchaeota likely
produce a large proportion of GDGTs, potentially important
in marine carbon cycling (Zhang et al., 2015) and in revising
the interpretation of TEX86, a paleotemperature proxy stored in
marine sediments.

The global nitrogen cycle has been experiencing tremendous
anthropogenic disturbances (Rockström et al., 2009). Whether
nitrogen loss through denitrification and anammox, and
nitrogen gain through microbial N2 fixation are presently still
in balance in the anthropogenically-impacted modern ocean
has been vigorously debated (e.g., Zhou et al., 2016; Dang and
Chen). New diazotrophs and N2-fixing environments have
recently been identified, including coastal sediments that harbor
diverse and abundant sulfate-reducing bacteria (SRB) that are
active in nitrogen fixation (Bertics et al., 2013; Dang et al.,
2013; Pedersen et al., 2018; Zhou et al., 2016). The work by
Zhang et al. showed the diazotrophic potential of SRB in the
rhizospheres of tropical mangroves, which usually constitute
highly productive intertidal ecosystems but meanwhile lack
sufficient nutrients. Another environmental issue related to
the contemporary nitrogen cycle is that N2O has emerged as
the top ozone-destructing greenhouse gas (Voss et al., 2013).
Microbial reduction is likely the sole biological sink for N2O,

and the key enzyme in this process, nitrous oxide reductase,
is known for its low oxygen tolerance (Bonin et al., 1989;
Körner and Zumft, 1989). Nevertheless, Sun et al. reported
in this Research Topic that composition of the active N2O-
consuming microbial assemblages varied with seawater N2O
but not O2 concentration across the oxic/anoxic gradient of the
Eastern Tropical South Pacific Ocean. This work also tentatively
identified an overlooked N2O sink by showing the presence
of active N2O-consuming microorganisms in oxygenated
surface seawater.

Many microorganisms participate in the marine sulfur and
iron cycles via dissimilatory metabolism (Sievert et al., 2007;
Melton et al., 2014). S-cycling bacteria and archaea contribute to
either organic carbon consumption (via anaerobic respiration)
or inorganic carbon fixation (via chemolithoautotrophy),
depending on the in situ redox status and the available energy
metabolic substrates. Jiang et al. characterized the versatile
physiology and metabolic mechanisms of Hydrogenovibrio
thermophilus strain S5, a chemolithomixotrophic hydrogen- and
sulfur-oxidizing bacterium isolated from an active hydrothermal
vent chimney on the Southwest Indian Ridge. The versatility of
this bacterium in energy and carbon source exploitation enables
its survival in the highly dynamic and harsh conditions of the
deep-sea hydrothermal environments. Tang et al. investigated
the microbial communities of the shallow-sea hydrothermal
system off Kueishantao Island. They not only detected sulfur
oxidation and carbon fixation marker gene sequences in their
metagenome datasets, but also identified the signatures of
many heterotrophic bacteria that harbored versatile genetic
potential to adapt to the shallow-sea hydrothermal environment.
Zhang et al. investigated the vertical distribution of SRB
and SOXB in natural sediments of the East China Sea, a
marginal sea highly impacted by riverine and anthropogenic
activities. Qiao et al. investigated the mud deposit bacterial
communities of the eastern China marginal seas including
the East China Sea and they also quantified the dsrB gene
abundance attributed to SRB. The work by Ihara et al. showed
the successional dynamics of bacterial communities in marine
sediments launched on land by earthquake-induced tsunami
and identified campylobacterial SOXB as pivotal microbes
during community and functional shift. This work also found
the involvement of zetaproteobacterial and betaproteobacterial
FeOB in sediment bacterial community succession, verifying
the prevalence of FeOB in sedimentary environments of the
global coastal seas (McBeth et al., 2011; Laufer et al., 2017).
Chiu et al. identified two new pelagic zetaproteobacterial FeOB
species from seawater of the Chesapeake Bay oxic-anoxic
transition zone and—based on in silico genome sequence
analysis—inferred their strategies for adaptation to planktonic
and putative particle-associated living in aquatic environments,
thereby supporting a previous finding that coastal seawater may
commonly harbor biofilm-forming and biocorrosion-causing
zetaproteobacterial FeOB (Dang et al., 2011). FeOB have been
hypothesized as pioneer species in the initiation of carbon steel
biocorrosion in marine environments, while SRB may play more
important roles in biocorrosion once the biocorroding microbial
communities grow into thick biofilms (Dang et al., 2011). Li
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et al., indeed, showed the dominance of SRB in the rust microbial
communities that formed from long-term steel incubations in
coastal waters.

REGULATION OF MICROBIAL

RESPONSES TO ENVIRONMENTAL

GRADIENTS AND VARIATIONS

The microbial responses to environmental gradients and
variations are usually highly regulated. Nawaz et al. showed
the importance of small regulatory RNAs in the adaptation
to deep-sea conditions in Shewanella piezotolerans WP3, an
iron-reducing bacterium with identified piezotolerance and
psychrotolerance. Furthermore, the work by Zeng et al. showed a
novel molecular mechanism of Pseudoalteromonas sp. SM9913, a
biofilm-forming marine bacterium, in adaptation to heat stress.

Coevolution of the Earth and its microbiota dictate
the capability of individual microorganisms and their
communities to respond to environmental changes. Although
the mechanisms and processes employed by microbes to respond
to environmental changes are highly diverse and complex,
established biological and ecological principles are followed and
can thus be decoded as suggested by the studies in this Research
Topic. The general lack of available representative microbes
in culture as well as experimental model systems to simulate
environmental gradients presents an ongoing challenge to
gaining deeper understanding of the processes, mechanisms and

functions in changing marine ecosystems (Lage and Bondoso,
2012; Thøgersen et al., 2018). Continuing advancement of
experimental techniques and protocols, such as those with
high sampling frequency and sufficient replicates, long-term
surveys, deep sequencing, systematic analyses and modeling will
eventually help to reveal the mysteries of the microbial world in
aquatic systems.
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