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For biogas-producing continuous stirred tank reactors, an increase in dilution rate
increases the methane production rate as long as substrate input can be converted
fully. However, higher dilution rates necessitate higher specific microbial growth rates,
which are assumed to have a strong impact on the apparent microbial biomass
yield due to cellular maintenance. To test this, we operated two reactors at 37◦C
in parallel at dilution rates of 0.18 and 0.07 days−1 (hydraulic retention times of
5.5 and 14 days, doubling times of 3.9 and 9.9 days in steady state) with identical
inoculum and a mixture of volatile fatty acids as sole carbon sources. We evaluated
the performance of the Anaerobic Digestion Model No. 1 (ADM1), a thermodynamic
black box approach (TBA), and dynamic flux balance analysis (dFBA), to describe the
experimental observations. All models overestimated the impact of dilution rate on the
apparent microbial biomass yield when using default parameter values. Based on our
analysis, a maintenance coefficient value below 0.2 kJ per carbon mole of microbial
biomass per hour should be used for the TBA, corresponding to 0.12 mmol ATP
per gram dry weight per hour for dFBA, which strongly deviates from the value of
9.8 kJ Cmol h−1 that has been suggested to apply to all anaerobic microorganisms
at 37◦C. We hypothesized that a decrease in dilution rate might select taxa with
minimized maintenance expenditure. However, no major differences in the dominating
taxa between the reactors were observed based on amplicon sequencing of 16S rRNA
genes and terminal restriction fragment length polymorphism analysis of mcrA genes.
Surprisingly, Methanosaeta dominated over Methanosarcina even at a dilution rate of
0.18 days−1, which contradicts previous model expectations. Furthermore, only 23–
49% of the bacterial reads could be assigned to known syntrophic fatty acid oxidizers,
indicating that unknown members of this functional group remain to be discovered. In
conclusion, microbial maintenance was found to be much lower for acetogenesis and
methanogenesis than previously assumed, likely due to the exceptionally low growth
rates in anaerobic digestion. This finding might also be relevant for other microbial
systems operating at similarly low growth rates.

Keywords: decay rate, non-growth associated maintenance, maintenance coefficient, apparent yield, dilution
rate, hydraulic retention time, chemostat, Anaerobic Digestion Model No. 1
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INTRODUCTION

Anaerobic digestion (AD) is a key technology in environmental
biotechnology and renewable energy supply (Plugge, 2017). In
AD, microorganisms convert complex organic materials such
as organic waste to biogas (Plugge, 2017). Mechanistic models
have been shown to be useful for the simulation and control
of the biogas process (Lauwers et al., 2013). It has been
suggested that the further inclusion of microbial community
data might lead to drastic improvements in model performance
(Lauwers et al., 2013). In this study, we analyzed the effect
of dilution rate on the microbial community with a focus on
the influence of dilution rate and microbial maintenance on
microbial biomass concentration.

The dilution rate is a crucial process parameter for continuous
stirred tank reactors (CSTR), which is one of the most
prevalent reactor configurations for AD around the world, and
particularly in Germany (Weiland, 2010). The dilution rate is the
reciprocal of the hydraulic retention time (HRT). To increase
the organic loading rate (OLR) of a CSTR, with the aim of
higher productivity, the substrate concentration in the feed
and/or the dilution rate can be increased. The possibilities to
increase the substrate concentration in the influent are limited,
however, for example due to pumping or mixing problems at
high solid contents. Therefore, increasing the dilution rate is
the easiest way to reach higher OLRs. However, increasing the
dilution rate can lead to process instability and even process
failure (Ziganshin et al., 2016). In a CSTR, there is no biomass
retention or recycling and therefore, the higher the dilution rate,
the faster microbial biomass is washed out of the CSTR, and
hence, higher specific microbial growth rates are required to
compensate for this loss. Therefore, understanding the impact of
dilution rate on the microbial community is crucial for process
optimization. Among other effects, the dilution rate can affect
microbial biomass concentration (Heijnen, 2002) and microbial
community composition (Ziganshin et al., 2016).

The impact of the dilution rate on the microbial biomass
concentration is important because the capacity of a digester to
convert substrate depends on the amount of available biocatalysts
(Van Lier et al., 2015), i.e., the amount of microbial biomass in
the digester. Both negative and positive relationships between
specific microbial growth rate and apparent microbial biomass
yield (and thereby biomass concentration) have been found in the
broader field of microbial ecology (Lipson, 2015). However, these
relationships have received little attention in AD research.

Positive relationships between specific microbial growth
rate and apparent microbial biomass yield were found in
various experiments and hypothesized to be a result of
substrate usage for processes other than growth, such as
cellular maintenance (Lipson, 2015). At low specific microbial
growth rates, energy usage for these non-growth related
processes compared to growth-related processes becomes larger,
resulting in a smaller apparent microbial biomass yield
(Yapp). Apparent microbial biomass yield refers to the net
microbial biomass increase per substrate consumed. The
maximum microbial biomass yield (Ymax), in contrast, is
a theoretical construct that describes the gross microbial

biomass increase per substrate consumed if non-growth related
processes are neglected. Non-growth related processes include
(a) osmoregulation, (b) defense against oxidative stress, (c) cell
motility, (d) synthesis, repair and turnover of macromolecules,
(e) energy spilling reactions, (f) shifts in metabolic pathways,
(g) changes in storage of polymeric carbon compounds
and (h) extracellular losses of compounds not involved in
osmoregulation (Van Bodegom, 2007). The processes (a–d)
were termed “physiological maintenance” (Van Bodegom, 2007).
Kempes et al. (2017) further differentiated between “maintenance
metabolism” (inferred as substrate use under zero-growth
conditions), “endogenous metabolism” (substrate use of cells
after starvation), and “basal power requirement” (true minimum
substrate use of a cell).

This diversity of non-growth related processes has led to the
formulation of conceptually sound but parameter-rich models
(Kempes et al., 2017; Van Bodegom, 2007). Van Bodegom (2007)
acknowledged the lack of experimental data to determine all
individual non-growth variables in such models. This makes
them difficult to apply to complex microbial communities such
as AD communities because these parameters would need
to be determined for hundreds of species. In AD models,
microbial maintenance is usually considered following one of
two basic concepts: the “Herbert Model” and the “Pirt Model”
(Wang and Post, 2012). In the “Herbert Model,” microbial
maintenance is implemented as a negative specific growth
rate. This concept is used, for example, in the Anaerobic
Digestion Model No.1 (ADM1). In the “Pirt Model,” microbial
maintenance is expressed in the form of an energy consumption
rate. This approach is applied as a maintenance coefficient
in the thermodynamic black box approach (TBA) and as
non-growth associated maintenance (NGAM) in flux balance
analysis (FBA).

Besides the positive relationship between specific microbial
growth rate and apparent yield, Lipson (2015) pointed out that
there is additionally both theoretical and empirical support
for a negative relationship. For example, costly additional
protein synthesis might be required to achieve higher specific
microbial growth rates (Wong et al., 2009). Both linear
and sigmoidal negative relationships have been suggested
(Lipson, 2015).

The aim of this study was to analyze the impact of
dilution rate and microbial maintenance on the microbial
biomass concentration in acetogenesis and methanogenesis
(Figure 1). Two laboratory scale CSTRs were fed with
synthetic media containing a mixture of volatile fatty acids
(VFA) as the sole carbon source, both started with an
identical inoculum and operated in parallel but at different
dilution rates (0.18 and 0.07 days−1). Final microbial
biomass concentrations were compared to predictions
from the three models applied in AD research: ADM1
(Herbert Model), TBA (Pirt Model) and a dynamic FBA
model (dFBA, Pirt Model). These models all account for
microbial maintenance but implemented following different
concepts and with different default values, and therefore
are expected to lead to different predictions concerning the
impact of dilution rate on microbial biomass concentrations.
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FIGURE 1 | Study design. Substrate: VFAs and mineral media; ADM1:
Anaerobic Digestion Model No.1; CSTR: continuous stirred tank reactor; D:
dilution rate; dFBA: dynamic flux-balance analysis; HRT: hydraulic retention
time; kdec: decay rate; m: maintenance coefficient; NGAM: non-growth
associated maintenance; TBA: thermodynamic black box approach; VFA:
volatile fatty acid; X: microbial biomass concentration, XD0.18: X of CSTR with
D = 0.18 d−1.

In addition, the composition of the microbial communities
was analyzed using 16S rRNA gene amplicon sequencing
targeting bacteria and terminal restriction fragment length
polymorphism (T-RFLP) analysis of the mcrA gene targeting
methanogenic archaea.

MATERIALS AND METHODS

Laboratory-Scale CSTR Experiments
Two laboratory-scale CSTRs with 6 L working volume were
operated in parallel over 70 days at 37◦C but with different
dilution rates (0.18 and 0.07 days−1). Both CSTRs were fed
continuously with a synthetic, liquid substrate containing a
mixture of VFAs as the only carbon source (45% acetic, 45%
butyric and 10% propionic acid based on chemical oxygen
demand, COD) with a total concentration of 37.2 gCOD L−1

in a mineral medium containing all necessary trace elements,
macronutrients and vitamins (see Supplementary Table S1,
Supplementary Material A). The CSTRs were inoculated from a
lab-scale digester operated at a dilution rate of 0.125 days−1 with
the same synthetic substrate for 7 months. Biogas production
rate, biogas composition (CH4, CO2, O2, H2, and H2S), VFA
concentrations, total solids content (TS), volatile solids content
(VS), and pH were determined as described previously (Mulat
et al., 2016). The TS and VS content measurements were modified
in a way that a reactor sample was not added directly to a
crucible, but only the pellet after centrifuging 100 mL reactor
content (10,000 × g, 10 min, and 10◦C) to increase the amount
of biomass per analysis and to reduce the potential error of VFAs
in the sample.

Microbial Community Analyses
DNA Extraction
Samples (1.5 mL) from the lab-scale CSTRs were centrifuged
at −7◦C and 15,000 × g for 2 min and the supernatant was
discarded. The samples did not freeze within the 2 min despite
the low temperature. The pellets were stored at −20◦C until
DNA extraction. DNA was extracted from the pellets using
the NucleoSpin R©Soil Kit (MACHEREY-NAGEL GmbH & Co.,
KG, Germany, buffer SL2, no enhancer). Purified DNA quantity
and quality were determined by agarose gel electrophoresis and
by NanoDrop R©ND 1000 spectral photometer (Thermo Fisher
Scientific, United States) and the DNA was stored at−20◦C.

Composition of Methanogenic Archaea
The methanogenic community composition was assessed by
T-RFLP analysis of mcrA gene amplicons as described previously
(Sträuber et al., 2016). For the taxonomic assignment, the
database of Bühligen et al. (2016) was used. Primers used were
mlas (GGTGGTGTMGGDTTCACMCARTA) and mcrA-rev
(CGTTCATBGCGTAGTTVGGRTAGT) and PCR conditions
were applied as described previously (Steinberg and Regan,
2008). Restriction enzymes used were MwoI and BstNI (New
England Biolabs). Methanogens contain only one copy of the
mcrA gene per genome (Steinberg and Regan, 2008). However,
Methanobacteriales and Methanococcales additionally contain
one copy of the mrtA gene, which is also amplified by the primers
mlas and mcrA-rev (Steinberg and Regan, 2008). Therefore,
relative T-RF abundances of these orders were corrected by a
factor of 2.

Composition of the Bacterial Communities
Bacterial community compositions of both CSTRs at the
beginning and at the end of the experiment were analyzed by
amplicon sequencing of 16S rRNA genes. PCR amplification and
amplicon sequencing using the MiSeq platform (V3, 2x300bp,
Illumina) were performed by LGC Genomics GmbH (Berlin,
Germany). The V3-V4 regions of the 16S rRNA genes were
amplified using the primers 341f (CCTACGGGNGGCWGCAG)
and 785r (GACTACHVGGGTATCTAAKCC) according to
Klindworth et al. (2013). Initial bioinformatics preparation of
paired-end reads was performed by LGC Genomics including
de-multiplexing, removal of barcodes (allowing 1 mismatch),
adapter and primer sequences (allowing 3 mismatches), and
merging of forward and reverse reads using the BBMerge 34.48
software1. Merged reads were further processed with the QIIME
1.9.1 Virtual Box release (Caporaso et al., 2010). Reads were
quality-filtered removing low quality reads (quality threshold
lower than 20) and allowing no ambiguous base calls. Removal
of chimeric sequences and clustering into operational taxonomic
units (OTUs) was achieved by the usearch tool (Edgar, 2010).
For taxonomic assignment, the latest MiDAS taxonomy 2.1
(McIlroy et al., 2015) and the RDP Classifier 2.2 (confidence
threshold 0.8) were used (Wang et al., 2007). For downstream
analyses, the OTU table was rarefied to 23,074 sequences per
sample. Rarefaction curves can be found in the (Supplementary

1http://bbmap.sourceforge.net/
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Figure S6, Supplementary Material A). In the resulting OTU
table, only bacterial OTUs were retained as the applied primers
only partially amplify archaeal 16S rRNA genes and would result
in a strongly biased methanogenic community composition
(Klindworth et al., 2013). Raw de-multiplexed sequence data has
been deposited at EMBL European Nucleotide Archive (ENA)
under accession number PRJEB226032.

The relative abundances of 16S rRNA genes were corrected by
the average 16S rRNA gene copy number per genome. The 16S
rRNA gene copy numbers per genome for each OTU at genus
level were taken from the rrnDB database3 version 5.2 using
the taxonomy search function (Name type: NCBI – all names,
accessed on September 5, 2017). If no copy number was available
at the genus level, the next higher taxonomic level was chosen.

Simulations
ADM1 (Herbert Model)
The Herbert Model describes endogenous metabolism by a
negative specific microbial growth rate (Wang and Post, 2012)
and, therefore, technically has the form of a biomass decay term:

µ (S) = µmax ·
S

S+ KS
− a, (1)

with µ being the substrate concentration dependent specific
microbial growth rate, µmax the maximum specific microbial
growth rate, S the substrate concentration, KS the half saturation
constant and a the specific maintenance rate. This model for
maintenance in the form of biomass decay is used in the ADM1
as the constant parameter kdec (equals a in Equation 1).

A COD-based ADM1 implementation (Rosen and Jeppsson,
2006) was used in this study, which includes minor changes
to the original model structure of Batstone et al. (2002),
such as additional balancing terms for inorganic nitrogen and
carbon to ensure closed nitrogen and carbon balances in all
19 processes, the utilization of Hill functions to calculate pH
inhibition and the calculation of the biogas production rate
based on an overpressure in the headspace. All simulations
were performed until steady state was reached. Thus, the
influence of initial concentrations for individual state variables
can be neglected.

Default parameters as introduced by Rosen and Jeppsson
(2006) were used. The most important of these default parameters
for our study were Yac (0.05 gCODX gCODS

−1), Ypro (0.04), Yc4
(0.06) and Yh2 (0.06), which are the microbial biomass yields of
acetoclastic methanogens, propionic acid oxidizers, butyric acid
oxidizers and hydrogenotrophic methanogens, respectively, and
the microbial decay rate kdec (0.02 days−1).

In the original structure of ADM1, decaying microbial
biomass is assumed to disintegrate into carbohydrates, lipids and
proteins, which are hydrolyzed and used by bacterial populations
as substrate. In this way, some of the biomass lost due to
maintenance can be utilized for microbial growth, which is not
the case in the Herbert Model. However, this recycling of dead
biomass is negligible, as for the default parameters and the

2http://www.ebi.ac.uk/ena/data/view/PRJEB22603
3https://rrndb.umms.med.umich.edu/

dilution rate of 0.07 days−1, the biomass recycling of acetogens
and methanogens only accounts for 0.54% of the respective
population biomass (see Supplementary Table S3). Therefore,
we interpret ADM1’s kdec as maintenance coefficient of the
Herbert Model.

For better comparison with the TBA (Equation 5b), Equation
2 for the apparent yield Yapp was derived for steady state (see
Supplementary Material A, section “Derivation of Equation 2”)
based on the dilution rate D, the decay rate kdec and the microbial
biomass yield Y :

Yapp =
Y

kdec
D + 1

, (2)

TBA (Pirt Model)
In the Pirt Model, substrate consumption is divided into substrate
for growth and substrate to fulfill maintenance requirements:

q (S) =
µmax ·

S
S+KS

Ymax
+m, (3)

with q being the specific substrate uptake rate, µmax the
maximum specific microbial growth rate, S the substrate
concentration,K the half saturation constant,Ymax the maximum
yield and m the maintenance coefficient. In AD research, it has
been applied by Wandrey and Aivasidis (1983). The maintenance
coefficient m has been implemented by Heijnen (2002) in a
TBA model as a universal energy requirement, which is mainly
influenced by the temperature and only little influenced by the
type of microorganism, electron donor, and electron acceptor.
This universal energy requirement is particularly useful for
complex microbial communities because no parameters need to
be fitted.

For steady state, the biomass concentration in the CSTRs for
the TBA can be calculated based on the apparent yield Yapp,
the substrate influent concentration Sin, the substrate production
rate from other reactions (e.g., acetic acid production from
butyric acid oxidation) Ṡi, the dilution rate D, and the substrate
concentration S inside the CSTR following Equation 4.

X = Yapp ·

(
Sin +

Ṡi
D
− S

)
, (4)

Heijnen (2002) described a TBA for microbial growth with an
apparent yield Yapp, which is derived from the maximum yield
Ymax diminished by a maintenance coefficient m and the specific
microbial growth rate µ (Equation 5a), which can be rewritten to
Equation 5b assuming a CSTR in steady state.

Yapp =
Ymax

1+ m·Ymax
µ

, (5a)

Yapp =
Ymax

1+ m·Ymax
D

, (5b)

Maintenance coefficients m for each substrate were calculated
based on the Gibbs energy of 9.8 kJ per carbon mole microbial
biomass (CmolX) per hour at 37◦C based on Tijhuis et al.
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(1993). The maintenance coefficient was converted to substrate
consumption rates by the Gibbs energy change of catabolism
as presented by Kleerebezem and Van Loosdrecht (2010). Ymax
values were based on the Gibbs energy dissipation method
(Kleerebezem and Van Loosdrecht, 2010, see Supplementary
Table S7). Carbon mole based units were converted to mass-base
assuming a microbial biomass composition of CH1.8O0.5N0.2
(Kleerebezem and Van Loosdrecht, 2010). See section “Details on
the Approach Used in this Study” in Supplementary Material A
for detailed explanations.

dFBA
FBA modeling relies on metabolic stoichiometric networks,
which detail the intracellular conversion of metabolites.
Assuming that intracellular metabolites are at steady state and
that the cell maximizes its growth, this approach allows for
the prediction of specific microbial growth rate, intracellular
metabolic fluxes and product synthesis rates, given a substrate
uptake rate (Orth et al., 2010). By restricting the steady state
assumption to short time intervals, dFBA allows for the dynamic
simulation of microbial populations (Mahadevan et al., 2002).
We simulated a chemostat containing a monoclonal population
with biomass concentration X (g L−1) being fed with a growth
limiting substrate S (g L−1, either being acetic, propionic, butyric
acid or hydrogen) according to:

dX
dt
= µ · X − D · X (6)

dS
dt
= (Sin − S) · D− vS (S) · X (7)

with dilution rate D (d−1) and substrate concentration in the
inflow Sin (g L−1). Following the dFBA approach, the specific
microbial growth rate of the population µ (d−1) and the
specific substrate uptake vs (g gDW−1 d−1) were computed
by optimizing intracellular flux distributions within metabolic
networks with respect to cellular growth. The current maximal
specific substrate uptake rate vuptake (g gDW−1 d−1) was
computed based on current substrate concentration S in the
reactor according to vuptake = vmax S/(KS + S) with maximal
specific uptake rate vmax (g gDW−1 d−1) and half saturation
constant KS (g L−1). To numerically solve the model, an Euler
method was implemented in Matlab R2015b (The MathWorks,
Inc., Natick, MA, United States), assuming linear dynamics
between iteration steps, and using CellNetAnalyzer for FBA
computations (Klamt et al., 2007). Simulations for the two
dilution rates of 0.18 and 0.07 days−1 were run until steady state
was reached, using a time step size of 1.5 × 10−6 days. For
acetoclastic and hydrogenotrophic growth, the Methanosarcina
barkeri model iMG746 (Gonnerman et al., 2013) was used,
in which NGAM requirement is fixed to 2 mmol ATP
gDW−1 h−1 (Gonnerman et al., 2013). In separate simulations,
either acetoclastic (choosing acetic acid as the growth limiting
substrate with Sin = 29.76 g L−1, vmax = 9.78 g gDW−1 d−1,
KS = 0.2952 g L−1) or hydrogenotrophic methanogenesis of
M. barkeri was simulated (choosing hydrogen as the growth
limiting substrate with Sin = 622.7 mg L−1, vmax = 2.5885 g

gDW−1 d−1, KS = 26.208 µg L−1). Sin values were calculated as
acetic acid or hydrogen equivalents based on the experimental
mixed feed composition. KS values were taken from Oude
Elferink et al. (1994) and vmax values adjusted so that model-
predicted maximal specific microbial growth rates matched
values reported in the same study. Likewise, a propionic acid-
degrading population of Syntrophobacter fumaroxidans was
simulated using model iSfu648, in which NGAM is fixed to
0.14 mmol ATP gDW−1 h−1 (Hamilton et al., 2015). For
butyric acid degradation, since no genome-scale model of known
butyric acid-oxidizing bacteria is available yet, we augmented
model iSfu648 by the reactions catalyzed by the butyryl-
CoA synthetase and the acetyl-CoA acetyltransferase, added
butyric acid uptake via a proton symport, and enforced the
excretion of 97.9% of the carbon influx as acetic acid, using the
same ratio that the model predicted for growth on propionic
acid. Parameter values for uptake kinetics were taken from
Lawrence and McCarty (1969), resulting for propionic acid
degradation in Sin = 2.445 g L−1, vmax = 3.538 g gDW−1 d−1,
and KS = 31.85 mg L−1, and for butyric acid degradation
in Sin = 9.251 g L−1, vmax = 10.53 g gDW−1 d−1,
and KS = 5.022 mg L−1. Total community biomass was
computed by summing up the biomass concentrations of the
individual populations.

RESULTS AND DISCUSSION

Experimental CSTR Performance
In both reactors, the fed carbon sources acetic, propionic,
and butyric acid were almost completely consumed throughout
the experiment. Average VFA concentrations were low in
both CSTRs with 337 ± 263 and 341 ± 383 mgCOD
L−1 for the dilution rates of 0.18 days−1 and 0.07 days−1

[average± standard error of mean (SEM)], respectively (Figure 2
and Supplementary Figures S1–S3), corresponding to substrate
conversion efficiencies of >99% in both CSTRs. Low VFA
concentrations even at high dilution rates have also been achieved
before by Schmidt et al. (2014) who measured total VFA
concentrations below 1000 mg L−1 in CSTRs fed with thin
stillage with dilution rates as high as 0.33 days−1. Both CSTRs
showed similar pH values with 7.44 ± 0.08 and 7.48 ± 0.07
for the dilution rates of 0.18 and 0.07 days−1, respectively
(Figure 2). Methane production was close to its theoretical
maximum of 6.2 L d−1, based on a complete conversion
of COD in the influent to methane, for the CSTR with a
dilution rate of 0.07 days−1, which corresponded to the high
substrate conversion efficiencies (Figure 2). However, for the
CSTR with a dilution rate of 0.18 days−1, the theoretical
maximum of 14.2 L d−1 was only approached closely in the
second half of the experiment, which can be explained by
technical problems with the substrate feeding pump in the
beginning of the experiment (Figure 2). However, this was
not decisive for the overall experiment since the CSTR with a
dilution rate of 0.18 days−1 ran stably for five HRTs in the
second half and was therefore comparable to the CSTR with
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FIGURE 2 | Performance of the lab-scale CSTRs. (A) pH, (B) VFA concentration, (C) microbial biomass concentration, and (D) methane production rate. The error
bars represent 1 standard error of means.

the dilution rate of 0.07 days−1, which also ran stably for
five HRTs.

Impact of Dilution Rate on Microbial
Biomass Concentration
Strong Deviation of Experimental Results From All
Models Using Default Parameters
Microbial biomass concentrations were almost equal for
both CSTRs with average concentrations of 0.92 ± 0.03 and
0.94 ± 0.03 gVS L−1 for the dilution rates of 0.18 days−1

and 0.07 days−1, respectively (Figure 2). The average
microbial biomass concentrations correspond to apparent
microbial biomass yields for the total community of
24.5 and 25.0 mgVS gCODtotalVFAs

−1 for the dilution
rates of 0.18 and 0.07 days−1, respectively. Assuming
an elemental biomass composition of CH1.8O0.5N0.2
(Kleerebezem and Van Loosdrecht, 2010), the apparent
yields at both dilution rates were approximately
0.034 gCOD gCODtotalVFAs

−1.
These results were not predicted by the three models

with their default parameter values (Figure 3). The predicted
microbial biomass concentrations strongly exceeded the
experimental results for the ADM1 and the dFBA, and
strongly undercut the experimental results for the TBA. With

an overestimation of total biomass concentration by 39.9%
for the dilution rate of 0.18 days−1 and by 4.7% for the
dilution rate of 0.07 days−1, the dFBA model provided the
best match of all models using standard parameter values (see
Supplementary Table S10).

All models predicted a higher biomass concentration at
the dilution rate of 0.18 days−1, which was not observed
in our experiment. This is supported by several other CSTR
experiments that we conducted with the same substrate using
dilution rates ranging between 0.07 and 0.18 days−1. Based on
139 samples in total from these experiments, we still did not
find a significantly higher microbial biomass concentration at
dilution rates of 0.18 days−1 compared to lower dilution rates
(see Supplementary Figure S4, Supplementary Material A).
Therefore, the difference between experimental and modeling
results is likely caused by wrong model assumptions or an
unsuitable parametrization.

Fitting the Models to the Experimental Results
We studied three ways of adjusting the TBA and ADM1
to fit the microbial biomass concentration: Either the
parameter values for maintenance (m, kdec) or for biomass
build-up (Ymax, Y) were adjusted (see Figure 2). We
refrained from fitting the dFBA model as here community
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FIGURE 3 | Experimentally observed microbial biomass concentrations and predictions by the three models: ADM1, Anaerobic Digestion Model 1; TBA,
thermodynamic black box approach; and dFBA, dynamic Flux Balance Analysis; using default and fitted parameter values. Biomass ratio equals XD = 0.18/XD = 0.07.
The error bars represent 1 standard error of means. N/A: not applicable.

biomass is computed as the sum resulting from four
different models, hence providing many degrees of freedom
for fitting.

In the ADM1 simulations, the default parameter values
led to 91–123% higher microbial biomass concentrations
than in the experiment (Figure 3, “ADM1”). The predicted
microbial biomass concentration ratio (XD = 0.18/XD = 0.07)
was 15% higher than in the experiment. Increasing kdec to
fit the microbial biomass concentrations was therefore the
wrong approach, because this further increased the microbial
biomass concentration ratio error to 75% (Figure 3, “kdec
fit”). Nevertheless, fitting ADM1 to experimental results
by increasing kdec has been done several times. Weinrich
(2017) reviewed ADM1 parameters from 30 publications.
In this literature review, 20% of the studies used kdec values
for acetogenesis and methanogenesis above 0.02 days−1

(see Supplementary Table S4, Supplementary Material A).
Potentially, this is the result of overfitting in several studies
because experiments comparing various dilution rates are

scarce. Lawrence and McCarty (1969) operated several
chemostats at dilution rates ranging between 0.083 and
0.667 days−1 at 35◦C and they inferred an average decay
rate of 0.016 ± 0.006 days−1. This supports our finding
that kdec should not be increased above 0.02 days−1 to fit
experimental results.

Reducing the default microbial biomass yields of ADM1
by 52% instead of increasing kdec led to good predictions
of the microbial biomass concentration, which deviated
by only 7–9% from the experimental values (see Figure 3,
“Y fit”). These reduced microbial biomass yield parameter
values also led to good predictions of a chemostat co-
culture experiment with Methanospirillum hungatei and
Syntrophobacter fumaroxidans fed with propionic acid at
a dilution rate of 0.07 days−1 as described by Scholten
and Conrad (2000). The apparent microbial biomass yield
of this co-culture based on our fitted ADM1 microbial
biomass yields is 0.025 gCODXh2+Xpro gCODpropionicacid

−1,
which is close to their experimentally determined
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FIGURE 4 | Impact of the dilution rate on the apparent yield for two
maintenance coefficients: 0.02 kJ Cmol−1 h−1 recommended in our study for
anaerobic digestion and 9.82 kJ Cmol−1 h−1 by Tijhuis et al. (1993). The
minimum and maximum dilution rates used in the determination of these two
values are indicated as vertical lines. The impact is expressed as apparent
yield (Yapp) divided by maximum yield (Ymax).

apparent yield of 0.021 gCODXh2+Xpro gCODpropionicacid
−1

(Xh2 = Methanospirillum hungatei, Xpro = Syntrophobacter
fumaroxidans, for details see Supplementary Material A, see
section “ADM1 Simulation for Another Study on a Propionic
Acid Fed Chemostat”). In comparison, the default ADM1
parameter values led to an overestimation of the apparent yield
with a value of 0.051 gCODXh2+Xpro gCODpropionicacid

−1 for
this co-culture experiment. This supports our finding that some
of the default yield values in ADM1 might be in general too
high. Nevertheless, all of the values assumed for the microbial
biomass yields for acetogens and methanogens in the ADM1
studies reviewed by Weinrich (2017) were higher than the ones
used to fit the experimental values in our study. In conclusion,
for acetogenesis and methanogenesis in ADM1, values for kdec
should be 0.02 days−1 or lower and values for microbial biomass
yields should be about half of the default values by Rosen
and Jeppsson (2006), if no experimental evidence for a direct
determination of these parameter values is available.

Concerning the TBA, fitting only Ymax was not sufficient to
match the experimental results. A maximum microbial biomass
concentration of 0.26 gVS L−1 could be reached this way,
which was less than a third of the experimental microbial
biomass concentration (Figure 3, “Ymax fit”). The reason was
the high maintenance coefficient value. Setting the maintenance
coefficient value to 0 kJ Cmol−1 h−1, i.e., no impact of dilution
rate on apparent microbial biomass yield, the simulations
deviated by less than 3% from the experimental microbial
biomass concentrations (Figure 2, “mfit”). Scholten and Conrad
(2000) reported similar findings with a methanogenic co-culture
in a CSTR fed with propionic acid studying dilution rates in the
range of 0.036–0.077 days−1 at 37◦C. They inferred maintenance
coefficients of 0.14–0.20 kJ Cmol−1 h−1 for the co-culture, almost
two orders of magnitude below the maintenance coefficient of
9.8 kJ Cmol−1 h−1 suggested by Tijhuis et al. (1993). Similarly,
Wandrey and Aivasidis (1983) determined a maintenance

coefficient of 120 µmolaceticacid g−1 h−1, corresponding to
0.09 kJ Cmol−1 h−1, for Methanosarcina in a CSTR fed with
acetic acid using dilution rates in the range of 0.07–0.17 days−1

at 37◦C. For our simulations, setting m to 0.20 instead of 0 kJ
Cmol−1 h−1 and increasing Ymax by 12% led the predicted
microbial biomass concentrations to deviate by only 5% from the
experimental values.

Scholten and Conrad (2000) argued that the reason for such
a much lower maintenance coefficient value might be that no
syntrophs were included in the determination of the universal
maintenance coefficient by Tijhuis et al. (1993). However, it
was not clear why syntrophic VFA oxidizers appeared to be
an exception to the otherwise universal maintenance coefficient.
Therefore, we reanalyzed the studies that form the basis of
this universal maintenance coefficient. We found that all of
these studies applied higher dilution rates (0.24–14.88 days−1)
compared to our study (0.07–0.18 days−1) and the other
AD studies cited above (<0.17 days−1) (see Figure 4 and
Supplementary Table S8). Therefore, the low maintenance
coefficient we found might not only apply to acetogens and
methanogens in anaerobic digestion but more generally to
microorganisms growing at low dilution rates. This hypothesis
is supported by Van Bodegom (2007) who found lower specific
maintenance rates for microorganisms with lower maximum
specific microbial growth rates based on a literature review.

A maintenance coefficient of 0.2 kJ Cmol h−1 corresponds to
0.116 mmol ATP gDW−1 h−1 assuming 70 kJ mol ATP−1

(Scholten and Conrad, 2000) and a microbial biomass
composition of CH1.8O0.5N0.2 (Kleerebezem and Van
Loosdrecht, 2010), which is lower than the default NGAM
values in the employed FBA models ranging between 0.14 and 2
mmol ATP gDW−1 h−1. In conclusion, these literature values
and our findings suggest that the maintenance coefficient value
for acetogenesis and methanogenesis should be assumed to be
smaller than 0.2 kJ Cmol−1 h−1 or 0.116 mmol ATP gDW−1 h−1

for dilution rates between 0.04 and 0.18 days−1 at 37◦C, if
no experimental evidence for a direct determination of this
parameter value is available.

Transferability to Industrial Anaerobic Digesters
Determining the maintenance coefficient in industrial digesters is
difficult. First, typical dilution rates can be as low as 0.01 days−1

(HRT > 100 days). Given that experiments should be run for at
least three HRTs, an experiment would take at least 300 days,
during which the substrate should remain the same. Second,
it is almost impossible to separate microbial biomass from
particulate matter being part of the substrate for an accurate
quantification. Replacing the microbial biomass determination
by molecular biological methods such as qPCR of 16S rRNA
genes or microscopic methods would require a conversion of
gene copy numbers or cell numbers to biomass. Such conversion
factors would need to consider the number of 16S rRNA genes per
genome, the number of genome copies per cell and the biomass
per cell (Bonk et al., 2018). These information are not yet available
for all species relevant for AD. Moreover, these parameters can
vary not only between species but even within species (Soppa,
2014; Bonk et al., 2018).
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Despite these uncertainties in using cell numbers instead of
microbial biomasses, a maintenance coefficient of 9.8 kJ Cmol
h−1 is still likely to result in a significant difference in cell
numbers for greatly varying dilution rates. However, this did
not apply to industrial anaerobic digesters studied by Krakat
et al. (2010) and Nettmann et al. (2010). In both studies, the
digester with the higher dilution rate should have resulted in 2.0–
3.8 times higher microbial biomass yields as predicted by the
TBA model with a maintenance coefficient of 9.8 kJ Cmol h−1

(see Table 1 and Supplementary Table S9. However, the higher
dilution rates resulted in slightly lower cell yields (cell number
per gCOD converted). As stated above, the use of cell numbers
instead of microbial biomasses is problematic. Furthermore,
the compared digesters did not run in parallel with identical
substrate. Still, it seems likely that as in our experiments, the effect
of dilution rate on microbial biomass is also lower in industrial
digesters than expected by a high maintenance coefficient of
9.7 kJ Cmol h−1.

TABLE 1 | Measured archaeal cell numbers vs. predicted biomass yields in
digesters fermenting industrially relevant substrates at different dilution rates.

Experimental data (literature) Prediction (this study)

Digester
ID

Dilution
rate (d−1)

Number of archaeal
cells per gCOD VFA

converted (cells
gCODVFA-1)

Yapp (gCODX

gCODVFA
−1) predicted

for maintenance of
9.8 kJ Cmol−1 h−1

Nettmann et al., 2010 This study

R3 0.021 1.7·108 1.2–3.0·10−3

R4 0.009 1.8·108 3.3–8.5·10−3

Ratio R3/R4 0.9 3.6–3.8

Krakat et al., 2010 This study

1600d 0.127 1.7·1010 6.9–13.4·10−3

650d 0.039 2.0·1010 2.5–5.7·10−3

Ratio 1600d/650d 0.8 2.4–2.8

Impact of Dilution Rate on Microbial
Community Composition
Two factors could have contributed to the observed deviation
of maintenance coefficient values reported by Tijhuis et al.
(1993) and inferred in our study. First, Tijhuis et al. (1993)
studied higher dilution rates and second, they used pure
cultures. In microbial communities as used in our study, a
decrease in dilution rate might lead to the enrichment of
taxa evolutionary optimized for low microbial maintenance
expenditure. However, the microbial communities of both CSTRs
were in general quite similar concerning the dominant taxa at
the end of the experiment. The methanogenic communities of
both CSTRs were dominated by the hydrogenotrophic family
Methanomicrobiaceae and the acetoclastic genus Methanosaeta
during the whole experiment (Figure 5). This was confirmed
in a T-RFLP analysis using the restriction enzyme BstNI
(Supplementary Figure S5, Supplementary Material A).

The bacterial communities also showed high similarities. At
the end of the experiment, the two CSTRs shared 70 out of 112
OTUs for the dilution rate of 0.18 days−1 and out of 75 OTUs
for the dilution rate 0.07 days−1 (Figure 6A and Supplementary
Material C). Firmicutes were the most abundant bacterial reads
on phylum level in both CSTRs with 53% and 62% of all bacterial
reads for the dilution rates of 0.18 and 0.07 days−1, respectively.
This phylum was dominated by the class Clostridia in both CSTRs
(Supplementary Material C). The microbial community analysis
showed two surprising results: the presence of Methanosaeta at
high dilution rates as well as the presence of many bacterial OTUs
not known to be involved in syntrophic VFA oxidation.

Unexpected Presence and Abundance of
Methanosaeta
It is quite unexpected to find Methanosaeta dominating over
Methanosarcina at a dilution rate as high as 0.18 days−1.
Based on ADM1 simulations using experimentally derived
kinetic parameters for Methanosaeta and Methanosarcina by

FIGURE 5 | Methanogenic archaeal community dynamics in the two lab-scale CSTRs. T-RFLP profiles of mcrA amplicons digested with MwoI for two reactors with
dilution rates (D) of 0.18 days−1 (A) and 0.07 days−1 (B). Only the assigned T-RFs are shown with T-RF length in bp in parentheses. Unassigned T-RFs are marked
as gray solid bars.
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FIGURE 6 | Bacterial community composition based on 16S rRNA amplicon
sequencing at the start and end of the experiment for the two reactors with
dilution rates of 0.18 days−1 (D0.18) and 0.07 days−1 (D0.07). Composition
corrected for 16S rRNA gene copy number per genome. (A) Edwards–Venn
diagram showing unique and shared OTUs between the samples visualized
with jvenn (Bardou et al., 2014). (B) Relative OTU abundances compared to
predictions by ADM1.

Straub et al. (2006), Methanosaeta cannot sustain dilution rates
higher than 0.11 days−1 and will be outcompeted at dilution
rates higher than 0.07 days−1 under continuous feeding. Based
on average kinetic parameters reported in the literature (Conklin
et al., 2006), Methanosaeta is able to grow at a dilution rate
of 0.18 days−1, but only at acetic acid concentrations above
2.4 g L−1 (see Supplementary Tables S5, S6). However, such
high acetic acid concentrations were never measured in our
experiment (see Supplementary Figure S1, Supplementary
Material A). Furthermore, even if the acetic acid concentrations
were higher than 2.4 g L−1, Methanosarcina would be predicted
to dominate over Methanosaeta in a CSTR with a dilution rate
of 0.18 days−1 (see Supplementary Material A, see section
“Maximum Dilution Rate and Acetic Acid Concentration to
Sustain Growth of Methanosaeta and Methanosarcina Based on
Literature Kinetic Parameters”). However, at the end of our
experiment, Methanosaeta reached relative abundances of 37%

and 26% of total methanogens for the dilution rates of 0.18 and
0.07 days−1, respectively, while the abundance ofMethanosarcina
reached only 3% for the dilution rate of 0.18 days−1 and was not
detectable for the dilution rate of 0.07 days−1.

Results contradicting reported kinetic growth parameters
of Methanosaeta have been reported before. Ziganshin et al.
(2016) found an increasing relative abundance of Methanosaeta
when increasing the dilution rate of a CSTR from 0.33 to
0.67 days−1, which also should not be possible based on the
reported parameters cited above.

The experimentally observed dominance of Methanosaeta
over Methanosarcina is not reflected in the dFBA model,
which only considers Methanosarcina as no FBA model for
Methanosaeta is available yet. Between both these acetoclastic
methanogens, the acetate activation mechanisms differs
regarding the energy expenditure with Methanosaeta using
ATP → AMP + PPi and Methanosarcina using ATP →
ADP + Pi (Welte and Deppenmeier, 2014). However, the
energy conservation mechanisms of Methanosaeta are not fully
understood yet (Berger et al., 2012). Nevertheless, the higher
ATP demand for acetate activation of Methanosaeta will most
likely lead to a lower maximum yield and thereby lower absolute
biomass concentrations for Methanosaeta as observed previously
(Conklin et al., 2006). Hence, our dFBA predictions for biomass
define an upper boundary for the Methanosarcina dominated
experimental community, and predicted differences in microbial
biomass concentrations for different dilution rates will most
likely remain unchanged.

Bacterial Community Composition
Although only acetic, propionic, and butyric acid were fed, less
than half of the bacterial reads belonged to taxa known for
the syntrophic oxidation of one of these acids (Figure 6B).
Syntrophobacter and Pelotomaculum were found as the only
known propionic acid-oxidizing genera. Syntrophomonas was
found as the only known butyric acid-oxidizing genus. The higher
abundance of butyric- than propionic acid-oxidizing bacteria can
be attributed to the 4.5 times higher amount of butyric acid fed to
the CSTRs (on COD basis).

The high abundance of bacteria not known to oxidize fatty
acids could be explained by several reasons. First, there might
be bacterial species present that are capable of, but not yet
known for, syntrophic VFA oxidation. Secondly, bacteria could
feed on decaying microbial biomass. However, based on ADM1
simulations using default parameters by Rosen and Jeppsson
(2006), bacteria feeding on sugars, amino acids and fatty acids
from decayed microbial biomass should make up at most 2%
of total bacteria in our CSTRs, compared to an observed
proportion of 51–77% of bacterial reads not known for VFA
oxidation in the amplicon sequencing analysis (Figure 6B).
Consumption of decaying biomass might thus be only a minor
reason for the presence of bacteria other than the known
VFA consumers.

Therefore, our microbial communities likely contain yet
unknown VFA-oxidizing bacteria. This is further supported
by the clearly lower abundance of Syntrophomonas at the
dilution rate of 0.18 days−1 compared to the dilution rate
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of 0.07 days−1 (Figure 6B) although the same amount of
butyric acid was consumed in both CSTRs. Therefore, it seems
worthwhile to analyze the community by meta-omics and
cultivation techniques for novel syntrophic VFA degraders.
A literature survey (Supplementary Table S2, Supplementary
Material A) provides first hints on which of the taxa might
be responsible for VFA oxidation and which ones might
be responsible for degradation of dead microbial biomass.
Cloacimonetes (Pelletier et al., 2008; Juste-Poinapen et al.,
2015; Ahlert et al., 2016), Cryptanaerobacter (de Bok et al.,
2005), and Desulfovibrio (Suzuki et al., 2010) have been
connected with propionic or butyric acid oxidation but no
co-culture of one of their species with a hydrogenotrophic
methanogen has been tested yet. Candidatus Cloacamonas
acidaminovorans, for example, contains all genes for propionic
acid oxidation via methylmalonyl-CoA but has not been isolated
yet (Pelletier et al., 2008).

CONCLUSION

The impact of dilution rate, and thereby specific microbial
growth rate, on the apparent microbial biomass yield has
been introduced as a maintenance coefficient or decay rate in
various models with severe consequences for predicted microbial
biomass concentrations.

The default parameter values of maintenance for the three
studied models ADM1, TBA, and dFBA led to overestimated
differences in predicted microbial biomass concentrations
between the two dilution rates studied in our experiments.
A low impact of specific microbial growth rate on apparent
yield could also be found in several chemostat studies using
VFAs as sole carbon source. Therefore, we concluded that
the maintenance coefficient in the TBA should be chosen to
be below 0.2 kJ Cmol h−1, corresponding to 0.116 mmol ATP
gDW−1 h−1, and the decay rate in ADM1 should be chosen
to be below 0.016 days−1 for acetogenesis and methanogenesis
as the default at 37◦C, if no experimental evidence for a direct
determination of this parameter value is available. For the
maintenance coefficient, this is almost two orders of magnitude
below the default value suggested for the TBA in the literature.

The reason for this strong difference might lie in the
low dilution rates applied in our study and AD studies in
general, compared to the high dilution rates used to derive
the universal maintenance coefficient. Potentially, slow growing
microorganisms might have in general lower maintenance
coefficients. If so, our findings for AD might similarly apply to
other engineered and natural microbial processes running at low
dilution rates. Such systems include for example the production

of VFAs from primary sludge from wastewater treatment plants
[D∼0.25 days−1 (Pittmann and Steinmetz, 2013)], the cow
rumen [D∼0.25 days−1 (Abe and Kumeno, 1973)], medium
chain fatty acid production from organic wastes [D∼0.11 days−1

(Kucek et al., 2016)] or the deep-sea bed [growth rates smaller
0.004 days−1 (Jørgensen and Boetius, 2007)].
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