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The affordability of high throughput DNA sequencing has allowed us to explore the

dynamics of microbial populations in various ecosystems. Mathematical modeling and

simulation of such microbiome time series data can help in getting better understanding

of bacterial communities. In this paper, we present Web-gLV—a GUI based interactive

platform for generalized Lotka-Volterra (gLV) based modeling and simulation of microbial

populations. The tool can be used to generate the mathematical models with automatic

estimation of parameters and use them to predict future trajectories using numerical

simulations. We also demonstrate the utility of our tool on few publicly available datasets.

The case studies demonstrate the ease with which the current tool can be used by

biologists to model bacterial populations and simulate their dynamics to get biological

insights. We expect Web-gLV to be a valuable contribution in the field of ecological

modeling and metagenomic systems biology.

Keywords: microbiome, modeling, numerical-simulation, web-server, time-series, visualization, lotka-volterra,

microbial population

INTRODUCTION

The ensemble of microbial groups residing in an ecosystem constitutes its microbiome. Mutual
interactions between the resident microbes in a given microbiome depend not only on species
diversity and abundances, but also on properties of their inhabited environment. On the other
hand, the resident microbiota also has a profound influence on the properties of the habitat itself
(Levy and Borenstein, 2013; Zelezniak et al., 2015). High throughput sequencing studies, especially
for longitudinal microbiome projects, have greatly enhanced our understanding of the nature
and dynamics of complex microbial interactions. Temporal analysis of microbial profiles has led
to several intriguing findings (Gerber, 2014) and strengthened our understanding of the role of
microbes in many diseases. Researchers have also reported new insights such as the existence of
multiple steady states in human microbiome using time series microbiome experiments (Gajer
et al., 2012; Faust et al., 2015).

Realizing the importance of the dynamic microbiome has encouraged development of methods
and tools for its analysis and modeling (Fisher andMehta, 2014; Bucci et al., 2016; Shaw et al., 2016;
Baksi et al., 2018). Some of these tools provide specializedmethods to visualize, cluster and compare
temporally similar microbial groups, find causal relationships, analyze stationarity, identify
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community-states, etc. Modeling microbial populations has
recently attracted generous attention owing to its capability and
potential to forecast future behaviors of the system as well as
allow improved estimation of microbial interactions (Berry and
Widder, 2014; Fisher and Mehta, 2014). The classical Lotka-
Volterra equations can be used to model simple systems such
as two species predator prey where the interactions are strictly
assumed to be competitive. The “generalized” Lotka-Volterra
(gLV) equations on the other hand are an extension of the
logistic growth model and are more general than the classical
predator-prey (Lotka-Volterra) equations where the interacting
species might have a wide range of relationships including
competition, cooperation, or neutralism. Such gLVs assume
that the interaction (or the effect) of one species with another
is encoded in the corresponding coefficient in the equation,
providing a powerful framework tomodel and simulatemicrobial
populations. It must be noted that gLV based models capture the
interactions using a single averaged effect in a mean-field type
model for which modest computational resource is sufficient.
Consequently, it does not account for stochastic fluctuations
(random processes), intrinsic dynamic correlations, and cannot
address any emerging spatial structures which requires extensive
computation. All the caveats applicable to extrapolation of
the dynamics of a non-linear system apply to the predictions
of the model. However, gLV formulations can still provide a
reasonable starting point for more advanced community models
and capture the effect of inter microbial associations in a more
meaningful way as compared to conventional correlation based
methods. Although correlations between groups of microbes
can help in revealing underlying ecological processes, they
are in most cases insufficient to serve as proxy for microbial
interactions (Berry and Widder, 2014; Fisher and Mehta, 2014).
Parameter estimations using Lotka-Volterra based models have
been demonstrated to be better than correlation based measures
(Fisher and Mehta, 2014). Additionally, the gLV models can
provide an estimate of the native growth rates of uncultured
microbes. While a positive value of the “interaction coefficient”
is assumed to be a beneficial effect, a negative value indicates
an inhibitory effect. If the coefficient has a zero value, no
interaction is assumed to be present between the two taxa.
The gLV equations were first used to model the interaction
between bacteria and yeast in a cheese microbiome (Mounier
et al., 2008) and thereafter in a few more microbiome studies
(Marino et al., 2014; Dam et al., 2016; Vos et al., 2017; Venturelli
et al., 2018). Simulation studies using generalized Lotka-Volterra
(gLV) models can be used to understand microbiome dynamics
and can assist biologists to design better experimental strategies.
For a given microbial community (with known abundance and
diversity), gLV can also be used to predict the future state of
the microbiome. Similarly, it can be utilized to understand the
temporal behavior of the microbiome if the initial conditions
are perturbed.

Tools like LIMITS (Fisher and Mehta, 2014), MetaMis
(Shaw et al., 2016), and MDSINE (Bucci et al., 2016) are
available for applying gLV modeling on microbial time series
data. LIMITS and MetaMis focus mainly on reconstruction of
microbial interactions and are available as Mathematica code and

an offline Matlab based GUI, respectively. MDSINE, although
providing the most comprehensive suite of functionalities for
analysis, requires knowledge of Matlab programming. In this
communication, we present a web based tool called “Web-
gLV” (freely available at http://web.rniapps.net/webglv) which
can be used for modeling, visualization, and analysis of microbial
populations without any programming expertise and has no
installation requirements (Supplementary Table 1). Users can
either upload a microbial time series abundance data matrix
to formulate the mathematical models automatically or can
provide pre-calculated model parameters, namely the growth
rate, and inter-microbial interaction matrix. The outcomes of
the simulations can be used to obtain various biological insights
and enable optimization of experimental designs. “Web-gLV” is
expected to be a valuable addition to the suite of tools in the field
of ecological modeling and metagenomic systems biology.

RESULTS

“Web-gLV” provides an easy platform for biologists to exploit the
benefits of gLVmodeling by simply uploading the experimentally
obtained time series microbial abundance data. The application
is flexible to allow users input microbial growth rates and
interaction values if known from other sources. We demonstrate
the utility of “Web-gLV” using few publicly available datasets.

Case-Study 1: Predicting the Future State
of Gut Microbiome
In this simulation, we used an available longitudinal
metagenomic time series data of gut microbiome samples
from a healthy human subject (Caporaso et al., 2011). The
aim of this case study was to model the temporal behavior of
top five dominant microbial taxa present in healthy human
gut microbiome and use the model for predicting temporal
dynamics of a future state which is unknown to the model.
In order to achieve this, we used the above dataset to create
a gLV model using the first 100 time points and considered
the 101th time point as a start point to predict the abundance
profiles of the subsequent 30 time points. The predicted 30 time
points were then compared with the experimentally reported
abundance profiles (Supplementary Figure 1A). In order to
evaluate how close “Web-gLV” predicted trends are with respect
to the experimentally observed trends, a Dynamic TimeWarping
(DTW) based algorithm (Berndt and Clifford, 1994) was used.
DTW can evaluate the similarity between two time series of
equal or unequal lengths using a dynamic programming based
approach and can be used to successfully capture equivalence in
the overall pattern. The lowDTWdistances between the observed
and predicted trajectories (Supplementary Figure 1B) indicated
that the gLV model was able to capture the observed temporal
patterns in the selected taxonomic groups with good accuracy.
The predicted dynamics could capture Lachnospira’s positive
influence on Faecalibacterium as well as its negative influence
on Akkermansia, Bacteroides, and Phascolarctobacterium
(Supplementary Figure 1C). Cyclic trends in the Bacteroides
abundance (as prevalent in the observed trends) were also seen
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to be well captured in the predicted trajectories. In order to
evaluate the robustness of the predicted trends, we changed the
initial abundance values (to half and one fourth) of the two
most abundant taxa, namely Bacteroides, and Akkermansia.
With these changes, the predicted abundances of the two
taxa did not show much deviation in their temporal trends
(Supplementary Figure 2). Therefore, as expected, these two
taxa, being the most abundant, were seen to be robust to
different initial values. To check the similarities in the trends
of the selected taxa over time, DTW distance metric was used
to generate the dendograms (Supplementary Figure 1D).
The obtained results indicated a good agreement between the
observed and “Web-gLV” predicted trees, thereby validating
the simulation capability of gLV models. The details of the
individual steps followed in the case study are explained under
the “Methods” section.

Case-Study 2: Understanding Changes in
Microbial Interaction Patterns Upon
Perturbation
The ability of gLV modeling to decipher interaction patterns in
a microbial community was exploited in this case study to find
differences between a healthy and perturbed gut microbiome.
In order to understand the effect of perturbation on the
dominant microbial genera, we used the publicly available time
series microbiome data corresponding to Clostridium difficile
infection (Bucci et al., 2016). The dataset consisted of regularly
sampled time-series microbiome abundances (for 28 days) in five
gnotobiotic mice pre-colonized with human commensal bacterial
strains which were later infected with C. difficile spores. The
data also includedmeasuredmicrobial abundances for additional
28 days post infection in these mice. For constructing the gLV
model and predicting microbial interactions in the unperturbed
state of the microbiome, we used the top five abundant taxa
from data corresponding to the pre C. difficile infection time
points of all five mice samples. Similarly, in order to construct
a representative model and predict microbial interactions in
the perturbed state, we considered the post C. difficile infection
time points. Thus, two models, namely “normal state model”
and “perturbed state model”, were generated for each mouse
sample using gLV modeling implemented in “Web-gLV.” A
biological realistic constraint enforcing positive intrinsic growth
and negative or zero self interaction (Bucci et al., 2016) was
considered during model generation (see Methods for details).

The predicted interaction profiles revealed a clear
difference in the nature of microbial interactions between
“normal” and “perturbed” states for all the five samples
(Supplementary Figure 3). Upon inspecting the changes in the
nature of interactions of individual taxa (from their normal
to perturbed state) across all the samples, it was observed that
genera exhibiting the maximum change differed in each of
the samples (Supplementary Figure 3). For example, while
Akkermansia muciniphila showed the least change across a
majority of the mice samples (“Mouse 1,” “Mouse 3” and
“Mouse 4”), no clear cut pattern was observed for other taxa.
Overall, the total negative interactions decreased in most of the

samples (“Mouse 3,” “Mouse 4” and “Mouse 5”) but every mouse
displayed a unique combination of interaction profiles. This
may be explained as an effort by the dominant players (taxa)
in the microbiome, each trying in its own way to influence the
individual sample level variations.

In order to evaluate whether the model generated using
the perturbed state of one mouse is able to predict the
perturbation dynamics of the other mice, we predicted the
post perturbation trajectories corresponding to each mouse,
considering perturbation model of every other mice. Results
of this simulation indicated an overall good prediction of
the temporal dynamics (Supplementary Figure 4).The results
corresponding to the predicted perturbed state trajectories of a
mouse based on the model of its own normal state is shown
(Supplementary Figure 4). To achieve this, gLV models were
also generated for the normal states corresponding to all the mice
samples (see Methods for details). In the next step, we checked
whether these predictions could be improved by incorporating
the normal state of the same mouse in combination with
the perturbed state of another mouse. The comparison of the
predicted and observed perturbation dynamics for each of the
subjects was performed by evaluating their sum DTW distances.
Comparison of the results indicated that the perturbed state of
a mouse could be predicted better using the perturbed state
of another mouse instead of using the model corresponding to
the normal state of the same mouse. Interestingly, utilizing the
normal state model of the same mouse in combination with
the perturbed state model of another mouse did not show a
consistent improvement (Supplementary Figure 4). Thus, the
results indicate that the growth rate and interaction parameters
of perturbation dynamics are better encoded in a comparable
perturbation model rather than the normal state model of the
same subject. However, additional advanced modeling steps like
inclusion of antibiotic susceptibilities are expected to further
enhance prediction accuracies (Bucci et al., 2016). The main
objective of this case study was to demonstrate the capability
of “Web-GLV” to use growth rate and interaction parameters
derived from other experiments to perform simulations on new
data in a user friendly way.

CONCLUSIONS

The increased affordability of DNA sequencing has enabled
researchers to move beyond the hypothesis generated using
static snapshots of microbiome. Lotka-Volterra based modeling
provides an efficient means to leverage the current volume
of generated longitudinal microbiome data. The generalized
Lotka-Volterra (gLV) modeling extends the classical two species
predator prey models which are widely used in ecology. An
important advantage of gLV models is its ability to estimate the
native growth and interaction parameters of unculturedmicrobes
in a given environment from temporal data which would
otherwise be difficult using traditional culture based methods
(Bucci and Xavier, 2014). Consequently, using these parameters,
one can study the changes in microbial communities over time
starting with unknown initial conditions. This allows testing
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of new hypothesis and helps to gather improved mechanistic
insights. However, the intricacies of the advanced mathematical
concepts involved as well as their implementation might prove
to be a hindrance for many biologists. The limited availability of
“ready-to-use” tools for such analysis also serves as a bottleneck
to quickly test a hypothesis and obtain meaningful insights.
We have developed “Web-gLV” to bridge this gap and to
enable biologists take advantage of the multispecies modeling
and simulation without any programming expertise. “Web-gLV”
also bypasses any installation needs and requires only the time
series microbial abundance data as input. A set of interactive
operations allows easy initialization and simulation of microbial
population as well as analysis of the output trajectories. Results
of repeated simulations can be easily evaluated by altering the
initial values and the parameters using GUI based inputs. The
interactive graphical plots generated by the tool aids in easy
analysis and comparison of the results. We demonstrate the
ease with which Web-gLV can be used to automatically model
and simulate microbial communities and generate outputs.
Furthermore, we demonstrate the accuracy of the predictions and
possible biological interpretations of the results.

Although gLV based models provide a good starting point for
modeling microbial community dynamics, it does not account
for random processes which forms essential part of any biological
system. Additionally, with the increase in number of species and
time span of prediction, the simulation output is also prone
to numerical errors. Consequently, Web-gLV limits simulating
a maximum of 10 species at a time for at the most 100 time
points. The compositionality bias in microbiome data arising
due to sampling and sequencing limitations may also cause
inaccurate estimation of simulation parameters. Moreover, too
much irregularity in the sampled time points may also result
in inaccurate parameter estimations. Hence, it is advised to
cautiously interpret the findings obtained using Web-gLV and
more importantly augment it with the underlying biology of the
systems (Faust and Raes, 2012; Gerber, 2014).

MATERIALS, METHODS, AND
IMPLEMENTATION

Modeling and Parameter Estimation of a
Generalized Lotka-Volterra Equation
A multi species gLV model for rate of change of a counts “xi” of
a species “i” can be written as an ordinary differential equation as
shown below:

dxi

dt
= xi



ri +

n
∑

j=1

∝ij xj



 . . . (1)

where, ri corresponds to the intrinsic specific growth rate of
species “i” and ∝ij is the influence on the growth rate of
species “i” exerted by another species “j” of the community
consisting of “n” species. Thus, for a given set of “n” species, “n”
differential equations can be formulated which can then be used
for simulating the behavior of those species starting with a set
of initial values. However, in order to perform such simulation,

one also needs to find the values of other types of parameters for
each of the equations namely the growth rate ri and the set of
inter-species interaction parameter∝ij.

The Equation (1) can be rewritten as below:

1

xi

dxi

dt
=



ri+

n
∑

j=1

∝ijxj



 . . . (2)

Further, Equation (2) can be expressed as:

dln(xi (t))

dt
=



ri +

n
∑

j=1

∝ij xj



 . . . (3)

For numerical integration following the implicit trapezoid
method, upon discretizing Equation (3) for each sub interval (let
[k,k+1]), and taking the average value of xj we get:

ln xi ( tk+1) − ln xi ( tk)

≈



ri +

n
∑

j=1

∝ij







(

xj(k+1)
+ xjk

)

2









1t . . .

(4)

Now, given a time series data for abundances of the set of
“n” species, these two parameters namely ri and ∝ij can be
estimated by comparing equation (4) to a linear regression
model for log lagged differences in abundances estimated for
each ith taxa (xi) available in the microbiome time series
data wherein the intercept corresponds to the ri values and
the coefficients to the ∝ij values (Figure 1). Earlier studies
have suggested using a constrained regression (with enforced
positive intrinsic growth and negative or zero self interaction
constraints) for microbial populations as it is biologically
more realistic (Bucci et al., 2016). Web-gLV implements two
methods for parameter estimation namely PLSR (Partial least
squares regression) for unconstrained estimation (Haenlein
and Kaplan, 2004) and LSEI algorithm (Haskell and Hanson,
1978) for constrained estimations (Supplementary Figure 5).
The constrained estimation solves a least square problem under
conditions where ri is forced to take a positive value and ∝ii

values are constrained to less than or equal to zero.

Evaluation of Predicted Trajectory
The observed and predicted trajectories are compared using a
Dynamic Time Warping algorithm (DTW). DTW measures the
similarity between two time series (with or without a lag) using a
dynamic programming approach (Berndt and Clifford, 1994) and
can be used to compare time series of unequal lengths. As, inmost
cases, the compared trajectories in “Web-gLV” are expected to be
unequal, DTWfits as the best scoringmetric. If “T1” and “T2” are
two time series vectors of length “m” and “n,” respectively, DTW
finds a mapping path {(p1,q1),(p2,q2),. . . ,(pk,qk)} with boundary
conditions (p1,q1)=(1,1) and (pk,qk)=(m,n). The DTW distance
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FIGURE 1 | Overview of formulation and use of multi species generalized Lotka-Volterra (gLV) models for obtaining microbial interactions and predict future trajectories.

between T1 and T2 for a point (i, j) is calculated by solving a
dynamic programming using the distance formula shown below:

DTW
(

i, j
)

=
∣

∣T1 (i) − T2(j)
∣

∣ +min







DTW (i− 1) , j
DTW(i− 1, j− 1)
DTW(i, j− 1)







. . .(5)

To calculate the final distance, a matrix MDTW of dimensions
m×n is constructed after filling MDTW(1,1) with the initial
condition value of MDTW(1,1) =

∣

∣T1 (1) − T2(1)
∣

∣. The whole
matrix is then filled one element at a time using the formula
shown in Equation 5. The final distance value is available at the
cell MDTW(m,n). The distance is calculated between the scaled
(between 0 and 1) time series belonging to the “Observed” and
“Predicted” data which is presented as a table along with the
trend plots in the “Web-gLV” tool. The sum total (or cumulative)
DTW distance for a set of predicted taxa can be used as a
measure to score the similarity between two or more simulations.
Additionally, the “all vs. all” DTW distance is calculated for the
“Observed” and “Predicted” data to generate the hierarchically
clustered dendograms. These dendograms can be useful to
understand the microbial community structure.

Implementation of the Web-gLV Tool
Web-gLV has been developed using JavaScript (and PHP) for
the frontend with R (deSolve package) and Perl scripts in the
backend (Soetaert et al., 2010). The tool can perform simulations
starting two types of input sets. A user can either upload only
a taxonomic abundance file which will be used to estimate

parameters and generate reference plots for the observed trends.
Alternatively, in addition to a taxonomic abundance file, a growth
rate file and inter-taxa interaction file can also be uploaded
separately to bypass the automatic parameter estimation step and
use the supplied values for numerical simulation. A metadata
file corresponding to the timepoints specified in the main
taxonomic abundance file can also be uploaded as an optional
input. This metadata information will be used by the tool to
augment the time series plots based on the available information.
The reference values of initial starting point of simulation for
the selected taxa set can be selected from one of the time
point row of this abundance table. Once the input files are
uploaded, the various steps involved in running a simulation are
described below:

Step 1: Selecting the taxa required for simulation from the
input dataset:

Given a time series microbiome data as input, the tool
presents a tabulated graphical summary in the form of box
plots, trend charts and other accompanying statistics of the
input microbial abundance profiles (Figure 2A). Additionally,
a Pearson correlation (r ≥ 0.5 and r ≤ −0.5) based network
is created using the core taxa (having <30% zeroes in the
sampled longitudinal timescale) (Figure 2B). This network can
be viewed by clicking on the link “Click here to show/hide
correlation network.” The taxonomic groups desired to be added
for modeling can be selected using the graphical summary table,
the dropdown search box or the correlation network. Clicking
on a taxa label in the summary table adds that taxa to the
simulation. Similarly, clicking on a node in the network adds
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FIGURE 2 | Demonstration of the various features of the web-gLV tool. (A) Tabulated summary of the input microbiome abundance data. (B) Microbial association

network generated from the input data which can be used to select the required taxa to be used for modeling. (C) A stacked line plot based comparison of the

observed (C) and predicted (D) trajectories. (E) A matrix representation of the predicted interaction coefficients for the modeled taxa (Red, Negative, Blue, Positive

and Green, No interaction). Dendogram based comparison of the change in the microbial community structure between the observed (F) and the predicted (G)

trends. (H) Evaluation of the similarity between the observed and predicted time series curves scored using a DTW metric.

it and the connected nodes. This feature can be used to select
a set of closely related microbial groups showing a correlated
temporal behavior. Adding a taxa for simulation using the above
two methods also makes it visible in the searchable dropdown
along with a graphical display of its temporal behavior in the
“Observed trend” window. This dropdown can also be used
to remove added taxa or add more taxa by selecting from the
dropdown. Adding or deleting a taxon automatically updates
the “Observed trend” plot. Several user interactive operations
like log transformation, stacking/un-stacking, viewing gridlines
and selecting a desired window of the trend plot is possible.
A moving average based smoothing can also be applied to the
time series plot by modifying the value in the left bottom corner
box (Figures 2C,D).

Step 2: Selecting simulation parameters:
After selecting the taxonomic groups, a user has to

specify the modeling parameters like start and end point of
data time-points for estimating the interaction coefficients,
numerical simulation interval duration and the solver used
for numerical integration of the ordinary differential equations

(ODE) method. The interaction coefficients for the equation
are then inferred using a partial least square regression (if
selected for unconstrained growth rate selection) or a constrained
regression (if selected for an enforced positive intrinsic growth
and negative/zero self interaction constraints). Other parameter
estimation methods that require numerical integration at each
step of the optimization process are potentially better in terms of
accuracy but require substantially more resources and time than
the implemented methods. Earlier studies have suggested using
the constrained method for modeling microbial populations as
it is biologically more realistic (Bucci et al., 2016). The start
time (or initial value) for the simulation can be interactively
selected as any one of the time-point from the input dataset
with provision to edit the values. This option can be used
to test perturbations in the initial microbial abundance values
and observe the simulation outcomes. It needs to be noted
that the “Parameter estimation” settings are not available when
a simulation is started with a user supplied growth rate and
interaction file.

Step 3a: Running the simulation:
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After setting the parameters, The “Run simulation” button
can be clicked to perform a simulation. If the simulation is
successful, the predicted trajectories for the selected taxa are
displayed under the “Predicted trend” window (Figure 2D). The
observed vs. predicted trend plot for a taxon is also generated
as a mixed plot with the observed trends shown in points
connected by dotted lines and the predicted as firm lines of same
color. In case of an unsuccessful simulation due to incorrect
parameter or solver limitation, an error message is displayed
and no trajectories are generated. The timeseries plot in the
“Observed trend” window is automatically set to display the
selected time range if the simulation range matches. This feature
is helpful to compare the predicted trajectories from a modified
starting point and compare it with the unmodified observed
trends. The predicted growth rate and interaction coefficient
matrix (Figure 2E) which was used for simulation is displayed
graphically for convenience. A simulation can be re-run by
altering some parameter/simulation settings as well as with a
modified set of initial values.

Step 3b: Performing cross predictions:
“Web-gLV” can also be used to perform cross predictions

by estimating growth and interaction parameters in one
simulation and use the same to predict dynamics in a
different simulation. The predicted parameters can be
saved as text files using the “Download table” option
available under “Predicted Intrinsic Growth Rates” and
“Predicted Interaction Matrix” headers in the “Web-gLV”
tool. While performing a new simulation with a similar
type of taxonomic groups whose time series abundances are
available, the downloaded parameters can be uploaded to
perform the simulation. This feature available in the “Web-
gLV” tool can be used to test the prediction performance of
models on unknown initial conditions as demonstrated in
case study 2.

Step 4: Evaluating the simulation output:
The predicted trajectories are scored for their similarities

(Figure 2H) with the observed time series using a
Dynamic Time Warping (DTW) distance metric (Berndt
and Clifford, 1994). The all vs. all DTW metric is used
to construct a hierarchal clustered dendogram for the
observed and predicted trends (Figures 2F,G). These
dendograms represents the temporal similarities between
the selected microbial groups and hence a reflection
of their community structure. A comparison of the
dendograms generated for the “Observed” and “Predicted”
data can hence be used as a measure of the simulation
prediction accuracy.

Numerical Validation of Web-gLV
Predictions
Web-gLV implements two methods for parameter estimation
namely PLSR (Partial least squares regression) for unconstrained
estimation (Haenlein and Kaplan, 2004) and LSEI algorithm
(Haskell and Hanson, 1978) for constrained estimations.
We used standard R modules namely pls and limSolve,
respectively, for the backend implementation. The tool is

designed to capture trends, which provides an idea of the
growth rate and nature of interactions. However, for an
improved understanding, it is imperative to look into the
functional potential of the participating taxonomic groups
(Nagpal et al., 2016; Bhatt et al., 2018). Web-gLV can provide
a good starting point for more advanced community models
by augmenting information from other sources. We compared
both the constrained as well as unconstrained parameters
estimated by web-gLV with previously reported methods
as demonstrated in section introduction of Data Sheet 1.
It should be noted that the calculated coefficients for the
constraint optimization solves the same problem in different
ways providing non-unique solutions. Consequently, the
parameters are free to take any values depending on the
solution which may result in differences between the estimated
parameter values. However, as expected, the predicted
trajectories (when evaluated for the case studies) show a
good agreement between the various tools (Section results
ofData Sheet 1).

Using “Web-gLV” to Perform the Case
Studies
The modeling and simulations involved in the case studies
demonstrated in the “Results” sectionwere performed completely
using the “Web-gLV” tool. The datasets are available in the
home page of the tool which can be auto-loaded by selecting
the “View” button corresponding to each case study. The
first 100 time point for case study 1 were selected using
Timepoint 1 (sampling interval: 0) as start and Timepoint
100 (sampling interval: 143) as end under the “parameter
estimation settings.” The future 30 time points were predicted
by selecting Timepoint 101 (sampling interval: 144) as start
and setting the “Time duration” option to 30 under “simulation
settings.” For case study 2, the start and end time points for
creating the “normal” state models corresponded to Timepoint
1 (sampling interval: 0.75) and Timepoint 13 (sampling
interval: 28), respectively. Similarly, for the perturbed models,
Timepoint 1 (sampling interval: 28.75) and Timepoint 26
(sampling interval: 56) corresponded to the start and end
time points, respectively. The solver for numerical simulation
was selected as ODE45 for both the case studies with time
interval as 0.1. A biological realistic constraint enforcing
positive intrinsic growth and negative or zero self interaction
was applied for generating all the modes by selecting the
option under “parameter estimation settings.” However, the
constrained parameter optimization failed to find an exact
solution for the “normal” state model of “Mouse 5” for which
we unselected the option and generated the model without
the constraints.
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